mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-28 02:04:53 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27382 Test Plan: Imported from OSS Differential Revision: D17766735 Pulled By: pbelevich fbshipit-source-id: c7a66daeb17550eb9a5d26944427723d4ebdc6c8
423 lines
12 KiB
C++
423 lines
12 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::test;
|
|
|
|
struct SequentialTest : torch::test::SeedingFixture {};
|
|
|
|
TEST_F(SequentialTest, CanContainThings) {
|
|
Sequential sequential(Linear(3, 4), ReLU(), BatchNorm(3));
|
|
}
|
|
|
|
TEST_F(SequentialTest, ConstructsFromSharedPointer) {
|
|
struct M : torch::nn::Module {
|
|
explicit M(int value_) : value(value_) {}
|
|
int value;
|
|
int forward() {
|
|
return value;
|
|
}
|
|
};
|
|
Sequential sequential(
|
|
std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
|
|
Sequential sequential_named(modules_ordered_dict({
|
|
{"m1", std::make_shared<M>(1)},
|
|
{std::string("m2"), std::make_shared<M>(2)},
|
|
{"m3", std::make_shared<M>(3)}
|
|
}));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
}
|
|
|
|
TEST_F(SequentialTest, ConstructsFromConcreteType) {
|
|
static int copy_count;
|
|
|
|
struct M : torch::nn::Module {
|
|
explicit M(int value_) : value(value_) {}
|
|
M(const M& other) : torch::nn::Module(other) {
|
|
copy_count++;
|
|
}
|
|
int value;
|
|
int forward() {
|
|
return value;
|
|
}
|
|
};
|
|
|
|
copy_count = 0;
|
|
Sequential sequential(M(1), M(2), M(3));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
// NOTE: The current implementation expects each module to be copied exactly once,
|
|
// which happens when the module is passed into `std::make_shared<T>()`.
|
|
// TODO: Find a way to avoid copying, and then delete the copy constructor of `M`.
|
|
ASSERT_EQ(copy_count, 3);
|
|
|
|
copy_count = 0;
|
|
Sequential sequential_named(modules_ordered_dict({
|
|
{"m1", M(1)},
|
|
{std::string("m2"), M(2)},
|
|
{"m3", M(3)}
|
|
}));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
ASSERT_EQ(copy_count, 3);
|
|
}
|
|
|
|
TEST_F(SequentialTest, ConstructsFromModuleHolder) {
|
|
struct MImpl : torch::nn::Module {
|
|
explicit MImpl(int value_) : value(value_) {}
|
|
int forward() {
|
|
return value;
|
|
}
|
|
int value;
|
|
};
|
|
|
|
struct M : torch::nn::ModuleHolder<MImpl> {
|
|
using torch::nn::ModuleHolder<MImpl>::ModuleHolder;
|
|
using torch::nn::ModuleHolder<MImpl>::get;
|
|
};
|
|
|
|
Sequential sequential(M(1), M(2), M(3));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
|
|
Sequential sequential_named(modules_ordered_dict({
|
|
{"m1", M(1)},
|
|
{std::string("m2"), M(2)},
|
|
{"m3", M(3)}
|
|
}));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
}
|
|
|
|
TEST_F(SequentialTest, PushBackAddsAnElement) {
|
|
struct M : torch::nn::Module {
|
|
explicit M(int value_) : value(value_) {}
|
|
int forward() {
|
|
return value;
|
|
}
|
|
int value;
|
|
};
|
|
|
|
// Test unnamed submodules
|
|
Sequential sequential;
|
|
ASSERT_EQ(sequential->size(), 0);
|
|
ASSERT_TRUE(sequential->is_empty());
|
|
sequential->push_back(Linear(3, 4));
|
|
ASSERT_EQ(sequential->size(), 1);
|
|
sequential->push_back(std::make_shared<M>(1));
|
|
ASSERT_EQ(sequential->size(), 2);
|
|
sequential->push_back(M(2));
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
|
|
// Mix named and unnamed submodules
|
|
Sequential sequential_named;
|
|
