mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136359 Approved by: https://github.com/albanD
102 lines
2.8 KiB
Python
102 lines
2.8 KiB
Python
import argparse
|
|
import os
|
|
import sys
|
|
import textwrap
|
|
|
|
import pandas as pd
|
|
|
|
|
|
# Hack to have something similar to DISABLED_TEST. These models are flaky.
|
|
|
|
flaky_models = {
|
|
"yolov3",
|
|
"gluon_inception_v3",
|
|
"detectron2_maskrcnn_r_101_c4",
|
|
"XGLMForCausalLM", # discovered in https://github.com/pytorch/pytorch/pull/128148
|
|
}
|
|
|
|
|
|
def get_field(csv, model_name: str, field: str):
|
|
try:
|
|
return csv.loc[csv["name"] == model_name][field].item()
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def check_accuracy(actual_csv, expected_csv, expected_filename):
|
|
failed = []
|
|
improved = []
|
|
|
|
for model in actual_csv["name"]:
|
|
accuracy = get_field(actual_csv, model, "accuracy")
|
|
expected_accuracy = get_field(expected_csv, model, "accuracy")
|
|
|
|
if accuracy == expected_accuracy:
|
|
status = "PASS" if expected_accuracy == "pass" else "XFAIL"
|
|
print(f"{model:34} {status}")
|
|
continue
|
|
elif model in flaky_models:
|
|
if accuracy == "pass":
|
|
# model passed but marked xfailed
|
|
status = "PASS_BUT_FLAKY:"
|
|
else:
|
|
# model failed but marked passe
|
|
status = "FAIL_BUT_FLAKY:"
|
|
elif accuracy != "pass":
|
|
status = "FAIL:"
|
|
failed.append(model)
|
|
else:
|
|
status = "IMPROVED:"
|
|
improved.append(model)
|
|
print(
|
|
f"{model:34} {status:9} accuracy={accuracy}, expected={expected_accuracy}"
|
|
)
|
|
|
|
msg = ""
|
|
if failed or improved:
|
|
if failed:
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
Error: {len(failed)} models have accuracy status regressed:
|
|
{' '.join(failed)}
|
|
|
|
"""
|
|
)
|
|
if improved:
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
Improvement: {len(improved)} models have accuracy status improved:
|
|
{' '.join(improved)}
|
|
|
|
"""
|
|
)
|
|
sha = os.getenv("SHA1", "{your CI commit sha}")
|
|
msg += textwrap.dedent(
|
|
f"""
|
|
If this change is expected, you can update `{expected_filename}` to reflect the new baseline.
|
|
from pytorch/pytorch root, run
|
|
`python benchmarks/dynamo/ci_expected_accuracy/update_expected.py {sha}`
|
|
and then `git add` the resulting local changes to expected CSVs to your commit.
|
|
"""
|
|
)
|
|
return failed or improved, msg
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--actual", type=str, required=True)
|
|
parser.add_argument("--expected", type=str, required=True)
|
|
args = parser.parse_args()
|
|
|
|
actual = pd.read_csv(args.actual)
|
|
expected = pd.read_csv(args.expected)
|
|
|
|
failed, msg = check_accuracy(actual, expected, args.expected)
|
|
if failed:
|
|
print(msg)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|