Files
pytorch/benchmarks/dynamo/torchao_backend.py
Oguz Ulgen dc55704b48 Rename cache limit to recompile limit in configs (#143709)
This PR renames every cache_limit to recompile_limit via sed.

Old config options are maintained via Config(alias='xyz')

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143709
Approved by: https://github.com/jansel
2024-12-22 10:03:57 +00:00

58 lines
2.2 KiB
Python

from typing import Any, Callable
import torch
def setup_baseline():
from torchao.quantization.utils import recommended_inductor_config_setter
recommended_inductor_config_setter()
torch._dynamo.config.automatic_dynamic_shapes = False
torch._dynamo.config.recompile_limit = 10000
def torchao_optimize_ctx(quantization: str):
from torchao.quantization.quant_api import (
autoquant,
int4_weight_only,
int8_dynamic_activation_int8_weight,
int8_weight_only,
quantize_,
)
from torchao.utils import unwrap_tensor_subclass
def inner(model_iter_fn: Callable):
def _torchao_apply(module: torch.nn.Module, example_inputs: Any):
if getattr(module, "_quantized", None) is None:
if quantization == "int8dynamic":
quantize_(
module,
int8_dynamic_activation_int8_weight(),
set_inductor_config=False,
)
elif quantization == "int8weightonly":
quantize_(module, int8_weight_only(), set_inductor_config=False)
elif quantization == "int4weightonly":
quantize_(module, int4_weight_only(), set_inductor_config=False)
if quantization == "autoquant":
autoquant(module, error_on_unseen=False, set_inductor_config=False)
if isinstance(example_inputs, dict):
module(**example_inputs)
else:
module(*example_inputs)
from torchao.quantization.autoquant import AUTOQUANT_CACHE
if len(AUTOQUANT_CACHE) == 0:
raise Exception( # noqa: TRY002`
"NotAutoquantizable"
f"Found no autoquantizable layers in model {type(module)}, stopping autoquantized run"
)
else:
unwrap_tensor_subclass(module)
setattr(module, "_quantized", True) # noqa: B010
model_iter_fn(module, example_inputs)
return _torchao_apply
return inner