ASSERT_EQ(sequential_named->size(), 0);
|
|
ASSERT_TRUE(sequential_named->is_empty());
|
|
|
|
sequential_named->push_back(Linear(3, 4));
|
|
ASSERT_EQ(sequential_named->size(), 1);
|
|
ASSERT_EQ(sequential_named->named_children()[0].key(), "0");
|
|
sequential_named->push_back(std::string("linear2"), Linear(3, 4));
|
|
ASSERT_EQ(sequential_named->size(), 2);
|
|
ASSERT_EQ(sequential_named->named_children()[1].key(), "linear2");
|
|
|
|
sequential_named->push_back("shared_m1", std::make_shared<M>(1));
|
|
ASSERT_EQ(sequential_named->size(), 3);
|
|
ASSERT_EQ(sequential_named->named_children()[2].key(), "shared_m1");
|
|
sequential_named->push_back(std::make_shared<M>(1));
|
|
ASSERT_EQ(sequential_named->size(), 4);
|
|
ASSERT_EQ(sequential_named->named_children()[3].key(), "3");
|
|
|
|
sequential_named->push_back(M(1));
|
|
ASSERT_EQ(sequential_named->size(), 5);
|
|
ASSERT_EQ(sequential_named->named_children()[4].key(), "4");
|
|
sequential_named->push_back(std::string("m2"), M(1));
|
|
ASSERT_EQ(sequential_named->size(), 6);
|
|
ASSERT_EQ(sequential_named->named_children()[5].key(), "m2");
|
|
}
|
|
|
|
TEST_F(SequentialTest, AccessWithAt) {
|
|
struct M : torch::nn::Module {
|
|
explicit M(int value_) : value(value_) {}
|
|
int forward() {
|
|
return value;
|
|
}
|
|
int value;
|
|
};
|
|
std::vector<std::shared_ptr<M>> modules = {
|
|
std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)};
|
|
|
|
Sequential sequential;
|
|
for (auto& module : modules) {
|
|
sequential->push_back(module);
|
|
}
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
|
|
// returns the correct module for a given index
|
|
for (size_t i = 0; i < modules.size(); ++i) {
|
|
ASSERT_EQ(&sequential->at<M>(i), modules[i].get());
|
|
}
|
|
|
|
// throws for a bad index
|
|
ASSERT_THROWS_WITH(
|
|
sequential->at<M>(modules.size() + 1), "Index out of range");
|
|
ASSERT_THROWS_WITH(
|
|
sequential->at<M>(modules.size() + 1000000), "Index out of range");
|
|
}
|
|
|
|
TEST_F(SequentialTest, AccessWithPtr) {
|
|
struct M : torch::nn::Module {
|
|
explicit M(int value_) : value(value_) {}
|
|
int forward() {
|
|
return value;
|
|
}
|
|
int value;
|
|
};
|
|
std::vector<std::shared_ptr<M>> modules = {
|
|
std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)};
|
|
|
|
Sequential sequential;
|
|
for (auto& module : modules) {
|
|
sequential->push_back(module);
|
|
}
|
|
ASSERT_EQ(sequential->size(), 3);
|
|
|
|
// returns the correct module for a given index
|
|
for (size_t i = 0; i < modules.size(); ++i) {
|
|
ASSERT_EQ(sequential->ptr(i).get(), modules[i].get());
|
|
ASSERT_EQ(sequential[i].get(), modules[i].get());
|
|
ASSERT_EQ(sequential->ptr<M>(i).get(), modules[i].get());
|
|
}
|
|
|
|
// throws for a bad index
|
|
ASSERT_THROWS_WITH(sequential->ptr(modules.size() + 1), "Index out of range");
|
|
ASSERT_THROWS_WITH(
|
|
sequential->ptr(modules.size() + 1000000), "Index out of range");
|
|
}
|
|
|
|
TEST_F(SequentialTest, CallingForwardOnEmptySequentialIsDisallowed) {
|
|
Sequential empty;
|
|
ASSERT_THROWS_WITH(
|
|
empty->forward<int>(), "Cannot call forward() on an empty Sequential");
|
|
}
|
|
|
|
TEST_F(SequentialTest, CallingForwardChainsCorrectly) {
|
|
struct MockModule : torch::nn::Module {
|
|
explicit MockModule(int value) : expected(value) {}
|
|
int expected;
|
|
int forward(int value) {
|
|
assert(value == expected);
|
|
return value + 1;
|
|
}
|
|
};
