mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
* remove legacy options from CMakeLists * codemod WITH_ to USE_ for WITH_CUDA, WITH_CUDNN, WITH_DISTRIBUTED, WITH_DISTRIBUTED_MW, WITH_GLOO_IBVERBS, WITH_NCCL, WITH_ROCM, WITH_NUMPY * cover SYSTEM_NCCL, MKLDNN, NNPACK, C10D, NINJA * removed NO_* variables and hotpatch them only in setup.py * fix lint
1075 lines
38 KiB
Python
1075 lines
38 KiB
Python
# Welcome to the PyTorch setup.py.
|
|
#
|
|
# Environment variables you are probably interested in:
|
|
#
|
|
# DEBUG
|
|
# build with -O0 and -g (debug symbols)
|
|
#
|
|
# MAX_JOBS
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# NO_CUDA
|
|
# disables CUDA build
|
|
#
|
|
# CFLAGS
|
|
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
|
|
# which we have faithfully adhered to in our build system is that CFLAGS
|
|
# also applies to C++ files, in contrast to the default behavior of autogoo
|
|
# and cmake build systems.)
|
|
#
|
|
# CC
|
|
# the C/C++ compiler to use (NB: the CXX flag has no effect for distutils
|
|
# compiles, because distutils always uses CC to compile, even for C++
|
|
# files.
|
|
#
|
|
# Environment variables for feature toggles:
|
|
#
|
|
# NO_CUDNN
|
|
# disables the cuDNN build
|
|
#
|
|
# NO_MKLDNN
|
|
# disables the MKLDNN build
|
|
#
|
|
# NO_NNPACK
|
|
# disables NNPACK build
|
|
#
|
|
# NO_DISTRIBUTED
|
|
# disables THD (distributed) build
|
|
#
|
|
# NO_SYSTEM_NCCL
|
|
# disables use of system-wide nccl (we will use our submoduled
|
|
# copy in third_party/nccl)
|
|
#
|
|
# USE_GLOO_IBVERBS
|
|
# toggle features related to distributed support
|
|
#
|
|
# PYTORCH_BUILD_VERSION
|
|
# PYTORCH_BUILD_NUMBER
|
|
# specify the version of PyTorch, rather than the hard-coded version
|
|
# in this file; used when we're building binaries for distribution
|
|
#
|
|
# TORCH_CUDA_ARCH_LIST
|
|
# specify which CUDA architectures to build for.
|
|
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
|
|
#
|
|
# ONNX_NAMESPACE
|
|
# specify a namespace for ONNX built here rather than the hard-coded
|
|
# one in this file; needed to build with other frameworks that share ONNX.
|
|
#
|
|
# Environment variables we respect (these environment variables are
|
|
# conventional and are often understood/set by other software.)
|
|
#
|
|
# CUDA_HOME (Linux/OS X)
|
|
# CUDA_PATH (Windows)
|
|
# specify where CUDA is installed; usually /usr/local/cuda or
|
|
# /usr/local/cuda-x.y
|
|
#
|
|
# CUDNN_LIB_DIR
|
|
# CUDNN_INCLUDE_DIR
|
|
# CUDNN_LIBRARY
|
|
# specify where cuDNN is installed
|
|
#
|
|
# NCCL_ROOT_DIR
|
|
# NCCL_LIB_DIR
|
|
# NCCL_INCLUDE_DIR
|
|
# specify where nccl is installed
|
|
#
|
|
# MKLDNN_LIB_DIR
|
|
# MKLDNN_LIBRARY
|
|
# MKLDNN_INCLUDE_DIR
|
|
# specify where MKLDNN is installed
|
|
#
|
|
# NVTOOLSEXT_PATH (Windows only)
|
|
# specify where nvtoolsext is installed
|
|
#
|
|
# LIBRARY_PATH
|
|
# LD_LIBRARY_PATH
|
|
# we will search for libraries in these paths
|
|
|
|
|
|
from setuptools import setup, Extension, distutils, Command, find_packages
|
|
import setuptools.command.build_ext
|
|
import setuptools.command.install
|
|
import setuptools.command.develop
|
|
import setuptools.command.build_py
|
|
import distutils.unixccompiler
|
|
import distutils.command.build
|
|
import distutils.command.clean
|
|
import distutils.sysconfig
|
|
import platform
|
|
import subprocess
|
|
import shutil
|
|
import multiprocessing
|
|
import sys
|
|
import os
|
|
import json
|
|
import glob
|
|
import importlib
|
|
|
|
from tools.setup_helpers.env import check_env_flag, check_negative_env_flag
|
|
|
|
# Before we run the setup_helpers, let's look for NO_* and WITH_*
|
|
# variables and hotpatch the environment with the USE_* equivalent
|
|
config_env_vars = ['CUDA', 'CUDNN', 'MKLDNN', 'NNPACK', 'DISTRIBUTED', 'DISTRIBUTED_MW',
|
|
'SYSTEM_NCCL', 'GLOO_IBVERBS']
|
|
|
|
def hotpatch_var(var):
|
|
if check_env_flag('NO_' + var):
|
|
os.environ['USE_' + var] = '0'
|
|
elif check_negative_env_flag('NO_' + var):
|
|
os.environ['USE_' + var] = '1'
|
|
elif check_env_flag('WITH_' + var):
|
|
os.environ['USE_' + var] = '1'
|
|
elif check_negative_env_flag('WITH_' + var):
|
|
os.environ['USE_' + var] = '0'
|
|
|
|
list(map(hotpatch_var, config_env_vars))
|
|
|
|
from tools.setup_helpers.cuda import USE_CUDA, CUDA_HOME, CUDA_VERSION
|
|
from tools.setup_helpers.rocm import USE_ROCM, ROCM_HOME, ROCM_VERSION
|
|
from tools.setup_helpers.cudnn import (USE_CUDNN, CUDNN_LIBRARY,
|
|
CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR)
|
|
from tools.setup_helpers.nccl import USE_NCCL, USE_SYSTEM_NCCL, NCCL_LIB_DIR, \
|
|
NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB
|
|
from tools.setup_helpers.mkldnn import (USE_MKLDNN, MKLDNN_LIBRARY,
|
|
MKLDNN_LIB_DIR, MKLDNN_INCLUDE_DIR)
|
|
from tools.setup_helpers.nnpack import USE_NNPACK
|
|
from tools.setup_helpers.nvtoolext import NVTOOLEXT_HOME
|
|
from tools.setup_helpers.generate_code import generate_code
|
|
from tools.setup_helpers.ninja_builder import NinjaBuilder, ninja_build_ext
|
|
