mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928 Approved by: https://github.com/albanD
202 lines
7.4 KiB
Python
202 lines
7.4 KiB
Python
from collections import namedtuple
|
|
|
|
import benchmark_utils
|
|
from benchmark_test_generator import _register_test
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
|
|
"""Caffe2 performance microbenchmarks.
|
|
|
|
This module contains Caffe2-specific functionalities for performance
|
|
microbenchmarks.
|
|
"""
|
|
|
|
|
|
class Caffe2BenchmarkBase:
|
|
"""This is a base class used to create Caffe2 operator benchmark"""
|
|
|
|
tensor_index = 0
|
|
test_index = 0
|
|
|
|
def __init__(self):
|
|
self.args = {}
|
|
self.user_provided_name = None
|
|
self._num_inputs_require_grads = 0
|
|
self._pass_count = 0
|
|
|
|
def _set_backward_test(self, is_backward):
|
|
pass
|
|
|
|
def _device_option(self, device):
|
|
"""This method is used to set device option."""
|
|
if device not in ["cuda", "cpu"]:
|
|
raise ValueError("Missing attrs in configs")
|
|
|
|
if "cuda" in device:
|
|
self.dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
else:
|
|
self.dev = core.DeviceOption(caffe2_pb2.CPU)
|
|
return self.dev
|
|
|
|
def tensor(self, shapes, dtype="float32", device="cpu"):
|
|
"""A wapper function to create C2 tensor filled with random data.
|
|
The name/label of the tensor is returned and it is available
|
|
throughout the benchmark execution phase.
|
|
Args:
|
|
shapes: int or a sequence of ints to defining the shapes of the tensor
|
|
dtype: use the dtypes from numpy
|
|
(https://docs.scipy.org/doc/numpy/user/basics.types.html)
|
|
Return:
|
|
C2 tensor of dtype
|
|
"""
|
|
return self.feed_tensor(benchmark_utils.numpy_random(dtype, *shapes), device)
|
|
|
|
def feed_tensor(self, tensor, device="cpu"):
|
|
"""Similar to tensor, but can supply any data compatible with FeedBlob"""
|
|
blob_name = "blob_" + str(Caffe2BenchmarkBase.tensor_index)
|
|
dev = self._device_option(device)
|
|
with core.DeviceScope(dev):
|
|
workspace.FeedBlob(blob_name, tensor)
|
|
Caffe2BenchmarkBase.tensor_index += 1
|
|
return blob_name
|
|
|
|
def module_name(self):
|
|
"""this is used to label the operator being benchmarked"""
|
|
if self.user_provided_name:
|
|
return self.user_provided_name
|
|
return self.__class__.__name__
|
|
|
|
def set_module_name(self, name):
|
|
self.user_provided_name = name
|
|
|
|
def _value_to_str(self, value):
|
|
"""if value is bool, we will convert it to 0 and 1"""
|
|
ret = value
|
|
if type(value) == bool:
|
|
ret = int(value)
|
|
return str(ret)
|
|
|
|
def test_name(self, name_type="long", **kargs):
|
|
"""this is a globally unique name which can be used to
|
|
label a specific test
|
|
"""
|
|
if name_type == "long":
|
|
test_name_str = []
|
|
for key in kargs:
|
|
value = kargs[key]
|
|
test_name_str.append(key + self._value_to_str(value))
|
|
name = (self.module_name() + "_" + "_".join(test_name_str)).replace(" ", "")
|
|
elif name_type == "short":
|
|
# this is used to generate test name based on unique index
|
|
name = "_".join(
|
|
[self.module_name(), "test", str(Caffe2BenchmarkBase.test_index)]
|
|
)
|
|
Caffe2BenchmarkBase.test_index += 1
|
|
return name
|
|
|
|
def extract_inputs_tuple(self):
|
|
# add a dummy function here to match the interface of TorchBenchmarkBase
|
|
pass
|
|
|
|
|
|
class Caffe2OperatorTestCase:
|
|
"""This class includes all the information needed to benchmark an operator.
|
|
op_bench: it's a user-defined class (child of Caffe2BenchmarkBase)
|
|
which includes input and operator, .etc
|
|
test_config: a namedtuple includes test_name, input_shape, tag, run_backward.
