Files
pytorch/torch/_inductor/codegen/cpp.py
PyTorch MergeBot dbba1d4bf5 Revert "Some minor type stub improvements (#118529)"
This reverts commit c978f38bd4aedeff4ee9ae693349217daea01412.

Reverted https://github.com/pytorch/pytorch/pull/118529 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/118529#issuecomment-1922362331))
2024-02-01 22:18:36 +00:00

3740 lines
138 KiB
Python

import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import re
import sys
from copy import copy, deepcopy
from typing import Dict, List, Optional, Set, Tuple, Union
import sympy
import torch
import torch.fx
from torch._inductor import dependencies
from torch._inductor.ir import StorageBox, TensorBox
from torch._prims_common import is_float_dtype
from torch.utils._sympy.functions import FloorDiv, ModularIndexing
from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges
from .. import codecache, config, ir, metrics
from ..codegen.wrapper import WrapperCodeGen
from ..optimize_indexing import range_expressable_in_32_bits
from ..scheduler import BaseScheduling, SchedulerNode
from ..utils import (
cache_on_self,
get_fused_kernel_name,
is_welford_reduction,
parallel_num_threads,
sympy_index_symbol,
sympy_product,
sympy_subs,
)
from ..virtualized import ops, OpsValue, V
from .common import (
BracesBuffer,
CppWrapperKernelArgs,
CSE,
CSEVariable,
DataTypePropagation,
DeferredLine,
DTYPE_TO_COMPUTATION_DTYPE,
ExprPrinter,
IndentedBuffer,
Kernel,
KernelArgs,
OpOverrides,
OptimizationContext,
)
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
DTYPE_TO_CPP = {
torch.float32: "float",
torch.float64: "double",
torch.float16: "half",
torch.int64: "long",
torch.int32: "int",
torch.int16: "short",
torch.int8: "signed char",
torch.uint64: "unsigned long",
torch.uint32: "unsigned int",
torch.uint16: "unsigned short",
torch.uint8: "unsigned char",
torch.bool: "bool",
torch.bfloat16: "bfloat16",
torch.complex64: "complex64",
torch.float8_e4m3fn: "float8_e4m3fn",
torch.float8_e5m2: "float8_e5m2",
}
DTYPE_TO_ATEN = {
torch.float32: "at::kFloat",
torch.float64: "at::kDouble",
torch.float16: "at::kHalf",
torch.int64: "at::kLong",
torch.int32: "at::kInt",
torch.int16: "at::kShort",
torch.int8: "at::kChar",
torch.uint64: "at::kUInt64",
torch.uint32: "at::kUInt32",
torch.uint16: "at::kUInt16",
torch.uint8: "at::kByte",
torch.bool: "at::kBool",
torch.bfloat16: "at::kBFloat16",
torch.complex32: "at::kComplexHalf",
torch.complex64: "at::kComplexFloat",
torch.complex128: "at::kComplexDouble",
torch.float8_e4m3fn: "at::kFloat8_e4m3fn",
torch.float8_e5m2: "at::kFloat8_e5m2",
torch.float8_e4m3fnuz: "at::kFloat8_e4m3fnuz",
torch.float8_e5m2fnuz: "at::kFloat8_e5m2fnuz",
}
DEVICE_TO_ATEN = {
"cpu": "at::kCPU",
"cuda": "at::kCUDA",
}
INDEX_TYPE = "long"
NATIVE_OMP_RTYPES = {"+", "*", "^", "||", "min", "max"}
RTYPE_TO_CPP = {
"sum": "+",
"prod": "*",
"xor_sum": "^",
"min": "min",
"max": "max",
"argmin": "argmin",
"argmax": "argmax",
"any": "||",
"welford_reduce": "welford",
"welford_combine": "welford",
}
VECTORIZABLE_RTYPES = {
"max",
"min",
"sum",
"prod",
"xor_sum",
"welford_reduce",
"welford_combine",
}
PYTHON_TO_CPP = {
"Tensor": "at::Tensor",
"int": "long",
"float": "double",
"bool": "bool",
"str": "std::string",
"ScalarType": "c10::ScalarType",
"MemoryFormat": "at::MemoryFormat",
"Layout": "at::Layout",
"Device": "at::Device",
"number": "at::Scalar",
}
CONTAINER_PYTHON_TO_CPP = {
"List": "std::vector",
"Optional": "c10::optional",
}
DTYPE_LOWP_FP = [
torch.bfloat16,
torch.float16,
]
def value_to_cpp(value, cpp_type):
if value == float("-inf"):
return f"-std::numeric_limits<{cpp_type}>::infinity()"
elif value == float("inf"):
return f"std::numeric_limits<{cpp_type}>::infinity()"
elif isinstance(value, bool):
return f"static_cast<{cpp_type}>({str(value).lower()})"
elif math.isnan(value):
return f"std::numeric_limits<{cpp_type}>::quiet_NaN()"
else:
return f"static_cast<{cpp_type}>({repr(value)})"
def reduction_init(reduction_type, dtype):
if dtype in DTYPE_LOWP_FP:
# Since load promotes all half-precision inputs to float, the initial
# constant for reduction must be promoted as well
dtype = torch.float32
if reduction_type in ("xor_sum", "sum", "any"):
return 0
if reduction_type == "prod":
return 1
if reduction_type in {"max", "argmax"}:
return (
f"-std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::min()"