from tools.setup_helpers.dist_check import USE_DISTRIBUTED, \
|
|
USE_DISTRIBUTED_MW, USE_GLOO_IBVERBS, USE_C10D
|
|
|
|
################################################################################
|
|
# Parameters parsed from environment
|
|
################################################################################
|
|
|
|
DEBUG = check_env_flag('DEBUG')
|
|
IS_WINDOWS = (platform.system() == 'Windows')
|
|
IS_DARWIN = (platform.system() == 'Darwin')
|
|
IS_LINUX = (platform.system() == 'Linux')
|
|
|
|
FULL_CAFFE2 = check_env_flag('FULL_CAFFE2')
|
|
BUILD_PYTORCH = check_env_flag('BUILD_PYTORCH')
|
|
|
|
NUM_JOBS = multiprocessing.cpu_count()
|
|
max_jobs = os.getenv("MAX_JOBS")
|
|
if max_jobs is not None:
|
|
NUM_JOBS = min(NUM_JOBS, int(max_jobs))
|
|
|
|
ONNX_NAMESPACE = os.getenv("ONNX_NAMESPACE")
|
|
if not ONNX_NAMESPACE:
|
|
ONNX_NAMESPACE = "onnx_torch"
|
|
|
|
# Ninja
|
|
try:
|
|
import ninja
|
|
USE_NINJA = True
|
|
ninja_global = NinjaBuilder('global')
|
|
except ImportError:
|
|
USE_NINJA = False
|
|
ninja_global = None
|
|
|
|
# Constant known variables used throughout this file
|
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
|
lib_path = os.path.join(cwd, "torch", "lib")
|
|
third_party_path = os.path.join(cwd, "third_party")
|
|
tmp_install_path = lib_path + "/tmp_install"
|
|
|
|
|
|
class PytorchCommand(setuptools.Command):
|
|
"""
|
|
Base Pytorch command to avoid implementing initialize/finalize_options in
|
|
every subclass
|
|
"""
|
|
user_options = []
|
|
|
|
def initialize_options(self):
|
|
pass
|
|
|
|
def finalize_options(self):
|
|
pass
|
|
|
|
|
|
################################################################################
|
|
# Patches and workarounds
|
|
################################################################################
|
|
# Monkey-patch setuptools to compile in parallel
|
|
if not USE_NINJA:
|
|
def parallelCCompile(self, sources, output_dir=None, macros=None,
|
|
include_dirs=None, debug=0, extra_preargs=None,
|
|
extra_postargs=None, depends=None):
|
|
# those lines are copied from distutils.ccompiler.CCompiler directly
|
|
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
|
|
output_dir, macros, include_dirs, sources, depends, extra_postargs)
|
|
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
|
|
|
|
# compile using a thread pool
|
|
import multiprocessing.pool
|
|
|
|
def _single_compile(obj):
|
|
src, ext = build[obj]
|
|
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
|
|
multiprocessing.pool.ThreadPool(NUM_JOBS).map(_single_compile, objects)
|
|
|
|
return objects
|
|
distutils.ccompiler.CCompiler.compile = parallelCCompile
|
|
|
|
# Patch for linking with ccache
|
|
original_link = distutils.unixccompiler.UnixCCompiler.link
|
|
|
|
|
|
def patched_link(self, *args, **kwargs):
|
|
_cxx = self.compiler_cxx
|
|
self.compiler_cxx = None
|
|
result = original_link(self, *args, **kwargs)
|
|
self.compiler_cxx = _cxx
|
|
return result
|
|
|
|
distutils.unixccompiler.UnixCCompiler.link = patched_link
|
|
|
|
# Workaround setuptools -Wstrict-prototypes warnings
|
|
# I lifted this code from https://stackoverflow.com/a/29634231/23845
|
|
cfg_vars = distutils.sysconfig.get_config_vars()
|
|
for key, value in cfg_vars.items():
|
|
if type(value) == str:
|
|
cfg_vars[key] = value.replace("-Wstrict-prototypes", "")
|
|
|
|
|
|
################################################################################
|
|
# Version and create_version_file
|
|
################################################################################
|
|
version = '0.5.0a0'
|
|
if os.getenv('PYTORCH_BUILD_VERSION'):
|
|
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
|
|
build_number = int(os.getenv('PYTORCH_BUILD_NUMBER'))
|
|
version = os.getenv('PYTORCH_BUILD_VERSION')
|
|
if build_number > 1:
|
|
version += '.post' + str(build_number)
|
|
else:
|
|
try:
|
|
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
|
|
version += '+' + sha[:7]
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
class create_version_file(PytorchCommand):
|
|
def run(self):
|
|
global version, cwd
|
|
print('-- Building version ' + version)
|
|
version_path = os.path.join(cwd, 'torch', 'version.py')
|
|
with open(version_path, 'w') as f:
|
|
f.write("__version__ = '{}'\n".format(version))
|
|
# NB: This is not 100% accurate, because you could have built the
|
|
# library code with DEBUG, but csrc without DEBUG (in which case
|
|
# this would claim to be a release build when it's not.)
|
|
f.write("debug = {}\n".format(repr(DEBUG)))
|
|
f.write("cuda = {}\n".format(repr(CUDA_VERSION)))
|
|
|
|
|
|
################################################################################
|
|
# Building dependent libraries
|
|
################################################################################
|
|
|
|
# All libraries that torch could depend on
|
|
dep_libs = [
|
|
'nccl', 'caffe2',
|
|
'libshm', 'libshm_windows', 'gloo', 'THD', 'nanopb', 'c10d',
|
|
]
|
|
|
|
missing_pydep = '''
|
|
Missing build dependency: Unable to `import {importname}`.
