mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This should help address https://github.com/pytorch/pytorch/issues/67002. At the end of these tests, any temp file `/dev/shm/torch_*` are cleaned up, but somehow it might take longer than 0.5s to finish causing the test to fail. So, the PR tries to increase this max waiting time to 5s while polling for the result every 0.5s as before ### Testing `pytest test_multiprocessing.py -k test_fs --verbose --flake-finder` to run `test_fs`, `test_fs_is_shared`, `test_fs_pool`, `test_fs_preserve_sharing`, and `test_fs_sharing` 50 times on a dynamo shard. All passes. Pull Request resolved: https://github.com/pytorch/pytorch/pull/91459 Approved by: https://github.com/kit1980, https://github.com/ZainRizvi, https://github.com/atalman
914 lines
32 KiB
Python
914 lines
32 KiB
Python
# Owner(s): ["module: multiprocessing"]
|
|
|
|
import contextlib
|
|
import gc
|
|
import os
|
|
import sys
|
|
import time
|
|
import unittest
|
|
import copy
|
|
from sys import platform
|
|
|
|
import torch
|
|
import torch.cuda
|
|
import torch.multiprocessing as mp
|
|
import torch.utils.hooks
|
|
from torch.nn import Parameter
|
|
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
|
|
load_tests, slowTest, TEST_WITH_TSAN, TEST_WITH_TORCHDYNAMO)
|
|
|
|
# load_tests from common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
TEST_REPEATS = 30
|
|
HAS_SHM_FILES = os.path.isdir('/dev/shm')
|
|
MAX_WAITING_TIME_IN_SECONDS = 5
|
|
TEST_CUDA_IPC = torch.cuda.is_available() and \
|
|
sys.platform != 'darwin' and \
|
|
sys.platform != 'win32'
|
|
TEST_MULTIGPU = TEST_CUDA_IPC and torch.cuda.device_count() > 1
|
|
|
|
|
|
class SubProcess(mp.Process):
|
|
def __init__(self, tensor):
|
|
super(SubProcess, self).__init__()
|
|
self.tensor = tensor
|
|
self.daemon = True
|
|
|
|
def run(self):
|
|
self.tensor.add_(3)
|
|
|
|
|
|
def _test_cuda_ipc_deadlock_actor(queue, iterations):
|
|
for i in range(iterations):
|
|
if not queue.empty():
|
|
queue.get()
|
|
time.sleep(.01)
|
|
|
|
|
|
def _test_cuda_ipc_deadlock_learner(queue, iterations):
|
|
net = torch.nn.LSTM(1, 1).cuda()
|
|
for i in range(iterations):
|
|
if not queue.full():
|
|
queue.put(copy.deepcopy(net.state_dict()))
|
|
time.sleep(.01)
|
|
|
|
|
|
def simple_fill(queue, event):
|
|
data = queue.get()
|
|
data[0][:] = 4
|
|
event.set()
|
|
|
|
|
|
def simple_pool_fill(tensor):
|
|
tensor.fill_(4)
|
|
return tensor.add(1)
|
|
|
|
|
|
def send_tensor(queue, event, device, dtype):
|
|
t = torch.ones(5, 5, device=device, dtype=dtype)
|
|
queue.put(t)
|
|
queue.put(t)
|
|
event.wait()
|
|
|
|
|
|
def send_and_delete_tensors(queue, event, device, dtype, count, size=5):
|
|
for i in range(count):
|
|
t = torch.full([size], i, device=device, dtype=dtype)
|
|
queue.put(t)
|
|
del t
|
|
event.wait()
|
|
|
|
|
|
def receive_and_send_sum(queue, out_queue, event, device, dtype, count, size=5):
|
|
s = torch.full([size], 0, device=device, dtype=dtype)
|
|
for i in range(count):
|
|
t = queue.get()
|
|
s += t
|
|
out_queue.put(s)
|
|
event.wait()
|
|
|
|
|
|
def receive_and_send(queue, out_queue, event, count):
|
|
for i in range(count):
|
|
t = queue.get()
|
|
out_queue.put(t.clone())
|
|
event.wait()
|
|
|
|
|
|
def sum_tensors(inq, outq):
|
|
with torch.cuda.device(1):
|
|
tensors = inq.get()
|
|
for tensor in tensors:
|
|
outq.put((tensor.sum().item(), tensor.get_device(),
|
|
tensor.numel(), tensor.storage().size()))
|
|
|
|
|
|
def queue_get_exception(inqueue, outqueue):
|
|
