mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary:
Linting `torch/csrc/` (non-recursive) and `torch/csrc/autograd` (non-recursive).
Fixed things like:
- `typedef` vs `using`
- Use `.empty()` instead of comparing with empty string/using `.size() == 0`
- Use range for loops instead of old style loops (`modernize-`)
- Remove some `virtual` + `override`
- Replace `stdint.h` with `cstdint`
- Replace `return Type(x, y)` with `return {x, y}`
- Use boolean values (`true`/`false`) instead of numbers (1/0)
- More ...
ezyang apaszke cpuhrsch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11050
Differential Revision: D9597505
Pulled By: goldsborough
fbshipit-source-id: cb0fb4793ade885a8dbf4b10484487b84c64c7f2
339 lines
10 KiB
C++
339 lines
10 KiB
C++
#include <catch.hpp>
|
|
|
|
#include <torch/nn/module.h>
|
|
#include <torch/nn/modules/functional.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/sequential.h>
|
|
#include <torch/optim.h>
|
|
#include <torch/tensor.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/optim_baseline.h>
|
|
#include <test/cpp/api/util.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::optim;
|
|
|
|
template <typename OptimizerClass, typename Options>
|
|
bool test_optimizer_xor(Options options) {
|
|
torch::manual_seed(0);
|
|
|
|
Sequential model(
|
|
Linear(2, 8),
|
|
Functional(torch::sigmoid),
|
|
Linear(8, 1),
|
|
Functional(torch::sigmoid));
|
|
|
|
const int64_t kBatchSize = 4;
|
|
const int64_t kMaximumNumberOfEpochs = 3000;
|
|
|
|
OptimizerClass optimizer(model->parameters(), options);
|
|
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
auto inputs = torch::empty({kBatchSize, 2});
|
|
auto labels = torch::empty({kBatchSize});
|
|
for (size_t i = 0; i < kBatchSize; i++) {
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
|
labels[i] = inputs[i][0].toCLong() ^ inputs[i][1].toCLong();
|
|
}
|
|
inputs.set_requires_grad(true);
|
|
optimizer.zero_grad();
|
|
auto x = model->forward(inputs);
|
|
torch::Tensor loss = torch::binary_cross_entropy(x, labels);
|
|
loss.backward();
|
|
|
|
optimizer.step();
|
|
|
|
running_loss = running_loss * 0.99 + loss.toCFloat() * 0.01;
|
|
if (epoch > kMaximumNumberOfEpochs) {
|
|
std::cout << "Loss is too high after epoch " << epoch << ": "
|
|
<< running_loss << std::endl;
|
|
return false;
|
|
}
|
|
epoch++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Parameters>
|
|
void assign_parameter(
|
|
const Parameters& parameters,
|
|
const char* name,
|
|
torch::Tensor new_tensor) {
|
|
auto parameter = parameters.at(name);
|
|
parameter.set_requires_grad(false);
|
|
parameter.flatten().copy_(new_tensor);
|
|
parameter.set_requires_grad(true);
|
|
}
|
|
|
|
template <typename OptimizerClass, typename Options>
|
|
void check_exact_values(
|
|
Options options,
|
|
std::vector<std::vector<torch::Tensor>> expected_parameters) {
|
|
const size_t kIterations = 1001;
|
|
const size_t kSampleEvery = 100;
|
|
|
|
torch::manual_seed(0);
|
|
|
|
Sequential model(
|
|
Linear(2, 3),
|
|
Functional(torch::sigmoid),
|
|
Linear(3, 1),
|
|
Functional(torch::sigmoid));
|
|
|
|
model->to(torch::kFloat64);
|
|
|
|
// Use exact input values because matching random values is hard.
|
|
auto parameters = model->parameters();
|
|
assign_parameter(
|
|
parameters,
|
|
"0.weight",
|
|
torch::tensor({-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976}));
|
|
assign_parameter(
|
|
parameters, "0.bias", torch::tensor({-0.1085, -0.2979, 0.6892}));
|
|
assign_parameter(
|
|
parameters, "2.weight", torch::tensor({-0.0508, -0.3941, -0.2843}));
|
|
assign_parameter(parameters, "2.bias", torch::tensor({-0.0711}));
|
|
|
|
auto optimizer = OptimizerClass(parameters, options);
|
|
torch::Tensor input =
|
|
torch::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}).reshape({3, 2});
|
|
|
|
for (size_t i = 0; i < kIterations; ++i) {
|
|
optimizer.zero_grad();
|
|
auto output = model->forward(input);
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
optimizer.step();
|
|
|
|
if (i % kSampleEvery == 0) {
|
|
REQUIRE(
|
|
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
|
|
for (size_t p = 0; p < parameters.size(); ++p) {
|
|
REQUIRE(parameters.at(p)->defined());
|
|
auto computed = parameters.at(p)->flatten();
|
|
auto expected = expected_parameters.at(i / kSampleEvery).at(p);
|
|
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/5e-4)) {
|
|
std::cout << "Iteration " << i << ": " << computed
|
|
<< " != " << expected << " (parameter " << p << ")"
|
|
<< std::endl;
|
|
REQUIRE(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/BasicInterface") {
|
|
struct MyOptimizer : Optimizer {
|
|
using Optimizer::Optimizer;
|
|
void step() override {}
|
|
};
|
|
std::vector<torch::Tensor> parameters = {
|
|
torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})};
|
|
{
|
|
MyOptimizer optimizer(parameters);
|
|
REQUIRE(optimizer.size() == parameters.size());
|
|
}
|
|
{
|
|
MyOptimizer optimizer;
|
|
REQUIRE(optimizer.size() == 0);
|
|
optimizer.add_parameters(parameters);
|
|
REQUIRE(optimizer.size() == parameters.size());
|
|
for (size_t p = 0; p < parameters.size(); ++p) {
|
|
REQUIRE(optimizer.parameters()[p].allclose(parameters[p]));
|
|
}
|
|
}
|
|
{
|
|
Linear linear(3, 4);
|
|
MyOptimizer optimizer(linear->parameters());
|
|
REQUIRE(optimizer.size() == linear->parameters().size());
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/SGD") {
|
|
REQUIRE(test_optimizer_xor<SGD>(
|