|
|
Please install it via `conda install {module}` or `pip install {module}`
|
|
'''.strip()
|
|
|
|
|
|
def check_pydep(importname, module):
|
|
try:
|
|
importlib.import_module(importname)
|
|
except ImportError:
|
|
raise RuntimeError(missing_pydep.format(importname=importname, module=module))
|
|
|
|
|
|
# Calls build_pytorch_libs.sh/bat with the correct env variables
|
|
def build_libs(libs):
|
|
for lib in libs:
|
|
assert lib in dep_libs, 'invalid lib: {}'.format(lib)
|
|
if IS_WINDOWS:
|
|
build_libs_cmd = ['tools\\build_pytorch_libs.bat']
|
|
else:
|
|
build_libs_cmd = ['bash', 'tools/build_pytorch_libs.sh']
|
|
my_env = os.environ.copy()
|
|
my_env["PYTORCH_PYTHON"] = sys.executable
|
|
my_env["NUM_JOBS"] = str(NUM_JOBS)
|
|
my_env["ONNX_NAMESPACE"] = ONNX_NAMESPACE
|
|
if not IS_WINDOWS:
|
|
if USE_NINJA:
|
|
my_env["CMAKE_GENERATOR"] = '-GNinja'
|
|
my_env["CMAKE_INSTALL"] = 'ninja install'
|
|
else:
|
|
my_env['CMAKE_GENERATOR'] = ''
|
|
my_env['CMAKE_INSTALL'] = 'make install'
|
|
if USE_SYSTEM_NCCL:
|
|
my_env["NCCL_ROOT_DIR"] = NCCL_ROOT_DIR
|
|
if USE_CUDA:
|
|
my_env["CUDA_BIN_PATH"] = CUDA_HOME
|
|
build_libs_cmd += ['--use-cuda']
|
|
if USE_ROCM:
|
|
build_libs_cmd += ['--use-rocm']
|
|
if USE_NNPACK:
|
|
build_libs_cmd += ['--use-nnpack']
|
|
if USE_CUDNN:
|
|
my_env["CUDNN_LIB_DIR"] = CUDNN_LIB_DIR
|
|
my_env["CUDNN_LIBRARY"] = CUDNN_LIBRARY
|
|
my_env["CUDNN_INCLUDE_DIR"] = CUDNN_INCLUDE_DIR
|
|
if USE_MKLDNN:
|
|
my_env["MKLDNN_LIB_DIR"] = MKLDNN_LIB_DIR
|
|
my_env["MKLDNN_LIBRARY"] = MKLDNN_LIBRARY
|
|
my_env["MKLDNN_INCLUDE_DIR"] = MKLDNN_INCLUDE_DIR
|
|
build_libs_cmd += ['--use-mkldnn']
|
|
if USE_GLOO_IBVERBS:
|
|
build_libs_cmd += ['--use-gloo-ibverbs']
|
|
if USE_DISTRIBUTED_MW:
|
|
build_libs_cmd += ['--use-distributed-mw']
|
|
|
|
if FULL_CAFFE2:
|
|
build_libs_cmd += ['--full-caffe2']
|
|
|
|
if subprocess.call(build_libs_cmd + libs, env=my_env) != 0:
|
|
print("Failed to run '{}'".format(' '.join(build_libs_cmd + libs)))
|
|
sys.exit(1)
|
|
|
|
|
|
# Build all dependent libraries
|
|
class build_deps(PytorchCommand):
|
|
def run(self):
|
|
# Check if you remembered to check out submodules
|
|
def check_file(f):
|
|
if not os.path.exists(f):
|
|
print("Could not find {}".format(f))
|
|
print("Did you run 'git submodule update --init'?")
|
|
sys.exit(1)
|
|
check_file(os.path.join(third_party_path, "gloo", "CMakeLists.txt"))
|
|
check_file(os.path.join(third_party_path, "nanopb", "CMakeLists.txt"))
|
|
check_file(os.path.join(third_party_path, "pybind11", "CMakeLists.txt"))
|
|
check_file(os.path.join(third_party_path, 'cpuinfo', 'CMakeLists.txt'))
|
|
check_file(os.path.join(third_party_path, 'tbb', 'Makefile'))
|
|
check_file(os.path.join(third_party_path, 'catch', 'CMakeLists.txt'))
|
|
check_file(os.path.join(third_party_path, 'onnx', 'CMakeLists.txt'))
|
|
|
|
check_pydep('yaml', 'pyyaml')
|
|
check_pydep('typing', 'typing')
|
|
|
|
libs = []
|
|
if USE_NCCL and not USE_SYSTEM_NCCL:
|
|
libs += ['nccl']
|
|
libs += ['caffe2', 'nanopb']
|
|
if IS_WINDOWS:
|
|
libs += ['libshm_windows']
|
|
else:
|
|
libs += ['libshm']
|
|
if USE_DISTRIBUTED:
|
|
if sys.platform.startswith('linux'):
|
|
libs += ['gloo']
|
|
libs += ['THD']
|
|
if USE_C10D:
|
|
libs += ['c10d']
|
|
build_libs(libs)
|
|
|
|
# Use copies instead of symbolic files.
|
|
# Windows has very poor support for them.
|
|
sym_files = ['tools/shared/cwrap_common.py']
|
|
orig_files = ['aten/src/ATen/common_with_cwrap.py']
|
|
for sym_file, orig_file in zip(sym_files, orig_files):
|
|
if os.path.exists(sym_file):
|
|
os.remove(sym_file)
|
|
shutil.copyfile(orig_file, sym_file)