os.close(2) # hide expected error message
|
|
try:
|
|
torch.zeros(5, 5).cuda()
|
|
except Exception as e:
|
|
outqueue.put(e)
|
|
else:
|
|
outqueue.put('no exception')
|
|
|
|
|
|
# Multiply by two in a separate stream
|
|
def cuda_multiply_two(queue, ready, done):
|
|
ready.set()
|
|
with torch.cuda.stream(torch.cuda.Stream()):
|
|
cuda_event, tensor = queue.get()
|
|
cuda_event.wait()
|
|
tensor.mul_(2)
|
|
cuda_event.record()
|
|
done.set()
|
|
del cuda_event
|
|
|
|
|
|
def requires_grad_variable_sharing(queue, ready):
|
|
var = queue.get()
|
|
ready.set()
|
|
queue.put(var.requires_grad)
|
|
|
|
|
|
def integer_parameter_serialization(iparam):
|
|
iparam + 1
|
|
|
|
|
|
def autograd_sharing(queue, ready, master_modified, device, is_parameter):
|
|
var = queue.get()
|
|
ready.set()
|
|
master_modified.wait()
|
|
|
|
expected_var = torch.arange(1., 26, device=device).view(5, 5)
|
|
expected_var[0, 0] = 1000
|
|
is_ok = var.data.equal(expected_var)
|
|
var.data[:] = torch.ones(5, 5, device=device)
|
|
|
|
is_ok &= var.grad is None
|
|
is_ok &= not var._backward_hooks
|
|
if is_parameter:
|
|
is_ok &= type(var) == Parameter
|
|
else:
|
|
is_ok &= type(var) == torch.Tensor
|
|
var._grad = torch.ones(5, 5, device=device)
|
|
|
|
queue.put(is_ok)
|
|
|
|
|
|
def mixed_type_producer(queue, event):
|
|
for _ in range(10):
|
|
float_tensor = torch.ones(2, 2).float().cuda()
|
|
byte_tensor = torch.zeros(2, 2).byte().cuda()
|
|
|
|
queue.put(float_tensor)
|
|
queue.put(byte_tensor)
|
|
event.wait()
|
|
event.clear()
|
|
|
|
def simple_autograd_function(a=1):
|
|
torch.rand(3).requires_grad_(True).mean().backward()
|
|
return a ** 2
|
|
|
|
@contextlib.contextmanager
|
|
def fs_sharing():
|
|
prev_strategy = mp.get_sharing_strategy()
|
|
mp.set_sharing_strategy('file_system')
|
|
try:
|
|
yield
|
|
finally:
|
|
mp.set_sharing_strategy(prev_strategy)
|
|
|
|
|
|
class leak_checker(object):
|
|
|
|
def __init__(self, test_case):
|
|
self.checked_pids = [os.getpid()]
|
|
self.test_case = test_case
|
|
|
|
def __enter__(self):
|
|
self.next_fds = self._get_next_fds(10)
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
if torch.cuda.is_available():
|
|
torch.cuda.ipc_collect()
|
|
if args[0] is None:
|
|
# Check that the 10th available file-descriptor at the end of the
|
|
# test is no more than 4 higher than the 10th available at the
|
|
# start. This attempts to catch file descriptor leaks, but allows
|
|
# one-off initialization that may use up a file descriptor
|
|
# TODO: Disabled because this check is too flaky
|
|
# available_fds = self._get_next_fds(10)
|
|
# self.test_case.assertLessEqual(
|
|
# available_fds[-1] - self.next_fds[-1], 5)
|
|
self.test_case.assertFalse(self.has_shm_files())
|
|
return False
|
|
|
|
def check_pid(self, pid):
|
|
self.checked_pids.append(pid)
|
|
|
|
def _get_next_fds(self, n=1):
|
|
# dup uses the lowest-numbered unused descriptor for the new descriptor
|
|
fds = [os.dup(0) for i in range(n)]
|
|
for fd in fds:
|
|
os.close(fd)
|
|
return fds
|
|
|
|
def has_shm_files(self, wait=True):
|
|
if not HAS_SHM_FILES:
|
|
return False
|
|
|
|
result = self._has_shm_files()
|
|
if not result or mp.get_sharing_strategy() != 'file_system' or not wait:
|
|
return result
|
|
|
|
total_waiting_time = 0
|
|
waiting_time = 0.5
|
|
|
|
while total_waiting_time <= MAX_WAITING_TIME_IN_SECONDS and result:
|
|
time.sleep(waiting_time)
|
|
total_waiting_time += waiting_time
|
|
result = self._has_shm_files()
|
|
|
|
return result
|
|
|
|
def _has_shm_files(self):