|
SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/Adagrad") {
|
|
REQUIRE(test_optimizer_xor<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)));
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/RMSprop") {
|
|
REQUIRE(test_optimizer_xor<RMSprop>(RMSpropOptions(0.1).centered(true)));
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/RMSpropWithMomentum") {
|
|
REQUIRE(test_optimizer_xor<RMSprop>(
|
|
RMSpropOptions(0.1).momentum(0.9).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/Adam") {
|
|
REQUIRE(test_optimizer_xor<Adam>(AdamOptions(0.1).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST_CASE("Optim/XORConvergence/AdamWithAmsgrad") {
|
|
REQUIRE(test_optimizer_xor<Adam>(
|
|
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)));
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/Adam") {
|
|
check_exact_values<Adam>(AdamOptions(1.0), expected_parameters::Adam);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/AdamWithWeightDecay") {
|
|
check_exact_values<Adam>(
|
|
AdamOptions(1.0).weight_decay(1e-2),
|
|
expected_parameters::Adam_with_weight_decay);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/AdamWithWeightDecayAndAMSGrad") {
|
|
check_exact_values<Adam>(
|
|
AdamOptions(1.0).weight_decay(1e-6).amsgrad(true),
|
|
expected_parameters::Adam_with_weight_decay_and_amsgrad);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/Adagrad") {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0), expected_parameters::Adagrad);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/AdagradWithWeightDecay") {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-2),
|
|
expected_parameters::Adagrad_with_weight_decay);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/AdagradWithWeightDecayAndLRDecay") {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
|
|
expected_parameters::Adagrad_with_weight_decay_and_lr_decay);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/RMSprop") {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1), expected_parameters::RMSprop);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/RMSpropWithWeightDecay") {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-2),
|
|
expected_parameters::RMSprop_with_weight_decay);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/RMSpropWithWeightDecayAndCentered") {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-6).centered(true),
|
|
expected_parameters::RMSprop_with_weight_decay_and_centered);
|
|
}
|
|
|
|
TEST_CASE(
|
|
"Optim/ProducesPyTorchValues/RMSpropWithWeightDecayAndCenteredAndMomentum") {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-6).centered(true).momentum(0.9),
|
|
expected_parameters::RMSprop_with_weight_decay_and_centered_and_momentum);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/SGD") {
|
|
check_exact_values<SGD>(SGDOptions(0.1), expected_parameters::SGD);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/SGDWithWeightDecay") {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-2),
|
|
expected_parameters::SGD_with_weight_decay);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/SGDWithWeightDecayAndMomentum") {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-2).momentum(0.9),
|
|
expected_parameters::SGD_with_weight_decay_and_momentum);
|
|
}
|
|
|
|
TEST_CASE("Optim/ProducesPyTorchValues/SGDWithWeightDecayAndNesterovMomentum") {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-6).momentum(0.9).nesterov(true),
|
|
expected_parameters::SGD_with_weight_decay_and_nesterov_momentum);
|
|
}
|
|
|
|
TEST_CASE("Optim/ZeroGrad") {
|
|
torch::manual_seed(0);
|
|
|
|
Linear model(2, 8);
|
|
SGD optimizer(model->parameters(), 0.1);
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(!parameter->grad().defined());
|
|
}
|
|
|
|
auto output = model->forward(torch::ones({5, 2}));
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(parameter->grad().defined());
|
|
REQUIRE(parameter->grad().sum().toCFloat() > 0);
|
|
}
|
|
|
|
optimizer.zero_grad();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
REQUIRE(parameter->grad().defined());
|
|
REQUIRE(parameter->grad().sum().toCFloat() == 0);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Optim/ExternalVectorOfParameters") {
|
|
torch::manual_seed(0);
|
|
|
|
std::vector<torch::Tensor> parameters = {
|
|
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
|
|
std::vector<torch::Tensor> original_parameters = {
|
|
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
|
|
|
|
// Set all gradients to one
|
|
for (auto& parameter : parameters) {
|
|
parameter.grad() = torch::ones_like(parameter);
|
|
}
|
|
|
|
SGD optimizer(parameters, 1.0);
|
|
|
|
optimizer.step();
|
|
|
|
REQUIRE(parameters[0].allclose(original_parameters[0] - 1.0));
|
|
REQUIRE(parameters[1].allclose(original_parameters[1] - 1.0));
|
|
REQUIRE(parameters[2].allclose(original_parameters[2] - 1.0));
|
|
}
|
|
|
|
TEST_CASE("Optim/AddParameter/LBFGS") {
|
|
torch::manual_seed(0);
|
|
|
|
std::vector<torch::Tensor> parameters = {torch::randn({5, 5})};
|
|
std::vector<torch::Tensor> original_parameters = {parameters[0].clone()};
|
|
|
|
// Set all gradients to one
|
|
for (auto& parameter : parameters) {
|
|
parameter.grad() = torch::ones_like(parameter);
|
|
}
|
|
|
|
LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0);
|
|
optimizer.add_parameters(parameters);
|
|
|
|
optimizer.step([]() { return torch::tensor(1); });
|
|
|
|
// REQUIRE this doesn't throw
|
|
}
|