)
if reduction_type in {"min", "argmin"}:
return (
f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::max()"
)
if is_welford_reduction(reduction_type):
return f"Welford<{DTYPE_TO_CPP[dtype]}>()"
raise AssertionError(reduction_type)
def reduction_init_vec(reduction_type, dtype):
scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]]
vec_type = f"at::vec::Vectorized<{scalar_type}>"
if is_welford_reduction(reduction_type):
return f"Welford<{vec_type}>()"
scalar_init = reduction_init(reduction_type, dtype)
return f"{vec_type}({scalar_init})"
def reduction_acc_type(reduction_type, dtype):
assert reduction_type not in {"argmin", "argmax"}
scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]]
if is_welford_reduction(reduction_type):
return f"Welford<{scalar_type}>"
return scalar_type
def reduction_acc_type_vec(reduction_type, dtype):
assert reduction_type not in {"argmin", "argmax"}
scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]]
vec_type = f"at::vec::Vectorized<{scalar_type}>"
if is_welford_reduction(reduction_type):
return f"Welford<{vec_type}>"
return vec_type
def reduction_combine(reduction_type, var, next_value):
if reduction_type == "sum":
return f"{var} + {next_value}"
if reduction_type == "prod":
return f"{var} * {next_value}"
if reduction_type == "xor_sum":
return f"{var} ^ {next_value}"
if reduction_type == "any":
return f"{var} || {next_value}"
if reduction_type in ("min", "max"):
return f"{reduction_type}_propagate_nan({var}, {next_value})"
if reduction_type == "welford_reduce":
return f"welford_combine({var}, {next_value})"
if reduction_type == "welford_combine":
if isinstance(next_value, tuple):
mean, m2, weight = next_value
else:
mean, m2, weight = reduction_project(reduction_type, next_value)
return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})"
raise AssertionError(reduction_type)
def reduction_combine_vec(reduction_type, var, next_value):
if reduction_type == "max":
return f"at::vec::maximum({var}, {next_value})"
elif reduction_type == "min":
return f"at::vec::minimum({var}, {next_value})"
elif reduction_type == "sum":
return f"{var} + {next_value}"
elif reduction_type == "prod":
return f"{var} * {next_value}"
elif reduction_type == "xor_sum":
return f"{var} ^ {next_value}"
elif reduction_type == "welford_reduce":
return f"welford_combine({var}, {next_value})"
elif reduction_type == "welford_combine":
if isinstance(next_value, tuple):
# When reading a value from Inductor IR we have a tuple of variable names
mean, m2, weight = next_value
else:
# When combining intermediate accumulators we have a Welford<T> struct
mean, m2, weight = reduction_project(reduction_type, next_value)
return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})"
else:
raise NotImplementedError()
def reduction_project(reduction_type, acc):
if is_welford_reduction(reduction_type):
return f"{acc}.mean", f"{acc}.m2", f"{acc}.weight"
elif reduction_type in {"argmin", "argmax"}:
return f"{acc}.index"
return acc
index_value_name_counter = 1
def argmax_argmin_prefix(reduction_type, src_dtype, tmpvar):
global index_value_name_counter
struct_name = f"IndexValue_{index_value_name_counter}"
index_value_name_counter += 1
# A small annoyance, due to it being a little cumbersome to just throw {} into strings
prefix = [
f"struct {struct_name} {{size_t index; {DTYPE_TO_CPP[src_dtype]} value;}};",
f"{struct_name} {tmpvar}{{0, {reduction_init(reduction_type, src_dtype)}}};",
]
if reduction_type in ["argmax", "argmin"]:
compare_op = "greater_or_nan" if reduction_type == "argmax" else "less_or_nan"
prefix.extend(
[
"#if !defined(__clang_major__) || __clang_major__ > 9",
f"#pragma omp declare reduction({reduction_type} : {struct_name} :\\",
f" omp_out = {compare_op}(omp_in.value, omp_out.value, omp_in.index, omp_out.index) ? omp_in : omp_out)\\",
f"\tinitializer(omp_priv = {{0, {reduction_init(reduction_type, src_dtype)}}})",
"#endif",
]
)
return prefix
@functools.lru_cache
def stride_at(index: sympy.Expr, var: sympy.Symbol):
replacement = {var: var + 1}
new_index = sympy_subs(index, replacement) # type: ignore[arg-type]
return sympy.simplify(new_index - index)
@functools.lru_cache
def simplify_index_in_vec_range(index: sympy.Expr, var: sympy.Expr, vec_length: int):
"""
Simplifies the index expression within the range of a vectorized loop.