|
|
gc.collect()
|
|
names = ['torch_' + str(pid) for pid in self.checked_pids]
|
|
for filename in os.listdir('/dev/shm'):
|
|
for name in names:
|
|
if filename.startswith(name):
|
|
return True
|
|
return False
|
|
|
|
|
|
@unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment")
|
|
class TestMultiprocessing(TestCase):
|
|
|
|
def tearDown(self):
|
|
# This will keep tests isolated from each-other
|
|
if torch.cuda.is_available():
|
|
torch.cuda.ipc_collect()
|
|
|
|
def _test_sharing(self, ctx=mp, device='cpu', dtype=torch.float, repeat=1):
|
|
def test_fill():
|
|
x = torch.zeros(5, 5).to(device, dtype)
|
|
q = ctx.Queue()
|
|
e = ctx.Event()
|
|
data = [x, x[:, 1]]
|
|
q.put(data)
|
|
p = ctx.Process(target=simple_fill, args=(q, e))
|
|
p.daemon = True
|
|
lc.check_pid(p.pid)
|
|
p.start()
|
|
e.wait(10)
|
|
self.assertTrue(e.is_set())
|
|
self.assertTrue(data[0].eq(4).all())
|
|
self.assertTrue(data[1].eq(4).all())
|
|
p.join(100)
|
|
self.assertFalse(p.is_alive())
|
|
|
|
def test_receive():
|
|
q = ctx.Queue()
|
|
e = ctx.Event()
|
|
p = ctx.Process(target=send_tensor, args=(q, e, device, dtype))
|
|
p.daemon = True
|
|
lc.check_pid(p.pid)
|
|
p.start()
|
|
t1 = q.get()
|
|
t2 = q.get()
|
|
self.assertTrue(t1.eq(1).all())
|
|
s1 = t1.storage()
|
|
s2 = t2.storage()
|
|
self.assertEqual(type(s1), type(s2))
|
|
self.assertEqual(s1.data_ptr(), s1.data_ptr())
|
|
self.assertEqual(s1, s2)
|
|
# We need to delete this tensors to allow producer (child process)
|
|
# collect them properly
|
|
del t1, t2
|
|
e.set()
|
|
p.join(100)
|
|
self.assertFalse(p.is_alive())
|
|
|
|
with leak_checker(self) as lc:
|
|
for _ in range(repeat):
|
|
test_fill()
|
|
test_receive()
|
|
|
|
def _test_preserve_sharing(self, ctx=mp, repeat=1):
|
|
def do_test():
|
|
x = torch.randn(5, 5)
|
|
data = [x.storage(), x, x[2], x[:, 1]]
|
|
q = ctx.Queue()
|
|
q.put(data)
|
|
new_data = q.get(timeout=1)
|
|
self.assertEqual(new_data, data, atol=0, rtol=0)
|
|
storage_cdata = data[0]._cdata
|
|
self.assertEqual(new_data[0]._cdata, storage_cdata)
|
|
for t in new_data[1:]:
|
|
self.assertEqual(t.storage()._cdata, storage_cdata)
|
|
|
|
with leak_checker(self):
|
|
for _ in range(repeat):
|
|
do_test()
|
|
|
|
def _test_pool(self, ctx=mp, repeat=1):
|
|
def do_test():
|
|
p = ctx.Pool(2)
|
|
for proc in p._pool:
|
|
lc.check_pid(proc.pid)
|
|
|
|
buffers = [torch.zeros(2, 2) for i in range(4)]
|
|
results = p.map(simple_pool_fill, buffers, 1)
|
|
self.assertEqual(len(results), len(buffers))
|
|
for r in results:
|
|
self.assertEqual(r, torch.ones(2, 2) * 5, atol=0, rtol=0)
|
|
for b in buffers:
|
|
self.assertEqual(b, torch.ones(2, 2) * 4, atol=0, rtol=0)
|
|
|
|
p.close()
|
|
p.join()
|
|
|
|
with leak_checker(self) as lc:
|
|
for _ in range(repeat):
|
|
do_test()
|
|
|
|
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
|
|
@unittest.skipIf(TEST_WITH_ASAN,
|
|
"seems to hang with ASAN, see https://github.com/pytorch/pytorch/issues/5326")
|
|
def test_fd_sharing(self):
|
|
self._test_sharing(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
|
|
def test_fd_preserve_sharing(self):
|
|
self._test_preserve_sharing(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
|
|
def test_fd_pool(self):
|
|
self._test_pool(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(TEST_WITH_ASAN,
|
|
"seems to hang with ASAN, see https://github.com/pytorch/pytorch/issues/5326")
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO,
|
|