|
|
|
|
# Copy headers necessary to compile C++ extensions.
|
|
#
|
|
# This is not perfect solution as build does not depend on any of
|
|
# the auto-generated code and auto-generated files will not be
|
|
# included in this copy. If we want to use auto-generated files,
|
|
# we need to find a better way to do this.
|
|
# More information can be found in conversation thread of PR #5772
|
|
|
|
self.copy_tree('torch/csrc', 'torch/lib/include/torch/csrc/')
|
|
self.copy_tree('third_party/pybind11/include/pybind11/',
|
|
'torch/lib/include/pybind11')
|
|
self.copy_file('torch/csrc/torch.h', 'torch/lib/include/torch/torch.h')
|
|
|
|
|
|
build_dep_cmds = {}
|
|
|
|
for lib in dep_libs:
|
|
# wrap in function to capture lib
|
|
class build_dep(build_deps):
|
|
description = 'Build {} external library'.format(lib)
|
|
|
|
def run(self):
|
|
build_libs([self.lib])
|
|
build_dep.lib = lib
|
|
build_dep_cmds['build_' + lib.lower()] = build_dep
|
|
|
|
|
|
class build_module(PytorchCommand):
|
|
def run(self):
|
|
self.run_command('build_py')
|
|
self.run_command('build_ext')
|
|
|
|
|
|
class build_py(setuptools.command.build_py.build_py):
|
|
|
|
def run(self):
|
|
self.run_command('create_version_file')
|
|
setuptools.command.build_py.build_py.run(self)
|
|
|
|
|
|
class develop(setuptools.command.develop.develop):
|
|
|
|
def run(self):
|
|
self.run_command('create_version_file')
|
|
setuptools.command.develop.develop.run(self)
|
|
self.create_compile_commands()
|
|
|
|
def create_compile_commands(self):
|
|
def load(filename):
|
|
with open(filename) as f:
|
|
return json.load(f)
|
|
ninja_files = glob.glob('build/*_compile_commands.json')
|
|
cmake_files = glob.glob('torch/lib/build/*/compile_commands.json')
|
|
all_commands = [entry
|
|
for f in ninja_files + cmake_files
|
|
for entry in load(f)]
|
|
with open('compile_commands.json', 'w') as f:
|
|
json.dump(all_commands, f, indent=2)
|
|
if not USE_NINJA:
|
|
print("WARNING: 'develop' is not building C++ code incrementally")
|
|
print("because ninja is not installed. Run this to enable it:")
|
|
print(" > pip install ninja")
|
|
|
|
|
|
def monkey_patch_THD_link_flags():
|
|
'''
|
|
THD's dynamic link deps are not determined until after build_deps is run
|
|
So, we need to monkey-patch them in later
|
|
'''
|
|
# read tmp_install_path/THD_deps.txt for THD's dynamic linkage deps
|
|
with open(tmp_install_path + '/THD_deps.txt', 'r') as f:
|
|
thd_deps_ = f.read()
|
|
thd_deps = []
|
|
# remove empty lines
|
|
for l in thd_deps_.split(';'):
|
|
if l != '':
|
|
thd_deps.append(l)
|
|
|
|
C.extra_link_args += thd_deps
|
|
|
|
|
|
build_ext_parent = ninja_build_ext if USE_NINJA \
|
|
else setuptools.command.build_ext.build_ext
|
|
|
|
|
|
class build_ext(build_ext_parent):
|
|
|
|
def run(self):
|
|
|
|
# Print build options
|
|
if USE_NUMPY:
|
|
print('-- Building with NumPy bindings')
|
|
else:
|
|
print('-- NumPy not found')
|
|
if USE_CUDNN:
|
|
print('-- Detected cuDNN at ' + CUDNN_LIBRARY + ', ' + CUDNN_INCLUDE_DIR)
|
|
else:
|
|
print('-- Not using cuDNN')
|
|
if USE_CUDA:
|
|
print('-- Detected CUDA at ' + CUDA_HOME)
|
|
else:
|
|
print('-- Not using CUDA')
|
|
if USE_MKLDNN:
|
|
print('-- Detected MKLDNN at ' + MKLDNN_LIBRARY + ', ' + MKLDNN_INCLUDE_DIR)
|
|
else:
|
|
print('-- Not using MKLDNN')
|
|
if USE_NCCL and USE_SYSTEM_NCCL:
|
|
print('-- Using system provided NCCL library at ' +
|
|
NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
|
|
elif USE_NCCL:
|
|
print('-- Building NCCL library')
|
|
else:
|
|
print('-- Not using NCCL')
|
|
if USE_DISTRIBUTED:
|
|
print('-- Building with distributed package ')
|
|
monkey_patch_THD_link_flags()
|
|
else:
|
|
print('-- Building without distributed package')
|
|
|
|
generate_code(ninja_global)
|
|
|
|
if USE_NINJA:
|
|
# before we start the normal build make sure all generated code
|
|
# gets built
|
|
ninja_global.run()
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
setuptools.command.build_ext.build_ext.run(self)
|
|
|
|
# Copy the essential export library to compile C++ extensions.
|
|
if IS_WINDOWS:
|
|
build_temp = self.build_temp
|
|
|
|
ext_filename = self.get_ext_filename('_C')
|
|
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
|
|
|
|
export_lib = os.path.join(
|
|
build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/')
|
|
|
|
build_lib = self.build_lib
|
|
|
|
target_lib = os.path.join(
|
|
build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/')
|
|
|
|
self.copy_file(export_lib, target_lib)
|
|
|
|
def build_extensions(self):
|
|
# If also building Caffe2 python, then we need this extra logic copied
|
|
# from the old setup_caffe2.py
|
|
if FULL_CAFFE2:
|
|
pybind_exts = [
|
|
'caffe2.python.caffe2_pybind11_state',
|
|
'caffe2.python.caffe2_pybind11_state_gpu',
|
|
]
|
|
# The cmake of Caffe2 puts these in the site-packages rather than
|
|
# the build directory like the other torch extensions
|
|
sp_dir = distutils.sysconfig.get_python_lib(prefix='')
|
|
i = 0
|
|
while i < len(self.extensions):
|
|
ext = self.extensions[i]
|
|
if ext.name not in pybind_exts:
|
|
i += 1
|
|
continue
|
|
fullname = self.get_ext_fullname(ext.name)
|
|
filename = self.get_ext_filename(fullname)
|
|
|
|
src = os.path.join(tmp_install_path, sp_dir, filename)
|
|
if not os.path.exists(src):
|
|
print("{} does not exist".format(src))
|
|
del self.extensions[i]
|
|
else:
|
|
dst = os.path.join(os.path.realpath(self.build_lib), filename)
|
|
dst_dir = os.path.dirname(dst)
|
|
if not os.path.exists(dst_dir):
|
|
os.makedirs(dst_dir)
|
|
self.copy_file(src, dst)
|
|
i += 1
|
|
distutils.command.build_ext.build_ext.build_extensions(self)
|
|
|
|
|
|
class build(distutils.command.build.build):
|
|
sub_commands = [
|
|
('build_deps', lambda self: True),
|
|
] + distutils.command.build.build.sub_commands
|
|
|
|
|
|
class install(setuptools.command.install.install):
|
|
|
|
def run(self):
|
|
if not self.skip_build:
|
|
self.run_command('build_deps')
|
|
|
|
setuptools.command.install.install.run(self)
|
|
|
|
|
|
class clean(distutils.command.clean.clean):
|
|
|
|
def run(self):
|
|
import glob
|
|
with open('.gitignore', 'r') as f:
|
|
ignores = f.read()
|
|
for wildcard in filter(bool, ignores.split('\n')):
|
|
for filename in glob.glob(wildcard):
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
shutil.rmtree(filename, ignore_errors=True)
