mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928 Approved by: https://github.com/albanD
183 lines
5.8 KiB
Python
183 lines
5.8 KiB
Python
import argparse
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
|
|
from .runner import get_nn_runners
|
|
|
|
|
|
def barf():
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
|
|
|
|
def assertEqual(tensor, expected, threshold=0.001):
|
|
if isinstance(tensor, (list, tuple)):
|
|
for t, e in zip(tensor, expected):
|
|
assertEqual(t, e)
|
|
else:
|
|
if (tensor - expected).abs().max() > threshold:
|
|
barf()
|
|
|
|
|
|
def filter_requires_grad(tensors):
|
|
return [t for t in tensors if t.requires_grad]
|
|
|
|
|
|
def test_rnns(
|
|
experim_creator,
|
|
control_creator,
|
|
check_grad=True,
|
|
verbose=False,
|
|
seqLength=100,
|
|
numLayers=1,
|
|
inputSize=512,
|
|
hiddenSize=512,
|
|
miniBatch=64,
|
|
device="cuda",
|
|
seed=17,
|
|
):
|
|
creator_args = dict(
|
|
seqLength=seqLength,
|
|
numLayers=numLayers,
|
|
inputSize=inputSize,
|
|
hiddenSize=hiddenSize,
|
|
miniBatch=miniBatch,
|
|
device=device,
|
|
seed=seed,
|
|
)
|
|
|
|
print("Setting up...")
|
|
control = control_creator(**creator_args)
|
|
experim = experim_creator(**creator_args)
|
|
|
|
# Precondition
|
|
assertEqual(experim.inputs, control.inputs)
|
|
assertEqual(experim.params, control.params)
|
|
|
|
print("Checking outputs...")
|
|
control_outputs = control.forward(*control.inputs)
|
|
experim_outputs = experim.forward(*experim.inputs)
|
|
assertEqual(experim_outputs, control_outputs)
|
|
|
|
print("Checking grads...")
|
|
assert control.backward_setup is not None
|
|
assert experim.backward_setup is not None
|
|
assert control.backward is not None
|
|
assert experim.backward is not None
|
|
control_backward_inputs = control.backward_setup(control_outputs, seed)
|
|
experim_backward_inputs = experim.backward_setup(experim_outputs, seed)
|
|
|
|
control.backward(*control_backward_inputs)
|
|
experim.backward(*experim_backward_inputs)
|
|
|
|
control_grads = [p.grad for p in control.params]
|
|
experim_grads = [p.grad for p in experim.params]
|
|
assertEqual(experim_grads, control_grads)
|
|
|
|
if verbose:
|
|
print(experim.forward.graph_for(*experim.inputs))
|
|
print("")
|
|
|
|
|
|
def test_vl_py(**test_args):
|
|
# XXX: This compares vl_py with vl_lstm.
|
|
# It's done this way because those two don't give the same outputs so
|
|
# the result isn't an apples-to-apples comparison right now.
|
|
control_creator = varlen_pytorch_lstm_creator
|
|
name, experim_creator, context = get_nn_runners("vl_py")[0]
|
|
with context():
|
|
print(f"testing {name}...")
|
|
creator_keys = [
|
|
"seqLength",
|
|
"numLayers",
|
|
"inputSize",
|
|
"hiddenSize",
|
|
"miniBatch",
|
|
"device",
|
|
"seed",
|
|
]
|
|
creator_args = {key: test_args[key] for key in creator_keys}
|
|
|
|
print("Setting up...")
|
|
control = control_creator(**creator_args)
|
|
experim = experim_creator(**creator_args)
|
|
|
|
# Precondition
|
|
assertEqual(experim.inputs, control.inputs[:2])
|
|
assertEqual(experim.params, control.params)
|
|
|
|
print("Checking outputs...")
|
|
control_out, control_hiddens = control.forward(*control.inputs)
|
|
control_hx, control_cx = control_hiddens
|
|
experim_out, experim_hiddens = experim.forward(*experim.inputs)
|
|
experim_hx, experim_cx = experim_hiddens
|
|
|
|
experim_padded = nn.utils.rnn.pad_sequence(experim_out).squeeze(-2)
|
|
assertEqual(experim_padded, control_out)
|
|
assertEqual(torch.cat(experim_hx, dim=1), control_hx)
|
|
assertEqual(torch.cat(experim_cx, dim=1), control_cx)
|
|
|
|
print("Checking grads...")
|
|
assert control.backward_setup is not None
|
|
assert experim.backward_setup is not None
|
|
assert control.backward is not None
|
|
assert experim.backward is not None
|
|
control_backward_inputs = control.backward_setup(
|
|
(control_out, control_hiddens), test_args["seed"]
|
|
)
|
|
experim_backward_inputs = experim.backward_setup(
|
|
(experim_out, experim_hiddens), test_args["seed"]
|
|
)
|
|
|
|
control.backward(*control_backward_inputs)
|
|
experim.backward(*experim_backward_inputs)
|
|
|
|
control_grads = [p.grad for p in control.params]
|
|
experim_grads = [p.grad for p in experim.params]
|
|
assertEqual(experim_grads, control_grads)
|
|
|
|
if test_args["verbose"]:
|
|
print(experim.forward.graph_for(*experim.inputs))
|
|
print("")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Test lstm correctness")
|
|
|
|
parser.add_argument("--seqLength", default="100", type=int)
|
|
parser.add_argument("--numLayers", default="1", type=int)
|
|
parser.add_argument("--inputSize", default="512", type=int)
|
|
parser.add_argument("--hiddenSize", default="512", type=int)
|
|
parser.add_argument("--miniBatch", default="64", type=int)
|
|
parser.add_argument("--device", default="cuda", type=str)
|
|
parser.add_argument("--check-grad", "--check_grad", default="True", type=bool)
|
|
parser.add_argument("--variable-lstms", "--variable_lstms", action="store_true")
|
|
parser.add_argument("--seed", default="17", type=int)
|
|
parser.add_argument("--verbose", action="store_true")
|
|
parser.add_argument("--rnns", nargs="*", help="What to run. jit_premul, jit, etc")
|
|
args = parser.parse_args()
|
|
if args.rnns is None:
|
|
args.rnns = ["jit_premul", "jit"]
|
|
print(args)
|
|
|
|
if "cuda" in args.device:
|
|
assert torch.cuda.is_available()
|
|
|
|
rnn_runners = get_nn_runners(*args.rnns)
|
|
|
|
should_test_varlen_lstms = args.variable_lstms
|
|
test_args = vars(args)
|
|
del test_args["rnns"]
|
|
del test_args["variable_lstms"]
|
|
|
|
if should_test_varlen_lstms:
|
|
test_vl_py(**test_args)
|
|
|
|
for name, creator, context in rnn_runners:
|
|
with context():
|
|
print(f"testing {name}...")
|
|
test_rnns(creator, pytorch_lstm_creator, **test_args)
|