"Fail to clean up temporary /dev/shm/torch_* file, see https://github.com/pytorch/pytorch/issues/91467")
|
|
def test_fs_sharing(self):
|
|
with fs_sharing():
|
|
self._test_sharing(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO,
|
|
"Fail to clean up temporary /dev/shm/torch_* file, see https://github.com/pytorch/pytorch/issues/91467")
|
|
def test_fs_preserve_sharing(self):
|
|
with fs_sharing():
|
|
self._test_preserve_sharing(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO,
|
|
"Fail to clean up temporary /dev/shm/torch_* file, see https://github.com/pytorch/pytorch/issues/91467")
|
|
def test_fs_pool(self):
|
|
with fs_sharing():
|
|
self._test_pool(repeat=TEST_REPEATS)
|
|
|
|
@unittest.skipIf(not HAS_SHM_FILES, "don't not how to check if shm files exist")
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO,
|
|
"Fail to clean up temporary /dev/shm/torch_* file, see https://github.com/pytorch/pytorch/issues/91467")
|
|
def test_fs(self):
|
|
def queue_put():
|
|
x = torch.DoubleStorage(4)
|
|
q = mp.Queue()
|
|
self.assertFalse(lc.has_shm_files())
|
|
q.put(x)
|
|
time.sleep(0.05) # queue serializes asynchronously
|
|
self.assertTrue(lc.has_shm_files(wait=False))
|
|
q.get()
|
|
|
|
with fs_sharing(), leak_checker(self) as lc:
|
|
for _ in range(TEST_REPEATS):
|
|
queue_put()
|
|
|
|
def test_inherit_tensor(self):
|
|
t = torch.zeros(5, 5)
|
|
p = SubProcess(t.share_memory_())
|
|
p.start()
|
|
p.join(2)
|
|
if p.exitcode is None:
|
|
print("test_inherit_tensor: SubProcess too slow")
|
|
else:
|
|
self.assertEqual(t, torch.ones(5, 5) * 3, atol=0, rtol=0)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Test needs to use fork multiprocessing")
|
|
def test_autograd_errors(self):
|
|
ctx = mp.get_context('fork')
|
|
simple_autograd_function()
|
|
# Autograd only uses thread when GPUs are involved
|
|
if torch.cuda.is_available() or torch.backends.mps.is_available():
|
|
with self.assertRaisesRegex(RuntimeError, r'Unable to handle autograd'):
|
|
with ctx.Pool(3) as pool:
|
|
pool.map(simple_autograd_function, [1, 2, 3])
|
|
else:
|
|
with ctx.Pool(3) as pool:
|
|
pool.map(simple_autograd_function, [1, 2, 3])
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Test needs to use spawn multiprocessing")
|
|
def test_autograd_fine_with_spawn(self):
|
|
ctx = mp.get_context('spawn')
|
|
simple_autograd_function()
|
|
with ctx.Pool(3) as pool:
|
|
pool.map(simple_autograd_function, [1, 2, 3])
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_simple(self):
|
|
torch.cuda.FloatTensor([1]) # initialize CUDA outside of leak checker
|
|
self._test_sharing(mp.get_context('spawn'), 'cuda', torch.float)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_memory_allocation(self):
|
|
ctx = mp.get_context('spawn')
|
|
q = ctx.Queue()
|
|
e = ctx.Event()
|
|
p = ctx.Process(target=send_and_delete_tensors, args=(q, e, 'cuda', torch.int, 5))
|
|
p.start()
|
|
t = []
|
|
for _ in range(5):
|
|
t.append(q.get())
|
|
self.assertEqual(t[0], torch.full([5], 0, dtype=torch.int32))
|
|
del t
|
|
e.set()
|
|
p.join(1)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_ipc_deadlock(self):
|
|
ctx = mp.get_context('spawn')
|
|
queue = ctx.Queue(1)
|
|
processes = dict(
|
|
a=ctx.Process(target=_test_cuda_ipc_deadlock_actor, args=(queue, 100)),
|
|
l=ctx.Process(target=_test_cuda_ipc_deadlock_learner, args=(queue, 100)))
|
|
|
|
for p in processes.values():
|
|
p.start()
|
|
|
|
for p in processes.values():
|
|
p.join(10)
|
|
|
|
for p in processes.values():
|
|
self.assertFalse(p.is_alive())