|
|
|
|
# It's an old-style class in Python 2.7...
|
|
distutils.command.clean.clean.run(self)
|
|
|
|
|
|
################################################################################
|
|
# Configure compile flags
|
|
################################################################################
|
|
|
|
include_dirs = []
|
|
library_dirs = []
|
|
|
|
if IS_WINDOWS:
|
|
# /NODEFAULTLIB makes sure we only link to DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
extra_link_args = ['/NODEFAULTLIB:LIBCMT.LIB']
|
|
# /MD links against DLL runtime
|
|
# and matches the flags set for protobuf and ONNX
|
|
# /Z7 turns on symbolic debugging information in .obj files
|
|
# /EHa is about native C++ catch support for asynchronous
|
|
# structured exception handling (SEH)
|
|
# /DNOMINMAX removes builtin min/max functions
|
|
# /wdXXXX disables warning no. XXXX
|
|
extra_compile_args = ['/MD', '/Z7',
|
|
'/EHa', '/DNOMINMAX',
|
|
'/wd4267', '/wd4251', '/wd4522', '/wd4522', '/wd4838',
|
|
'/wd4305', '/wd4244', '/wd4190', '/wd4101', '/wd4996',
|
|
'/wd4275']
|
|
if sys.version_info[0] == 2:
|
|
# /bigobj increases number of sections in .obj file, which is needed to link
|
|
# against libaries in Python 2.7 under Windows
|
|
extra_compile_args.append('/bigobj')
|
|
else:
|
|
extra_link_args = []
|
|
extra_compile_args = [
|
|
'-std=c++11',
|
|
'-Wall',
|
|
'-Wextra',
|
|
'-Wno-unused-parameter',
|
|
'-Wno-missing-field-initializers',
|
|
'-Wno-write-strings',
|
|
'-Wno-zero-length-array',
|
|
'-Wno-unknown-pragmas',
|
|
# This is required for Python 2 declarations that are deprecated in 3.
|
|
'-Wno-deprecated-declarations',
|
|
# Python 2.6 requires -fno-strict-aliasing, see
|
|
# http://legacy.python.org/dev/peps/pep-3123/
|
|
# We also depend on it in our code (even Python 3).
|
|
'-fno-strict-aliasing',
|
|
# Clang has an unfixed bug leading to spurious missing
|
|
# braces warnings, see
|
|
# https://bugs.llvm.org/show_bug.cgi?id=21629
|
|
'-Wno-missing-braces'
|
|
]
|
|
if check_env_flag('WERROR'):
|
|
extra_compile_args.append('-Werror')
|
|
|
|
include_dirs += [
|
|
cwd,
|
|
tmp_install_path + "/include",
|
|
tmp_install_path + "/include/TH",
|
|
tmp_install_path + "/include/THNN",
|
|
tmp_install_path + "/include/ATen",
|
|
third_party_path + "/pybind11/include",
|
|
os.path.join(cwd, "torch", "csrc"),
|
|
"build/third_party",
|
|
]
|
|
|
|
library_dirs.append(lib_path)
|
|
|
|
# we specify exact lib names to avoid conflict with lua-torch installs
|
|
CAFFE2_LIBS = [os.path.join(lib_path, 'libcaffe2.so')]
|
|
if USE_CUDA:
|
|
CAFFE2_LIBS.extend(['-Wl,--no-as-needed', os.path.join(lib_path, 'libcaffe2_gpu.so'), '-Wl,--as-needed'])
|
|
if USE_ROCM:
|
|
CAFFE2_LIBS.extend(['-Wl,--no-as-needed', os.path.join(lib_path, 'libcaffe2_hip.so'), '-Wl,--as-needed'])
|
|
THD_LIB = os.path.join(lib_path, 'libTHD.a')
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1')
|
|
C10D_LIB = os.path.join(lib_path, 'libc10d.a')
|
|
C10D_GLOO_LIB = os.path.join(lib_path, 'libc10d_gloo.a')
|
|
|
|
# static library only
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'libprotobuf-nanopb.a')
|
|
if DEBUG:
|
|
PROTOBUF_STATIC_LIB = os.path.join(lib_path, 'libprotobufd.a')
|
|
else:
|
|
PROTOBUF_STATIC_LIB = os.path.join(lib_path, 'libprotobuf.a')
|
|
|
|
if IS_DARWIN:
|
|
CAFFE2_LIBS = [os.path.join(lib_path, 'libcaffe2.dylib')]
|
|
if USE_CUDA:
|
|
CAFFE2_LIBS.append(os.path.join(lib_path, 'libcaffe2_gpu.dylib'))
|
|
if USE_ROCM:
|
|
CAFFE2_LIBS.append(os.path.join(lib_path, 'libcaffe2_hip.dylib'))
|
|
NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib')
|
|
|
|
if IS_WINDOWS:
|
|
CAFFE2_LIBS = [os.path.join(lib_path, 'caffe2.lib')]
|
|
if USE_CUDA:
|
|
CAFFE2_LIBS.append(os.path.join(lib_path, 'caffe2_gpu.lib'))
|
|
if USE_ROCM:
|
|
CAFFE2_LIBS.append(os.path.join(lib_path, 'caffe2_hip.lib'))
|
|
# Windows needs direct access to ONNX libraries as well
|
|
# as through Caffe2 library
|
|
CAFFE2_LIBS += [
|
|
os.path.join(lib_path, 'onnx.lib'),
|
|
os.path.join(lib_path, 'onnx_proto.lib'),
|
|
]
|
|
if DEBUG:
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopbd.lib')
|
|
PROTOBUF_STATIC_LIB = os.path.join(lib_path, 'libprotobufd.lib')
|
|
else:
|
|
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopb.lib')