Given a vectorized loop variable `var` in the range of a loop with `vec_length`,
this function transforms the `index` into an equivalent form. It handles
simplifications for cases where `var` can be expressed as `vec_length * a + b`,
where `b` ranges from 0 to `vec_length - 1`. The function reduces occurrences
of `FloorDiv` and `ModularIndexing` in the `index` with best-effort optimizations.
NOTE:
The simplified index expression is intended for analysis purposes only, not
for code generation. It replaces `FloorDiv` and `ModularIndexing` with free variables
which are not dependent on the loop variable `var` in the vectorized range. Check
https://github.com/pytorch/pytorch/pull/117221#discussion_r1449746217 for more details.
Examples:
1. If `var` is `x3` and `vec_length` is 16, and `x3 = 16*a + b`, then
`FloorDiv(x3, div)` or `ModularIndexing(x3, div, mod)` becomes a free variable
when `div` is divisible by 16.
2. `ModularIndexing(x3, 1, mod)` can be simplified to `x3 + c` where `c` is a free
variable when `mod` is divisible by 16.
"""
div_freevar_id = 0
mod_freevar_id = 0
def visit_indexing_div(divisor):
nonlocal div_freevar_id
result = FloorDiv(var, divisor)
if sympy.gcd(divisor, vec_length) == vec_length:
result = sympy.Symbol(f"{var}_div_c{div_freevar_id}")
div_freevar_id += 1
return result
def visit_modular_indexing(divisor, modulus):
nonlocal mod_freevar_id
result = ModularIndexing(var, divisor, modulus)
if sympy.gcd(divisor, vec_length) == vec_length:
result = sympy.Symbol(f"{var}_mod_c{mod_freevar_id}")
mod_freevar_id += 1
elif divisor == 1 and sympy.gcd(modulus, vec_length) == vec_length:
result = var + sympy.Symbol(f"{var}_mod_c{mod_freevar_id}")
mod_freevar_id += 1
return result
original_index = index
div = sympy.Wild("divisor")
if index.has(FloorDiv):
index = index.replace(FloorDiv(var, div), visit_indexing_div)
mod = sympy.Wild("modulus")
if index.has(ModularIndexing):
index = index.replace(ModularIndexing(var, div, mod), visit_modular_indexing)
index = sympy.simplify(index)
if index != original_index:
return simplify_index_in_vec_range(index, var, vec_length)
return index
@functools.lru_cache
def stride_at_vec_range(index: sympy.Expr, var: sympy.Symbol, vec_length: int):
index_vec_simplified = simplify_index_in_vec_range(index, var, vec_length)
return stride_at(index_vec_simplified, var)
class CppPrinter(ExprPrinter):
def _print_Integer(self, expr):
return f"{int(expr)}L"
def _print_Where(self, expr):
c = self.paren(self.doprint(expr.args[0]))
p = self.paren(self.doprint(expr.args[1]))
q = self.paren(self.doprint(expr.args[2]))
return f"{c} ? {p} : {q}"
def _print_ModularIndexing(self, expr):
x, div, mod = expr.args
x = self.paren(self.doprint(x))
if div != 1:
div = self.paren(self.doprint(div))
if expr.is_integer:
x = f"c10::div_floor_integer({x}, {div})"
else:
x = f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
mod = self.paren(self.doprint(mod))
return f"static_cast<{INDEX_TYPE}>({x}) % static_cast<{INDEX_TYPE}>({mod})"
def _print_FloorDiv(self, expr):
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
if expr.is_integer:
return f"c10::div_floor_integer({x}, {div})"
return f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
def _print_floor(self, expr):
assert len(expr.args) == 1
r = f"std::floor({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_Pow(self, expr):
# Uses float constants to perform FP div
base, exp = expr.args
base = self._print(base)
if exp == 0.5 or exp == -0.5:
return f"std::sqrt({base})" if exp == 0.5 else f"1.0/std::sqrt({base})"
assert exp.is_integer
exp = int(exp)
if exp > 0:
r = "*".join([self.paren(base)] * exp)
elif exp < 0:
r = "1.0/" + self.paren("*".join([self.paren(base)] * abs(exp)))
else: # exp == 0
r = "1.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_Rational(self, expr):
# Uses float constants to perform FP div
if expr.q == 1:
r = f"{expr.p}"
else:
r = f"{expr.p}.0/{expr.q}.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_ceiling(self, expr):