|
|
|
|
|
|
@slowTest
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_send_many(self, name=None, size=5, count=100000):
|
|
ctx = mp.get_context('spawn')
|
|
q1 = ctx.Queue()
|
|
q2 = ctx.Queue()
|
|
q3 = ctx.Queue()
|
|
e1 = ctx.Event()
|
|
e2 = ctx.Event()
|
|
e3 = ctx.Event()
|
|
p1 = ctx.Process(target=send_and_delete_tensors, args=(q1, e1, 'cuda', torch.long, count, size))
|
|
p2 = ctx.Process(target=receive_and_send, args=(q1, q2, e2, count))
|
|
p3 = ctx.Process(target=receive_and_send_sum, args=(q2, q3, e3, 'cuda', torch.long, count, size))
|
|
p1.start()
|
|
p2.start()
|
|
p3.start()
|
|
result = q3.get()
|
|
self.assertEqual(result[0], int(count * (count - 1) / 2))
|
|
del result
|
|
e1.set()
|
|
e2.set()
|
|
e3.set()
|
|
p1.join(1)
|
|
p2.join(1)
|
|
p3.join(1)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
@unittest.skipIf(not TEST_MULTIGPU, 'found only 1 GPU')
|
|
def test_cuda_small_tensors(self):
|
|
# Check multiple small tensors which will likely use the same
|
|
# underlying cached allocation
|
|
ctx = mp.get_context('spawn')
|
|
tensors = []
|
|
for i in range(5):
|
|
device = i % 2
|
|
tensors += [torch.arange(i * 5., (i + 1) * 5).cuda(device)]
|
|
|
|
inq = ctx.Queue()
|
|
outq = ctx.Queue()
|
|
inq.put(tensors)
|
|
p = ctx.Process(target=sum_tensors, args=(inq, outq))
|
|
p.start()
|
|
|
|
results = []
|
|
for _ in range(5):
|
|
results.append(outq.get())
|
|
p.join()
|
|
|
|
for i, _tensor in enumerate(tensors):
|
|
v, device, tensor_size, storage_size = results[i]
|
|
self.assertEqual(v, torch.arange(i * 5., (i + 1) * 5).sum())
|
|
self.assertEqual(device, i % 2)
|
|
self.assertEqual(tensor_size, 5)
|
|
|
|
# You might think this should be the case, but it's not! After
|
|
# data from the CUDA caching allocator goes through IPC, the
|
|
# size of the storage is the size of the *cached cudaMalloc for
|
|
# the entire memory block* of the storage, not just the storage.
|
|
# See Note [CUDA IPC and the caching allocator] for more info
|
|
#
|
|
# self.assertEqual(storage_size, 5)
|
|
|
|
# Collect current process (producer) files, make sure nothing holds
|
|
# ref to the sent tensors
|
|
del _tensor
|
|
del tensors
|
|
|
|
# We need to collect, as CUDA MP implementation holds one shared
|
|
# memory 'file' for performance reason
|
|
torch.cuda.ipc_collect()
|
|
|
|
@unittest.skipIf(IS_WINDOWS, 'not applicable to Windows (only fails with fork)')
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
|
|
def test_cuda_bad_call(self):
|
|
# Initialize CUDA
|
|
t = torch.zeros(5, 5).cuda().cpu()
|
|
inq = mp.Queue()
|
|
outq = mp.Queue()
|
|
p = mp.Process(target=queue_get_exception, args=(inq, outq))
|
|
p.start()
|
|
inq.put(t)
|
|
p.join()
|
|
self.assertIsInstance(outq.get(), RuntimeError)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, 'not applicable to Windows (only fails with fork)')
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
|
|
def test_wrong_cuda_fork(self):
|
|
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
|
|
import torch
|
|
from torch.multiprocessing import Process
|
|
def run(rank):
|
|
torch.cuda.set_device(rank)
|
|
if __name__ == "__main__":
|
|
size = 2
|
|
processes = []
|
|
for rank in range(size):
|
|
# it would work fine without the line below
|
|
x = torch.rand(20, 2).cuda()
|
|
p = Process(target=run, args=(rank,))
|
|
p.start()
|
|
processes.append(p)
|
|
for p in processes:
|
|
p.join()
|
|
""")
|
|
self.assertRegex(stderr, "Cannot re-initialize CUDA in forked subprocess.")