|
|
|
|
Sequential sequential(MockModule{1}, MockModule{2}, MockModule{3});
|
|
|
|
ASSERT_EQ(sequential->forward<int>(1), 4);
|
|
}
|
|
|
|
TEST_F(SequentialTest, CallingForwardWithTheWrongReturnTypeThrows) {
|
|
struct M : public torch::nn::Module {
|
|
int forward() {
|
|
return 5;
|
|
}
|
|
};
|
|
|
|
Sequential sequential(M{});
|
|
ASSERT_EQ(sequential->forward<int>(), 5);
|
|
ASSERT_THROWS_WITH(
|
|
sequential->forward<float>(),
|
|
"The type of the return value is int, but you asked for type float");
|
|
}
|
|
|
|
TEST_F(SequentialTest, TheReturnTypeOfForwardDefaultsToTensor) {
|
|
struct M : public torch::nn::Module {
|
|
torch::Tensor forward(torch::Tensor v) {
|
|
return v;
|
|
}
|
|
};
|
|
|
|
Sequential sequential(M{});
|
|
auto variable = torch::ones({3, 3}, torch::requires_grad());
|
|
ASSERT_TRUE(sequential->forward(variable).equal(variable));
|
|
}
|
|
|
|
TEST_F(SequentialTest, ForwardReturnsTheLastValue) {
|
|
torch::manual_seed(0);
|
|
Sequential sequential(Linear(10, 3), Linear(3, 5), Linear(5, 100));
|
|
|
|
auto x = torch::randn({1000, 10}, torch::requires_grad());
|
|
auto y = sequential->forward(x);
|
|
ASSERT_EQ(y.ndimension(), 2);
|
|
ASSERT_EQ(y.size(0), 1000);
|
|
ASSERT_EQ(y.size(1), 100);
|
|
}
|
|
|
|
TEST_F(SequentialTest, SanityCheckForHoldingStandardModules) {
|
|
Sequential sequential(
|
|
Linear(10, 3),
|
|
Conv2d(1, 2, 3),
|
|
Dropout(0.5),
|
|
BatchNorm(5),
|
|
Embedding(4, 10),
|
|
LSTM(4, 5));
|
|
}
|
|
|
|
TEST_F(SequentialTest, ExtendPushesModulesFromOtherSequential) {
|
|
struct A : torch::nn::Module {
|
|
int forward(int x) {
|
|
return x;
|
|
}
|
|
};
|
|
struct B : torch::nn::Module {
|
|
int forward(int x) {
|
|
return x;
|
|
}
|
|
};
|
|
struct C : torch::nn::Module {
|
|
int forward(int x) {
|
|
return x;
|
|
}
|
|
};
|
|
struct D : torch::nn::Module {
|
|
int forward(int x) {
|
|
return x;
|
|
}
|
|
};
|
|
Sequential a(A{}, B{});
|
|
Sequential b(C{}, D{});
|
|
a->extend(*b);
|
|
|
|
ASSERT_EQ(a->size(), 4);
|
|
ASSERT_TRUE(a[0]->as<A>());
|
|
ASSERT_TRUE(a[1]->as<B>());
|
|
ASSERT_TRUE(a[2]->as<C>());
|
|
ASSERT_TRUE(a[3]->as<D>());
|
|
|
|
ASSERT_EQ(b->size(), 2);
|
|
ASSERT_TRUE(b[0]->as<C>());
|
|
ASSERT_TRUE(b[1]->as<D>());
|
|
|
|
std::vector<std::shared_ptr<A>> c = {std::make_shared<A>(),
|
|
std::make_shared<A>()};
|
|
b->extend(c);
|
|
|
|
ASSERT_EQ(b->size(), 4);
|
|
ASSERT_TRUE(b[0]->as<C>());
|
|
ASSERT_TRUE(b[1]->as<D>());
|
|
ASSERT_TRUE(b[2]->as<A>());
|
|
ASSERT_TRUE(b[3]->as<A>());
|
|
}
|
|
|
|
TEST_F(SequentialTest, HasReferenceSemantics) {
|
|
Sequential first(Linear(2, 3), Linear(4, 4), Linear(4, 5));
|
|
Sequential second(first);
|
|
|
|
ASSERT_EQ(first.get(), second.get());
|
|
ASSERT_EQ(first->size(), second->size());
|
|
ASSERT_TRUE(std::equal(
|
|
first->begin(),
|
|
first->end(),
|
|
second->begin(),
|
|
[](const AnyModule& first, const AnyModule& second) {
|
|
return &first == &second;
|
|
}));
|
|
}
|
|
|
|
TEST_F(SequentialTest, IsCloneable) {
|
|
Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3));
|
|
Sequential clone =
|
|
std::dynamic_pointer_cast<SequentialImpl>(sequential->clone());
|
|
ASSERT_EQ(sequential->size(), clone->size());
|
|
|
|
for (size_t i = 0; i < sequential->size(); ++i) {
|
|
// The modules should be the same kind (type).
|
|
ASSERT_EQ(sequential[i]->name(), clone[i]->name());
|
|
// But not pointer-equal (distinct objects).
