mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851 Rationale and context described in #33828. Script to reproduce the move: https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9 ghstack-source-id: 99079645 Test Plan: Make sure CI passes Reviewed By: jamesr66a Differential Revision: D20133869 fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
193 lines
6.6 KiB
C++
193 lines
6.6 KiB
C++
#include <torch/jit.h>
|
|
#include "test/cpp/jit/test_utils.h"
|
|
#include "torch/csrc/jit/runtime/argument_spec.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
int device(const autograd::Variable& v) {
|
|
return v.device().is_cuda() ? v.get_device() : -1;
|
|
}
|
|
|
|
bool isEqual(at::IntArrayRef lhs, at::IntArrayRef rhs) {
|
|
return lhs.size() == rhs.size() &&
|
|
std::equal(lhs.begin(), lhs.end(), rhs.begin());
|
|
}
|
|
|
|
bool isEqual(const CompleteArgumentInfo& ti, const autograd::Variable& v) {
|
|
if (!ti.defined())
|
|
return ti.defined() == v.defined();
|
|
return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() &&
|
|
ti.type() == v.scalar_type() && isEqual(ti.sizes(), v.sizes()) &&
|
|
isEqual(ti.strides(), v.strides());
|
|
}
|
|
|
|
bool isEqual(const ArgumentInfo& ti, const autograd::Variable& v) {
|
|
if (!ti.defined())
|
|
return ti.defined() == v.defined();
|
|
return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() &&
|
|
ti.type() == v.scalar_type() && ti.dim() == v.dim();
|
|
}
|
|
|
|
autograd::Variable var(at::TensorOptions t, at::IntArrayRef sizes, bool requires_grad) {
|
|
return autograd::make_variable(at::rand(sizes, t), requires_grad);
|
|
}
|
|
autograd::Variable undef() {
|
|
return autograd::Variable();
|
|
}
|
|
|
|
void testCompleteArgumentSpec() {
|
|
auto const CF = at::CPU(at::kFloat);
|
|
auto const CD = at::CPU(at::kDouble);
|
|
auto const GF = at::CUDA(at::kFloat);
|
|
auto const GD = at::CUDA(at::kDouble);
|
|
|
|
auto list = createStack({var(CF, {1}, true),
|
|
var(CD, {1, 2}, false),
|
|
var(GF, {}, true),
|
|
var(GD, {4, 5, 6}, false),
|
|
undef()});
|
|
|
|
// make sure we have some non-standard strides
|
|
list[1].toTensor().transpose_(0, 1);
|
|
|
|
// same list but different backing values
|
|
auto list2 = createStack({var(CF, {1}, true),
|
|
var(CD, {1, 2}, false),
|
|
var(GF, {}, true),
|
|
var(GD, {4, 5, 6}, false),
|
|
undef()});
|
|
list2[1].toTensor().transpose_(0, 1);
|
|
|
|
CompleteArgumentSpec a(true, list);
|
|
CompleteArgumentSpec b(true, list);
|
|
ASSERT_EQ(a.hashCode(), b.hashCode());
|
|
|
|
ASSERT_EQ(a, b);
|
|
CompleteArgumentSpec d(true, list2);
|
|
ASSERT_EQ(d, a);
|
|
ASSERT_EQ(d.hashCode(), a.hashCode());
|
|
|
|
for (size_t i = 0; i < list.size(); ++i) {
|
|
ASSERT_TRUE(isEqual(a.at(i), list[i].toTensor()));
|
|
}
|
|
CompleteArgumentSpec no_grad(/*with_grad=*/false, list);
|
|
ASSERT_TRUE(no_grad != a);
|
|
|
|
std::unordered_set<CompleteArgumentSpec> spec;
|
|
spec.insert(a); // we use a below, so no move
|
|
ASSERT_TRUE(spec.count(b) > 0);
|
|
ASSERT_EQ(spec.count(no_grad), 0);
|
|
spec.insert(std::move(no_grad));
|
|
ASSERT_EQ(spec.count(CompleteArgumentSpec(true, list)), 1);
|
|
|
|
list2[1].toTensor().transpose_(0, 1);
|
|
CompleteArgumentSpec c(true, list2); // same as list, except for one stride
|
|
ASSERT_FALSE(c == a);
|
|
ASSERT_EQ(spec.count(c), 0);
|
|
|
|
Stack stack = {var(CF, {1, 2}, true), 3, var(CF, {1, 2}, true)};
|
|
CompleteArgumentSpec with_const(true, stack);
|
|
ASSERT_EQ(with_const.at(2).sizes().size(), 2);
|
|
}
|
|
|
|
size_t hashCode(const TensorTypePtr& ptr) {
|
|