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_event(self):
|
|
ctx = mp.get_context('spawn')
|
|
queue = ctx.Queue()
|
|
ready = ctx.Event()
|
|
done = ctx.Event()
|
|
p = ctx.Process(target=cuda_multiply_two, args=(queue, ready, done))
|
|
p.start()
|
|
|
|
ready.wait()
|
|
with torch.cuda.stream(torch.cuda.Stream()):
|
|
tensor = torch.cuda.FloatTensor([1, 1, 1, 1])
|
|
# Use a sleep kernel to test events. Without the event, the
|
|
# multiply happens before the add.
|
|
event = torch.cuda.Event(interprocess=True)
|
|
torch.cuda._sleep(20000000) # about 30 ms
|
|
tensor.add_(1)
|
|
event.record()
|
|
queue.put((event, tensor))
|
|
done.wait() # must wait until subprocess records event
|
|
event.synchronize()
|
|
self.assertEqual(list(tensor), [4, 4, 4, 4])
|
|
p.join()
|
|
|
|
@staticmethod
|
|
def _test_event_multiprocess_child(event, p2c, c2p):
|
|
c2p.put(0) # notify parent child is ready
|
|
p2c.get() # wait for record in parent
|
|
event.synchronize()
|
|
c2p.put(1) # notify parent synchronization is done
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_event_multiprocess(self):
|
|
event = torch.cuda.Event(enable_timing=False, interprocess=True)
|
|
self.assertTrue(event.query())
|
|
|
|
ctx = mp.get_context('spawn')
|
|
p2c = ctx.SimpleQueue()
|
|
c2p = ctx.SimpleQueue()
|
|
p = ctx.Process(
|
|
target=TestMultiprocessing._test_event_multiprocess_child,
|
|
args=(event, p2c, c2p))
|
|
p.start()
|
|
|
|
c2p.get() # wait for until child process is ready
|
|
torch.cuda._sleep(50000000) # spin for about 50 ms
|
|
event.record()
|
|
p2c.put(0) # notify child event is recorded
|
|
|
|
self.assertFalse(event.query())
|
|
c2p.get() # wait for synchronization in child
|
|
self.assertTrue(event.query())
|
|
p.join()
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
@unittest.skipIf(not TEST_MULTIGPU, 'found only 1 GPU')
|
|
def test_event_handle_multi_gpu(self):
|
|
d0 = torch.device('cuda:0')
|
|
d1 = torch.device('cuda:1')
|
|
with torch.cuda.device(d0):
|
|
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
|
|
|
|
with torch.cuda.device(d1):
|
|
# create handle on different device from un-recorded event
|
|
e0.ipc_handle()
|
|
|
|
with torch.cuda.device(d0):
|
|
e1 = torch.cuda.Event(enable_timing=False, interprocess=True)
|
|
stream = torch.cuda.Stream()
|
|
torch.cuda._sleep(50000000) # spin for about 50 ms
|
|
e1.record(stream)
|
|
|
|
with torch.cuda.device(d1):
|
|
# create handle on different device from recorded event
|
|
e1.ipc_handle()
|
|
|
|
@staticmethod
|
|
def _test_event_handle_importer_consumer(handle, p2c, c2p):
|
|
e1 = torch.cuda.Event.from_ipc_handle(0, handle)
|
|
c2p.put(0) # notify parent child is ready
|
|
p2c.get() # wait for record in parent
|
|
e1.synchronize()
|
|
c2p.put(1) # notify synchronization is done in child
|
|
p2c.get() # wait for parent to finish before destructing child event
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_event_handle_importer(self):
|
|
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
|
|
self.assertTrue(e0.query())
|
|
|
|
ctx = mp.get_context('spawn')
|
|
p2c = ctx.SimpleQueue()
|
|
c2p = ctx.SimpleQueue()
|
|
p = ctx.Process(