|
|
When run_backward is false, the run_forward method will be executed, otherwise
|
|
run_backward method will be executed.
|
|
"""
|
|
|
|
def __init__(self, op_bench, test_config):
|
|
self.op_bench = op_bench
|
|
self.test_config = test_config
|
|
self.framework = "Caffe2"
|
|
|
|
def run_forward(self, num_runs, print_per_iter=False, cuda_sync=False):
|
|
"""Run the forward path of an operator in a loop"""
|
|
with core.DeviceScope(self.op_bench.dev):
|
|
op = self.op_bench.forward()
|
|
if not workspace.RunOperatorMultiple(op, num_runs):
|
|
raise ValueError(f"Unable to run operator test case: {self.test_name}")
|
|
|
|
def run_backward(self, num_runs, print_per_iter=False):
|
|
"""Run the backward path of an operator in a loop"""
|
|
with core.DeviceScope(self.op_bench.dev):
|
|
op = self.op_bench.backward()
|
|
if not workspace.RunOperatorMultiple(op, num_runs):
|
|
raise ValueError(
|
|
f"Unable to run operator gradient test case: {self.test_name}"
|
|
)
|
|
|
|
def _print_per_iter(self):
|
|
pass
|
|
|
|
|
|
def create_caffe2_op_test_case(op_bench, test_config):
|
|
test_case = Caffe2OperatorTestCase(op_bench, test_config)
|
|
test_config = test_case.test_config
|
|
op = test_case.op_bench
|
|
func_name = f"{op.module_name()}{test_case.framework}{str(test_config)}"
|
|
return (func_name, test_case)
|
|
|
|
|
|
OpMeta = namedtuple(
|
|
"OpMeta",
|
|
"op_type num_inputs input_dims input_types \
|
|
output_dims num_outputs args device",
|
|
)
|
|
|
|
|
|
def generate_c2_test_from_ops(ops_metadata, bench_op, tags):
|
|
"""
|
|
This function is used to generate Caffe2 tests based on the metadata
|
|
of operators. The metadata includes seven fields which are 1) op_type:
|
|
the name of the operator. 2) num_inputs: the number of input blobs.
|
|
3) input_dims: a dictionary which includes the shapes of the input blobs.
|
|
4) input_types: a list which includes the types of input blobs. 5)
|
|
output_dims: a dictionary which includes the shapes of output blobs.
|
|
6) num_oupts: the number of output blobs. 7) args: a dictionary which
|
|
includes the args for th operator.
|
|
Here is an example to show the metadata for the WeighedSum operator
|
|
op_type : WeightedSum
|
|
num_inputs: 4
|
|
input_dims: {'0': [256], '1': [1], '2': [256], '3': [1]}
|
|
input_types: ['float', 'float', 'float', 'float']
|
|
output_dims: {'0': [256]}
|
|
num_outputs: 4
|
|
args: {}
|
|
TODO(mingzhe0908): introduce device and add it to the benchmark name
|
|
"""
|
|
for op_metadata in ops_metadata:
|
|
tmp_attrs = OpMeta(
|
|
op_metadata.op_type,
|
|
op_metadata.num_inputs,
|
|
op_metadata.input_dims,
|
|
op_metadata.input_types,
|
|
op_metadata.output_dims,
|
|
op_metadata.num_outputs,
|
|
op_metadata.args,
|
|
op_metadata.device,
|
|
)
|
|
test_attrs = tmp_attrs._asdict()
|
|
op = bench_op()
|
|
op.init(**test_attrs)
|
|
test_name = op.test_name("short")
|
|
input_config = "Shapes: {}, Type: {}, Args: {}".format(
|
|
op_metadata.input_dims, op_metadata.input_types, str(op_metadata.args)
|
|
)
|
|
test_config = TestConfig(test_name, input_config, tags, run_backward=False)
|
|
if op is not None:
|
|
create_caffe2_op_test_case(op, test_config)
|
|
|
|
|
|
def generate_c2_test(configs, c2_bench_op):
|
|
"""This function creates Caffe2 op test based on the given operator"""
|
|
return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, False)
|
|
|
|
|
|
def generate_c2_gradient_test(configs, c2_bench_op):
|
|
"""This function creates Caffe2 op test based on the given operator"""
|
|
return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, True)
|