|
|
PROTOBUF_STATIC_LIB = os.path.join(lib_path, 'libprotobuf.lib')
|
|
|
|
main_compile_args = ['-D_THP_CORE', '-DONNX_NAMESPACE=' + ONNX_NAMESPACE]
|
|
main_libraries = ['shm']
|
|
main_link_args = CAFFE2_LIBS + [NANOPB_STATIC_LIB, PROTOBUF_STATIC_LIB]
|
|
main_sources = [
|
|
"torch/csrc/PtrWrapper.cpp",
|
|
"torch/csrc/Module.cpp",
|
|
"torch/csrc/Generator.cpp",
|
|
"torch/csrc/Size.cpp",
|
|
"torch/csrc/Dtype.cpp",
|
|
"torch/csrc/Device.cpp",
|
|
"torch/csrc/Exceptions.cpp",
|
|
"torch/csrc/Layout.cpp",
|
|
"torch/csrc/Storage.cpp",
|
|
"torch/csrc/DataLoader.cpp",
|
|
"torch/csrc/DynamicTypes.cpp",
|
|
"torch/csrc/assertions.cpp",
|
|
"torch/csrc/byte_order.cpp",
|
|
"torch/csrc/torch.cpp",
|
|
"torch/csrc/utils.cpp",
|
|
"torch/csrc/utils/cuda_lazy_init.cpp",
|
|
"torch/csrc/utils/device.cpp",
|
|
"torch/csrc/utils/invalid_arguments.cpp",
|
|
"torch/csrc/utils/object_ptr.cpp",
|
|
"torch/csrc/utils/python_arg_parser.cpp",
|
|
"torch/csrc/utils/tensor_list.cpp",
|
|
"torch/csrc/utils/tensor_new.cpp",
|
|
"torch/csrc/utils/tensor_numpy.cpp",
|
|
"torch/csrc/utils/tensor_dtypes.cpp",
|
|
"torch/csrc/utils/tensor_layouts.cpp",
|
|
"torch/csrc/utils/tensor_types.cpp",
|
|
"torch/csrc/utils/tuple_parser.cpp",
|
|
"torch/csrc/utils/tensor_apply.cpp",
|
|
"torch/csrc/utils/tensor_conversion_dispatch.cpp",
|
|
"torch/csrc/utils/tensor_flatten.cpp",
|
|
"torch/csrc/utils/variadic.cpp",
|
|
"torch/csrc/allocators.cpp",
|
|
"torch/csrc/serialization.cpp",
|
|
"torch/csrc/jit/init.cpp",
|
|
"torch/csrc/jit/interpreter.cpp",
|
|
"torch/csrc/jit/python_interpreter.cpp",
|
|
"torch/csrc/jit/ir.cpp",
|
|
"torch/csrc/jit/fusion_compiler.cpp",
|
|
"torch/csrc/jit/graph_executor.cpp",
|
|
"torch/csrc/jit/python_ir.cpp",
|
|
"torch/csrc/jit/test_jit.cpp",
|
|
"torch/csrc/jit/tracer.cpp",
|
|
"torch/csrc/jit/tracer_state.cpp",
|
|
"torch/csrc/jit/python_tracer.cpp",
|
|
"torch/csrc/jit/passes/shape_analysis.cpp",
|
|
"torch/csrc/jit/interned_strings.cpp",
|
|
"torch/csrc/jit/type.cpp",
|
|
"torch/csrc/jit/export.cpp",
|
|
"torch/csrc/jit/import.cpp",
|
|
"torch/csrc/jit/autodiff.cpp",
|
|
"torch/csrc/jit/python_arg_flatten.cpp",
|
|
"torch/csrc/jit/variable_flags.cpp",
|
|
"torch/csrc/jit/passes/create_autodiff_subgraphs.cpp",
|
|
"torch/csrc/jit/passes/graph_fuser.cpp",
|
|
"torch/csrc/jit/passes/onnx.cpp",
|
|
"torch/csrc/jit/passes/dead_code_elimination.cpp",
|
|
"torch/csrc/jit/passes/remove_expands.cpp",
|
|
"torch/csrc/jit/passes/lower_tuples.cpp",
|
|
"torch/csrc/jit/passes/common_subexpression_elimination.cpp",
|
|
"torch/csrc/jit/passes/peephole.cpp",
|
|
"torch/csrc/jit/passes/inplace_check.cpp",
|
|
"torch/csrc/jit/passes/canonicalize.cpp",
|
|
"torch/csrc/jit/passes/batch_mm.cpp",
|
|
"torch/csrc/jit/passes/decompose_addmm.cpp",
|
|
"torch/csrc/jit/passes/loop_unrolling.cpp",
|
|
"torch/csrc/jit/passes/onnx/peephole.cpp",
|
|
"torch/csrc/jit/passes/onnx/fixup_onnx_loop.cpp",
|
|
"torch/csrc/jit/generated/aten_dispatch.cpp",
|
|
"torch/csrc/jit/generated/aten_schema.cpp",
|
|
"torch/csrc/jit/script/lexer.cpp",
|
|
"torch/csrc/jit/script/compiler.cpp",
|
|
"torch/csrc/jit/script/module.cpp",
|
|
"torch/csrc/jit/script/init.cpp",
|
|
"torch/csrc/jit/script/python_tree_views.cpp",
|
|
"torch/csrc/autograd/init.cpp",
|
|
"torch/csrc/autograd/aten_variable_hooks.cpp",
|
|
"torch/csrc/autograd/grad_mode.cpp",
|
|
"torch/csrc/autograd/anomaly_mode.cpp",
|
|
"torch/csrc/autograd/python_anomaly_mode.cpp",
|
|
"torch/csrc/autograd/engine.cpp",
|
|
"torch/csrc/autograd/function.cpp",
|
|
"torch/csrc/autograd/variable.cpp",
|
|
"torch/csrc/autograd/saved_variable.cpp",
|
|
"torch/csrc/autograd/input_buffer.cpp",
|
|
"torch/csrc/autograd/profiler.cpp",
|
|
"torch/csrc/autograd/python_function.cpp",
|
|
"torch/csrc/autograd/python_cpp_function.cpp",
|
|
"torch/csrc/autograd/python_variable.cpp",
|
|
"torch/csrc/autograd/python_variable_indexing.cpp",
|
|
"torch/csrc/autograd/python_legacy_variable.cpp",
|
|
"torch/csrc/autograd/python_engine.cpp",
|
|
"torch/csrc/autograd/python_hook.cpp",
|
|
"torch/csrc/autograd/generated/VariableType.cpp",
|
|
"torch/csrc/autograd/generated/Functions.cpp",
|
|
"torch/csrc/autograd/generated/python_torch_functions.cpp",
|
|