|
|
target=TestMultiprocessing._test_event_handle_importer_consumer,
|
|
args=(e0.ipc_handle(), p2c, c2p))
|
|
p.start()
|
|
|
|
c2p.get() # wait for child to become ready
|
|
torch.cuda._sleep(50000000) # spin for about 50 ms
|
|
e0.record()
|
|
p2c.put(0) # notify child event is recorded
|
|
|
|
self.assertFalse(e0.query())
|
|
c2p.get() # wait for synchronization in child
|
|
self.assertTrue(e0.query())
|
|
p2c.put(1) # notify child that parent is done
|
|
p.join()
|
|
|
|
@staticmethod
|
|
def _test_event_handle_exporter_consumer(handle, p2c, c2p):
|
|
stream = torch.cuda.Stream()
|
|
with torch.cuda.stream(stream):
|
|
e1 = torch.cuda.Event.from_ipc_handle(
|
|
torch.cuda.current_device(), handle)
|
|
torch.cuda._sleep(50000000) # spin for about 50 ms
|
|
e1.record()
|
|
c2p.put(0)
|
|
# wait for parent process finished synchronization before
|
|
# destructing e1
|
|
p2c.get()
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_event_handle_exporter(self):
|
|
e0 = torch.cuda.Event(enable_timing=False, interprocess=True)
|
|
|
|
ctx = mp.get_context('spawn')
|
|
p2c = ctx.SimpleQueue()
|
|
c2p = ctx.SimpleQueue()
|
|
p = ctx.Process(
|
|
target=TestMultiprocessing._test_event_handle_exporter_consumer,
|
|
args=(e0.ipc_handle(), p2c, c2p))
|
|
p.start()
|
|
# wait for event in child process is recorded
|
|
c2p.get()
|
|
|
|
self.assertFalse(e0.query())
|
|
e0.synchronize()
|
|
self.assertTrue(e0.query())
|
|
p2c.put(0)
|
|
p.join()
|
|
|
|
def _test_empty_tensor_sharing(self, dtype, device):
|
|
q = mp.Queue()
|
|
empty = torch.tensor([], dtype=dtype, device=device)
|
|
q.put(empty)
|
|
out = q.get(timeout=1)
|
|
self.assertEqual(out, empty)
|
|
|
|
def test_empty_tensor_sharing(self):
|
|
self._test_empty_tensor_sharing(torch.float32, torch.device('cpu'))
|
|
self._test_empty_tensor_sharing(torch.int64, torch.device('cpu'))
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
|
|
def test_empty_tensor_sharing_cuda(self):
|
|
self._test_empty_tensor_sharing(torch.float32, torch.device('cuda'))
|
|
self._test_empty_tensor_sharing(torch.int64, torch.device('cuda'))
|
|
|
|
def _test_autograd_sharing(self, var, ctx=mp, is_parameter=False):
|
|
device = 'cuda' if var.is_cuda else 'cpu'
|
|
|
|
ready = ctx.Event()
|
|
master_modified = ctx.Event()
|
|
queue = ctx.Queue()
|
|
p = ctx.Process(target=autograd_sharing, args=(queue, ready, master_modified, device, is_parameter))
|
|
p.daemon = True
|
|
p.start()
|
|
|
|
# This would cause an error if we tried to serialize the hooks,
|
|
# because it's a closure and pickle doesn't support closures.
|
|
@torch.utils.hooks.unserializable_hook
|
|
def hook(*unused):
|
|
pass
|
|
|
|
if var.requires_grad:
|
|
var.register_hook(hook)
|
|
var._grad = torch.zeros(5, 5, device=device)
|
|
queue.put(var)
|
|
|
|
ready.wait()
|
|
var.data[0, 0] = 1000
|
|
var.grad.data[:] = torch.ones(5, 5, device=device) * 4
|
|
master_modified.set()
|
|
|
|
worker_ok = queue.get()
|
|
self.assertTrue(worker_ok)
|
|
|
|
self.assertEqual(var.data, torch.ones(5, 5, device=device))
|
|
self.assertEqual(var.grad.data, torch.ones(5, 5, device=device) * 4)
|
|
p.join(100)
|
|
self.assertFalse(p.is_alive())