|
|
ASSERT_NE(sequential[i], clone[i]);
|
|
}
|
|
|
|
// Verify that the clone is deep, i.e. parameters of modules are cloned too.
|
|
|
|
torch::NoGradGuard no_grad;
|
|
|
|
auto params1 = sequential->named_parameters();
|
|
auto params2 = clone->named_parameters();
|
|
ASSERT_EQ(params1.size(), params2.size());
|
|
for (auto& param : params1) {
|
|
ASSERT_FALSE(pointer_equal(param.value(), params2[param.key()]));
|
|
ASSERT_EQ(param->device(), params2[param.key()].device());
|
|
ASSERT_TRUE(param->allclose(params2[param.key()]));
|
|
param->add_(2);
|
|
}
|
|
for (auto& param : params1) {
|
|
ASSERT_FALSE(param->allclose(params2[param.key()]));
|
|
}
|
|
}
|
|
|
|
TEST_F(SequentialTest, RegistersElementsAsSubmodules) {
|
|
Sequential sequential(Linear(10, 3), Conv2d(1, 2, 3), FeatureDropout(0.5));
|
|
|
|
auto modules = sequential->children();
|
|
ASSERT_TRUE(modules[0]->as<Linear>());
|
|
ASSERT_TRUE(modules[1]->as<Conv2d>());
|
|
ASSERT_TRUE(modules[2]->as<FeatureDropout>());
|
|
}
|
|
|
|
TEST_F(SequentialTest, CloneToDevice_CUDA) {
|
|
Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3));
|
|
torch::Device device(torch::kCUDA, 0);
|
|
Sequential clone =
|
|
std::dynamic_pointer_cast<SequentialImpl>(sequential->clone(device));
|
|
for (const auto& p : clone->parameters()) {
|
|
ASSERT_EQ(p.device(), device);
|
|
}
|
|
for (const auto& b : clone->buffers()) {
|
|
ASSERT_EQ(b.device(), device);
|
|
}
|
|
}
|
|
|
|
TEST_F(SequentialTest, PrettyPrintSequential) {
|
|
Sequential sequential(
|
|
Linear(10, 3),
|
|
Conv2d(1, 2, 3),
|
|
Dropout(0.5),
|
|
BatchNorm(5),
|
|
Embedding(4, 10),
|
|
LSTM(4, 5));
|
|
ASSERT_EQ(
|
|
c10::str(sequential),
|
|
"torch::nn::Sequential(\n"
|
|
" (0): torch::nn::Linear(in_features=10, out_features=3, bias=true)\n"
|
|
" (1): torch::nn::Conv2d(input_channels=1, output_channels=2, kernel_size=[3, 3], stride=[1, 1])\n"
|
|
" (2): torch::nn::Dropout(rate=0.5)\n"
|
|
" (3): torch::nn::BatchNorm(features=5, eps=1e-05, momentum=0.1, affine=true, stateful=true)\n"
|
|
" (4): torch::nn::Embedding(num_embeddings=4, embedding_dim=10)\n"
|
|
" (5): torch::nn::LSTM(input_size=4, hidden_size=5, layers=1, dropout=0)\n"
|
|
")");
|
|
|
|
Sequential sequential_named(modules_ordered_dict({
|
|
{"linear", Linear(10, 3)},
|
|
{"conv2d", Conv2d(1, 2, 3)},
|
|
{"dropout", Dropout(0.5)},
|
|
{"batchnorm", BatchNorm(5)},
|
|
{"embedding", Embedding(4, 10)},
|
|
{"lstm", LSTM(4, 5)}
|
|
}));
|
|
ASSERT_EQ(
|
|
c10::str(sequential_named),
|
|
"torch::nn::Sequential(\n"
|
|
" (linear): torch::nn::Linear(in_features=10, out_features=3, bias=true)\n"
|
|
" (conv2d): torch::nn::Conv2d(input_channels=1, output_channels=2, kernel_size=[3, 3], stride=[1, 1])\n"
|
|
" (dropout): torch::nn::Dropout(rate=0.5)\n"
|
|
" (batchnorm): torch::nn::BatchNorm(features=5, eps=1e-05, momentum=0.1, affine=true, stateful=true)\n"
|
|
" (embedding): torch::nn::Embedding(num_embeddings=4, embedding_dim=10)\n"
|
|
" (lstm): torch::nn::LSTM(input_size=4, hidden_size=5, layers=1, dropout=0)\n"
|
|
")");
|
|
}
|