Files
pytorch/benchmarks/operator_benchmark/c2/concat_test.py
2023-07-26 01:18:48 +00:00

172 lines
4.8 KiB
Python

import random
import benchmark_caffe2 as op_bench_c2
from benchmark_caffe2 import Caffe2BenchmarkBase # noqa: F401
from caffe2.python import core
import operator_benchmark as op_bench
"""Microbenchmarks for Concat operator. Supports both Caffe2/PyTorch."""
cross_product_configs = {
"device": ["cpu", "cuda"],
"dtype": ["float"],
"add_axis": [0],
}
# Configs for C2 concat operator
cat_configs_short = op_bench.config_list(
attr_names=["sizes", "N", "axis"],
attrs=[
[(1, 1, 1), 2, 0], # noqa: E241
[(512, 512, 2), 2, 1], # noqa: E241
[(128, 1024, 2), 2, 1], # noqa: E241
],
cross_product_configs=cross_product_configs,
tags=["short"],
)
# Configs specific to static runtime feature - a fast runtime for pared down models
cat_configs_static_runtime = op_bench.config_list(
attr_names=["sizes", "N", "axis", "add_axis"],
attrs=[
[(1, 40), 5, 1, 1],
[[(1, 160), (1, 14)], -1, 1, 0],
[[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1, 0],
[[(1, 580), (1, 174)], -1, 1, 0],
[(20, 40), 5, 1, 1],
[[(20, 160), (20, 14)], -1, 1, 0],
[[(20, 20, 40), (20, 4, 40), (20, 5, 40)], -1, 1, 0],
[[(20, 580), (20, 174)], -1, 1, 0],
],
cross_product_configs=cross_product_configs,
tags=["static_runtime"],
)
cat_configs_long = op_bench.config_list(
attr_names=["sizes", "N", "axis"],
attrs=[
[(2**10, 2**10, 2), 2, 0], # noqa: E241
[(2**10 + 1, 2**10 - 1, 2), 2, 1], # noqa: E226,E241
[(2**10, 2**10, 2), 2, 2], # noqa: E241
[
[
lambda: random.randint(2**6, 2**7),
2**7 - 17,
2**6 + 1,
], # noqa: E201,E226,E241
5,
0,
],
[
[
2**6 + 2**5,
lambda: random.randint(2**6, 2**7),
2**6,
], # noqa: E201,E226,E241,E272
5,
1,
],
[
[
2**7,
2**6,
lambda: random.randint(2**6, 2**7),
], # noqa: E201,E241,E272
5,
2,
],
[[lambda: random.randint(2**5, 2**6), 2**5, 2**6], 50, 0], # noqa: E241
[
[2**5, lambda: random.randint(2**5, 2**6), 2**6], # noqa: E241,E272
50,
1,
],
[
[
2**5 + 1,
2**6 + 1,
lambda: random.randint(2**5, 2**6),
], # noqa: E226,E241,E272
50,
2,
],
],
cross_product_configs=cross_product_configs,
tags=["long"],
)
# There is a different codepath on CUDA for >4 dimensions
cat_configs_multidim = op_bench.config_list(
attr_names=["sizes", "N", "axis", "dtype"],
attrs=[
[(2**6, 2**5, 2**2, 2**4, 2**5), 2, 2], # noqa: E241
[(2**4, 2**5, 2**2, 2**4, 2**5), 8, 2], # noqa: E241
[
(2**3 + 1, 2**5 - 1, 2**2 + 1, 2**4 - 1, 2**5 + 1),
17,
4,
], # noqa: E226,E241
],
cross_product_configs=cross_product_configs,
tags=["multidim"],
)
cat_configs_manyinputs = op_bench.config_list(
attr_names=["sizes", "N", "axis"],
attrs=[
[[lambda: random.randint(1, 10000)], 100, 0],
[[lambda: random.randint(1, 1000)], 1000, 0],
[[lambda: random.randint(1, 500)], 2000, 0],
[[lambda: random.randint(1, 300)], 3000, 0],
],
cross_product_configs=cross_product_configs,
tags=["manyinputs"],
)
class ConcatBenchmark(op_bench_c2.Caffe2BenchmarkBase):
def init(self, sizes, N, axis, add_axis, dtype, device):
random.seed(42)
self.inputs = []
self.args = {"axis": axis, "add_axis": add_axis}
gen_sizes = []
if type(sizes) == list and N == -1:
gen_sizes = sizes
else:
for i in range(N):
gen_sizes.append(
[
old_size() if callable(old_size) else old_size
for old_size in sizes
]
)
for s in gen_sizes:
self.inputs.append(self.tensor(s, dtype, device=device))
self.output = self.tensor(gen_sizes[0], dtype, device=device)
self.split_info = self.tensor(gen_sizes[0], "int")
self.set_module_name("concat")
def forward(self):
op = core.CreateOperator(
"Concat", self.inputs, [self.output, self.split_info], **self.args
)
return op
op_bench_c2.generate_c2_test(
cat_configs_short
+ cat_configs_long
+ cat_configs_multidim
+ cat_configs_manyinputs
+ cat_configs_static_runtime,
ConcatBenchmark,
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()