|
|
|
|
# Check sharing a cudaMalloc allocation with different types of storage.
|
|
# (Issue #11422)
|
|
def _test_mixed_types_cuda_sharing(self, ctx=mp):
|
|
all_ones = torch.ones(2, 2).float()
|
|
all_zeros = torch.zeros(2, 2).byte()
|
|
queue = ctx.Queue()
|
|
event = ctx.Event()
|
|
|
|
p = ctx.Process(target=mixed_type_producer, args=(queue, event))
|
|
|
|
p.start()
|
|
|
|
for _ in range(10):
|
|
float_tensor = queue.get()
|
|
byte_tensor = queue.get()
|
|
self.assertEqual(float_tensor, all_ones)
|
|
self.assertEqual(byte_tensor, all_zeros)
|
|
del float_tensor, byte_tensor
|
|
event.set()
|
|
|
|
time.sleep(5)
|
|
p.join()
|
|
|
|
def test_variable_sharing(self):
|
|
for requires_grad in [True, False]:
|
|
var = torch.arange(1., 26).view(5, 5).requires_grad_(requires_grad)
|
|
self._test_autograd_sharing(var)
|
|
|
|
# See https://github.com/pytorch/pytorch/issues/14997
|
|
@unittest.skipIf(TEST_WITH_ASAN,
|
|
"non-deterministically hangs with ASAN")
|
|
def test_leaf_variable_sharing(self):
|
|
devices = ['cpu']
|
|
if torch.cuda.is_available() and not NO_MULTIPROCESSING_SPAWN and TEST_CUDA_IPC:
|
|
devices.append('cuda')
|
|
for device in devices:
|
|
for requires_grad in [True, False]:
|
|
var = torch.arange(1., 26, device=device).view(5, 5).requires_grad_(requires_grad)
|
|
self.assertTrue(var.is_leaf)
|
|
ctx = mp.get_context('spawn') if device == 'cuda' else mp
|
|
ready = ctx.Event()
|
|
queue = ctx.Queue()
|
|
p = ctx.Process(target=requires_grad_variable_sharing, args=(queue, ready))
|
|
p.daemon = True
|
|
p.start()
|
|
queue.put(var)
|
|
ready.wait()
|
|
worker_requires_grad = queue.get()
|
|
self.assertTrue(worker_requires_grad == requires_grad)
|
|
|
|
def test_non_leaf_variable_sharing(self):
|
|
devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
|
|
for device in devices:
|
|
var0 = torch.arange(1., 26, device=device).view(5, 5).requires_grad_(True)
|
|
var = var0 * 2
|
|
# Don't use a regular Queue; it uses a background thread (which
|
|
# means we can't catch the exceptions)
|
|
queue = mp.SimpleQueue()
|
|
self.assertRaisesRegex(RuntimeError, r'requires_grad', lambda: queue.put(var))
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_variable_sharing(self):
|
|
for requires_grad in [True, False]:
|
|
var = torch.arange(1., 26, device='cuda').view(5, 5).requires_grad_(requires_grad)
|
|
self._test_autograd_sharing(var, mp.get_context('spawn'))
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_mixed_types_cuda_sharing(self):
|
|
self._test_mixed_types_cuda_sharing(mp.get_context('spawn'))
|
|
|
|
def test_parameter_sharing(self):
|
|
param = Parameter(torch.arange(1., 26).view(5, 5))
|
|
self._test_autograd_sharing(param, is_parameter=True)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_cuda_parameter_sharing(self):
|
|
param = Parameter(torch.arange(1., 26, device='cuda').view(5, 5))
|
|
self._test_autograd_sharing(param, mp.get_context('spawn'), is_parameter=True)
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
def test_integer_parameter_serialization_cpu(self):
|
|
self._test_integer_parameter_serialization(device='cpu')
|
|
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(not TEST_CUDA_IPC, 'CUDA IPC not available')
|
|
def test_integer_parameter_serialization_cuda(self):
|
|
self._test_integer_parameter_serialization(device='cuda')
|
|
|
|
def _test_integer_parameter_serialization(self, device):
|
|
param = torch.nn.Parameter(
|
|
torch.tensor(0, dtype=torch.int64, device=device),
|
|
requires_grad=False
|
|
)
|
|
|
|
ctx = mp.get_context('spawn')
|
|
p = ctx.Process(target=integer_parameter_serialization, args=(param,))
|
|
p.start()
|
|
p.join()
|
|
|
|
self.assertEqual(
|
|
0, p.exitcode,
|
|
msg=f'Failed to serialize successfully for "{device}" device!'
|
|
)
|
|
|
|
def test_empty_shared(self):
|
|
t = torch.tensor([])
|
|
t.share_memory_()
|
|
|
|
def _test_is_shared(self):
|
|
t = torch.randn(5, 5)
|
|
self.assertFalse(t.is_shared())
|
|
t.share_memory_()
|
|
self.assertTrue(t.is_shared())
|
|
|
|
@unittest.skipIf(platform == 'darwin', "file descriptor strategy is not supported on macOS")
|
|
def test_is_shared(self):
|
|
self._test_is_shared()
|
|
|
|
def test_fs_is_shared(self):
|
|
with fs_sharing():
|
|
self._test_is_shared()
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
|
|
def test_is_shared_cuda(self):
|
|
t = torch.randn(5, 5).cuda()
|
|
self.assertTrue(t.is_shared())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|