"torch/csrc/autograd/generated/python_variable_methods.cpp",
|
|
"torch/csrc/autograd/generated/python_functions.cpp",
|
|
"torch/csrc/autograd/generated/python_nn_functions.cpp",
|
|
"torch/csrc/autograd/functions/basic_ops.cpp",
|
|
"torch/csrc/autograd/functions/tensor.cpp",
|
|
"torch/csrc/autograd/functions/accumulate_grad.cpp",
|
|
"torch/csrc/autograd/functions/special.cpp",
|
|
"torch/csrc/autograd/functions/utils.cpp",
|
|
"torch/csrc/autograd/functions/init.cpp",
|
|
"torch/csrc/nn/THNN.cpp",
|
|
"torch/csrc/tensor/python_tensor.cpp",
|
|
"torch/csrc/onnx/onnx.pb.cpp",
|
|
"torch/csrc/onnx/onnx.cpp",
|
|
"torch/csrc/onnx/init.cpp",
|
|
]
|
|
|
|
try:
|
|
import numpy as np
|
|
include_dirs.append(np.get_include())
|
|
extra_compile_args.append('-DUSE_NUMPY')
|
|
USE_NUMPY = True
|
|
except ImportError:
|
|
USE_NUMPY = False
|
|
|
|
if USE_DISTRIBUTED:
|
|
extra_compile_args += ['-DUSE_DISTRIBUTED']
|
|
main_sources += [
|
|
"torch/csrc/distributed/Module.cpp",
|
|
]
|
|
if USE_DISTRIBUTED_MW:
|
|
main_sources += [
|
|
"torch/csrc/distributed/Tensor.cpp",
|
|
"torch/csrc/distributed/Storage.cpp",
|
|
]
|
|
extra_compile_args += ['-DUSE_DISTRIBUTED_MW']
|
|
include_dirs += [tmp_install_path + "/include/THD"]
|
|
main_link_args += [THD_LIB]
|
|
|
|
if USE_C10D:
|
|
extra_compile_args += ['-DUSE_C10D']
|
|
main_sources += ['torch/csrc/distributed/c10d/init.cpp']
|
|
main_link_args += [C10D_GLOO_LIB, C10D_LIB]
|
|
|
|
if USE_CUDA:
|
|
nvtoolext_lib_name = None
|
|
if IS_WINDOWS:
|
|
cuda_lib_path = CUDA_HOME + '/lib/x64/'
|
|
nvtoolext_lib_path = NVTOOLEXT_HOME + '/lib/x64/'
|
|
nvtoolext_include_path = os.path.join(NVTOOLEXT_HOME, 'include')
|
|
|
|
library_dirs.append(nvtoolext_lib_path)
|
|
include_dirs.append(nvtoolext_include_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt64_1'
|
|
|
|
# MSVC doesn't support runtime symbol resolving, `nvrtc` and `cuda` should be linked
|
|
main_libraries += ['nvrtc', 'cuda']
|
|
else:
|
|
cuda_lib_dirs = ['lib64', 'lib']
|
|
|
|
for lib_dir in cuda_lib_dirs:
|
|
cuda_lib_path = os.path.join(CUDA_HOME, lib_dir)
|
|
if os.path.exists(cuda_lib_path):
|
|
break
|
|
extra_link_args.append('-Wl,-rpath,' + cuda_lib_path)
|
|
|
|
nvtoolext_lib_name = 'nvToolsExt'
|
|
|
|
library_dirs.append(cuda_lib_path)
|
|
cuda_include_path = os.path.join(CUDA_HOME, 'include')
|
|
include_dirs.append(cuda_include_path)
|
|
include_dirs.append(tmp_install_path + "/include/THCUNN")
|
|
extra_compile_args += ['-DUSE_CUDA']
|
|
extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path]
|
|
main_libraries += ['cudart', nvtoolext_lib_name]
|
|
main_sources += [
|
|
"torch/csrc/cuda/Module.cpp",
|
|
"torch/csrc/cuda/Storage.cpp",
|
|
"torch/csrc/cuda/Stream.cpp",
|
|
"torch/csrc/cuda/utils.cpp",
|
|
"torch/csrc/cuda/comm.cpp",
|
|
"torch/csrc/cuda/python_comm.cpp",
|
|
"torch/csrc/cuda/serialization.cpp",
|
|
"torch/csrc/nn/THCUNN.cpp",
|
|
]
|
|
|
|
if USE_ROCM:
|
|
rocm_include_path = '/opt/rocm/include'
|
|
hcc_include_path = '/opt/rocm/hcc/include'
|
|
hipblas_include_path = '/opt/rocm/hipblas/include'
|
|
hipsparse_include_path = '/opt/rocm/hcsparse/include'
|
|
hip_lib_path = '/opt/rocm/hip/lib'
|
|
hcc_lib_path = '/opt/rocm/hcc/lib'
|
|
include_dirs.append(rocm_include_path)
|
|
include_dirs.append(hcc_include_path)
|
|
include_dirs.append(hipblas_include_path)
|
|
include_dirs.append(hipsparse_include_path)
|
|
include_dirs.append(tmp_install_path + "/include/THCUNN")
|
|
extra_link_args.append('-L' + hip_lib_path)
|
|
extra_link_args.append('-Wl,-rpath,' + hip_lib_path)
|
|
extra_compile_args += ['-DUSE_ROCM']
|
|
extra_compile_args += ['-D__HIP_PLATFORM_HCC__']
|
|
|
|
main_sources += [
|
|
"torch/csrc/cuda/Module.cpp",
|
|
"torch/csrc/cuda/Storage.cpp",
|
|
"torch/csrc/cuda/Stream.cpp",
|
|
"torch/csrc/cuda/utils.cpp",
|
|
"torch/csrc/cuda/comm.cpp",
|
|
"torch/csrc/cuda/python_comm.cpp",
|
|
"torch/csrc/cuda/serialization.cpp",
|
|
"torch/csrc/nn/THCUNN.cpp",
|
|
]
|
|
|
|
if USE_NCCL:
|
|
if USE_SYSTEM_NCCL:
|
|
main_link_args += [NCCL_SYSTEM_LIB]
|
|
include_dirs.append(NCCL_INCLUDE_DIR)
|
|
else:
|
|
main_link_args += [NCCL_LIB]
|
|
extra_compile_args += ['-DUSE_NCCL']
|
|
main_sources += [
|
|
"torch/csrc/cuda/nccl.cpp",
|
|
"torch/csrc/cuda/python_nccl.cpp",