return std::hash<TensorType>()(*ptr.get());
|
|
}
|
|
|
|
void testProfiledTensorTypeHashing() {
|
|
c10::VaryingShape vs(c10::optional<size_t>{});
|
|
auto ptt_empty1 = TensorType::create({}, {}, vs, vs, false);
|
|
auto ptt_empty2 = TensorType::create({}, {}, vs, vs, false);
|
|
ASSERT_EQ(hashCode(ptt_empty1), hashCode(ptt_empty2));
|
|
|
|
c10::VaryingShape vs22(std::vector<int64_t>{2, 2});
|
|
auto ptt_vs22_1 = TensorType::create({}, {}, vs22, vs, false);
|
|
auto ptt_vs22_2 = TensorType::create({}, {}, vs22, vs, false);
|
|
ASSERT_EQ(hashCode(ptt_vs22_1), hashCode(ptt_vs22_2));
|
|
|
|
c10::VaryingShape vs23(std::vector<int64_t>{2, 3});
|
|
auto ptt_vs23_1 = TensorType::create({}, {}, vs23, vs, false);
|
|
ASSERT_NE(hashCode(ptt_vs22_1), hashCode(ptt_vs23_1));
|
|
|
|
auto ptt_vs22_vs22_1 = TensorType::create({}, {}, vs22, vs22, false);
|
|
auto ptt_vs22_vs22_2 = TensorType::create({}, {}, vs22, vs22, false);
|
|
ASSERT_EQ(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs22_2));
|
|
|
|
auto ptt_vs22_vs23_2 = TensorType::create({}, {}, vs22, vs23, false);
|
|
ASSERT_NE(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs23_2));
|
|
|
|
auto ptt_vs22_vs22_1_true = TensorType::create({}, {}, vs22, vs22, true);
|
|
auto ptt_vs22_vs22_2_true = TensorType::create({}, {}, vs22, vs22, true);
|
|
ASSERT_EQ(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_2_true));
|
|
|
|
auto ptt_vs22_vs22_1_false = TensorType::create({}, {}, vs22, vs22, false);
|
|
ASSERT_NE(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_1_false));
|
|
}
|
|
|
|
void testArgumentSpec() {
|
|
auto& CF = at::CPU(at::kFloat);
|
|
auto& CD = at::CPU(at::kDouble);
|
|
auto& GF = at::CUDA(at::kFloat);
|
|
auto& GD = at::CUDA(at::kDouble);
|
|
|
|
auto graph = jit::compile(R"JIT(
|
|
def fn(a, b, c, d, e):
|
|
return a, b, c, d, e
|
|
)JIT")
|
|
->get_function("fn")
|
|
.graph();
|
|
|
|
ArgumentSpecCreator arg_spec_creator(*graph);
|
|
|
|
auto list = createStack({var(CF, {1}, true),
|
|
var(CD, {1, 2}, false),
|
|
var(GF, {}, true),
|
|
var(GD, {4, 5, 6}, false),
|
|
undef()});
|
|
|
|
// make sure we have some non-standard strides
|
|
list[1].toTensor().transpose_(0, 1);
|
|
|
|
// same list but different backing values
|
|
auto list2 = createStack({var(CF, {1}, true),
|
|
var(CD, {1, 2}, false),
|
|
var(GF, {}, true),
|
|
var(GD, {4, 5, 6}, false),
|
|
undef()});
|
|
list2[1].toTensor().transpose_(0, 1);
|
|
|
|
|
|
ArgumentSpec a = arg_spec_creator.create(true, list);
|
|
ArgumentSpec b = arg_spec_creator.create(true, list);
|
|
ASSERT_EQ(a.hashCode(), b.hashCode());
|
|
|
|
ASSERT_EQ(a, b);
|
|
ArgumentSpec d = arg_spec_creator.create(true, list2);
|
|
ASSERT_EQ(d, a);
|
|
ASSERT_EQ(d.hashCode(), a.hashCode());
|
|
|
|
for (size_t i = 0; i < list.size(); ++i) {
|
|
ASSERT_TRUE(isEqual(a.tensorAt(i), list[i].toTensor()));
|
|
}
|
|
ArgumentSpec no_grad = arg_spec_creator.create(/*with_grad=*/false, list);
|
|
ASSERT_TRUE(no_grad != a);
|
|
|
|
std::unordered_set<ArgumentSpec> spec;
|
|
spec.insert(a); // we still need a for the test below
|
|
ASSERT_TRUE(spec.count(b) > 0);
|
|
ASSERT_EQ(spec.count(no_grad), 0);
|
|
spec.insert(std::move(no_grad));
|
|
ASSERT_EQ(spec.count(arg_spec_creator.create(true, list)), 1);
|
|
|
|
list2[1].toTensor().transpose_(0, 1);
|
|
ArgumentSpec c = arg_spec_creator.create(
|
|
true, list2); // same as list, except for one stride, used to be
|
|
// different, now the same
|
|
ASSERT_TRUE(c == a);
|
|
ASSERT_EQ(spec.count(c), 1);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|