|
|
]
|
|
if USE_CUDNN:
|
|
main_libraries += [CUDNN_LIBRARY]
|
|
# NOTE: these are at the front, in case there's another cuDNN in CUDA path
|
|
include_dirs.insert(0, CUDNN_INCLUDE_DIR)
|
|
if not IS_WINDOWS:
|
|
extra_link_args.insert(0, '-Wl,-rpath,' + CUDNN_LIB_DIR)
|
|
extra_compile_args += ['-DUSE_CUDNN']
|
|
|
|
if DEBUG:
|
|
if IS_WINDOWS:
|
|
extra_link_args.append('/DEBUG:FULL')
|
|
else:
|
|
extra_compile_args += ['-O0', '-g']
|
|
extra_link_args += ['-O0', '-g']
|
|
|
|
|
|
def make_relative_rpath(path):
|
|
if IS_DARWIN:
|
|
return '-Wl,-rpath,@loader_path/' + path
|
|
elif IS_WINDOWS:
|
|
return ''
|
|
else:
|
|
return '-Wl,-rpath,$ORIGIN/' + path
|
|
|
|
################################################################################
|
|
# Declare extensions and package
|
|
################################################################################
|
|
|
|
extensions = []
|
|
packages = find_packages(exclude=('tools', 'tools.*', 'caffe2', 'caffe2.*', 'caffe', 'caffe.*'))
|
|
C = Extension("torch._C",
|
|
libraries=main_libraries,
|
|
sources=main_sources,
|
|
language='c++',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs,
|
|
extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')],
|
|
)
|
|
extensions.append(C)
|
|
|
|
if not IS_WINDOWS:
|
|
DL = Extension("torch._dl",
|
|
sources=["torch/csrc/dl.c"],
|
|
language='c'
|
|
)
|
|
extensions.append(DL)
|
|
|
|
|
|
if USE_CUDA:
|
|
thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')]
|
|
if IS_LINUX:
|
|
thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed']
|
|
# these have to be specified as -lcuda in link_flags because they
|
|
# have to come right after the `no-as-needed` option
|
|
if IS_WINDOWS:
|
|
thnvrtc_link_flags += ['cuda.lib', 'nvrtc.lib']
|
|
else:
|
|
thnvrtc_link_flags += ['-lcuda', '-lnvrtc']
|
|
cuda_stub_path = [cuda_lib_path + '/stubs']
|
|
if IS_DARWIN:
|
|
# on macOS this is where the CUDA stub is installed according to the manual
|
|
cuda_stub_path = ["/usr/local/cuda/lib"]
|
|
THNVRTC = Extension("torch._nvrtc",
|
|
sources=['torch/csrc/nvrtc.cpp'],
|
|
language='c++',
|
|
extra_compile_args=main_compile_args + extra_compile_args,
|
|
include_dirs=include_dirs,
|
|
library_dirs=library_dirs + cuda_stub_path,
|
|
extra_link_args=thnvrtc_link_flags,
|
|
)
|
|
extensions.append(THNVRTC)
|
|
|
|
if FULL_CAFFE2:
|
|
# If building Caffe2 python as well, these extensions are built by cmake
|
|
# copied manually in build_extensions() inside the build_ext implementaiton
|
|
extensions.append(
|
|
setuptools.Extension(
|
|
name=str('caffe2.python.caffe2_pybind11_state'),
|
|
sources=[]),
|
|
)
|
|
extensions.append(
|
|
setuptools.Extension(
|
|
name=str('caffe2.python.caffe2_pybind11_state_gpu'),
|
|
sources=[]),
|
|
)
|
|
|
|
cmdclass = {
|
|
'create_version_file': create_version_file,
|
|
'build': build,
|
|
'build_py': build_py,
|
|
'build_ext': build_ext,
|
|
'build_deps': build_deps,
|
|
'build_module': build_module,
|
|
'develop': develop,
|
|
'install': install,
|
|
'clean': clean,
|
|
}
|
|
cmdclass.update(build_dep_cmds)
|
|
|
|
if __name__ == '__main__':
|
|
setup(
|
|
name="torch",
|
|
version=version,
|
|
description=("Tensors and Dynamic neural networks in "
|
|
"Python with strong GPU acceleration"),
|
|
ext_modules=extensions,
|
|
cmdclass=cmdclass,
|
|
packages=packages,
|
|
package_data={
|
|
'torch': [
|
|
'lib/*.so*',
|
|
'lib/*.dylib*',
|
|
'lib/*.dll',
|
|
'lib/*.lib',
|
|
'lib/torch_shm_manager',
|
|
'lib/*.h',
|
|
'lib/include/ATen/*.h',
|
|
'lib/include/ATen/detail/*.h',
|
|
'lib/include/ATen/cuda/*.h',
|
|
'lib/include/ATen/cuda/*.cuh',
|
|
'lib/include/ATen/cuda/detail/*.h',
|
|
'lib/include/ATen/cudnn/*.h',
|
|
'lib/include/ATen/cuda/detail/*.cuh',
|
|
'lib/include/pybind11/*.h',
|
|
'lib/include/pybind11/detail/*.h',
|
|
'lib/include/TH/*.h',
|
|
'lib/include/TH/generic/*.h',
|
|
'lib/include/THC/*.h',
|
|
'lib/include/THC/*.cuh',
|
|
'lib/include/THC/generic/*.h',
|
|
'lib/include/THCUNN/*.cuh',
|
|
'lib/include/torch/csrc/*.h',
|
|
'lib/include/torch/csrc/autograd/*.h',
|
|
'lib/include/torch/csrc/jit/*.h',
|
|
'lib/include/torch/csrc/utils/*.h',
|
|
'lib/include/torch/csrc/cuda/*.h',
|
|
'lib/include/torch/torch.h',
|
|
]
|
|
})
|