assert len(expr.args) == 1
r = f"std::ceil({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_Min(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::min({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::min({il})"
def _print_Max(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::max({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::max({il})"
def _print_Abs(self, expr):
assert len(expr.args) == 1
return f"std::abs({self._print(expr.args[0])})"
def _print_cos(self, expr):
assert len(expr.args) == 1
return f"std::cos({self._print(expr.args[0])})"
def _print_cosh(self, expr):
assert len(expr.args) == 1
return f"std::cosh({self._print(expr.args[0])})"
def _print_acos(self, expr):
assert len(expr.args) == 1
return f"std::acos({self._print(expr.args[0])})"
def _print_sin(self, expr):
assert len(expr.args) == 1
return f"std::sin({self._print(expr.args[0])})"
def _print_sinh(self, expr):
assert len(expr.args) == 1
return f"std::sinh({self._print(expr.args[0])})"
def _print_asin(self, expr):
assert len(expr.args) == 1
return f"std::asin({self._print(expr.args[0])})"
def _print_tan(self, expr):
assert len(expr.args) == 1
return f"std::tan({self._print(expr.args[0])})"
def _print_tanh(self, expr):
assert len(expr.args) == 1
return f"std::tanh({self._print(expr.args[0])})"
def _print_atan(self, expr):
assert len(expr.args) == 1
return f"std::atan({self._print(expr.args[0])})"
def _print_Round(self, expr):
assert len(expr.args) == 1
return f"std::lrint({self._print(expr.args[0])})"
def _print_RoundDecimal(self, expr):
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
return f"static_cast<double>(std::nearbyint(1e{ndigits} * {self.paren(self._print(number))}) * 1e{-ndigits})"
# A function to print, useful for printing sympy symbols.
cexpr = CppPrinter().doprint
def cexpr_index(index):
return f"static_cast<{INDEX_TYPE}>({cexpr(index)})"
class RecordOptimizationContext:
def __init__(self, func_name: str = ""):
self.func_name = func_name
self.current_node: Optional[torch.fx.Node] = None
self.opt_ctx: Optional[OptimizationContext] = None
def __enter__(self):
assert V.interpreter
assert V.interpreter.current_node
self.current_node = V.interpreter.current_node
assert self.current_node is not None
if OptimizationContext.key in self.current_node.meta:
self.opt_ctx = self.current_node.meta[OptimizationContext.key]
else:
self.opt_ctx = OptimizationContext()
assert self.opt_ctx is not None
self.opt_ctx.ops_name = self.func_name
return self
def __exit__(self, exc_type, exc_val, exc_tb):
assert self.current_node
assert self.opt_ctx
self.current_node.meta[OptimizationContext.key] = self.opt_ctx
def get_opt_ctx(self):
return self.opt_ctx
def get_fx_node(self):
assert self.current_node
return self.current_node
def get_opt_ctx(node: torch.fx.Node) -> OptimizationContext:
return node.meta.get(OptimizationContext.key, None)
def get_current_node_opt_ctx() -> OptimizationContext:
assert V.interpreter.current_node
return get_opt_ctx(V.interpreter.current_node)
class CppCSEVariable(CSEVariable):
def __init__(self, name, bounds: ValueRanges):
super().__init__(name, bounds)
self.is_vec = False
self.dtype: Optional[torch.dtype] = None
self.dependent_itervars: Set[sympy.Symbol] = set()
def update_on_args(self, name, args, kwargs):
if name == "load":
# args[1] is index
self._set_dependent_itervars(args[1])
else:
# propagate relevant itervars and is_vec from args
self.dependent_itervars.update(
*[
arg.dependent_itervars
for arg in args
if isinstance(arg, CppCSEVariable)
]
)
if name == "index_expr":
self._set_dependent_itervars(args[0])
if any(arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)):
self.is_vec = True
# NOTE [dtype of CppCSEVariable]
# Deciding dtype according to the current optimization context is not
# always accurate since the dtypes are initialized during dtype propagation
# at the beginning of the codegen. It is possible that some ops are invoked
# during the codegen of the current op and take different dtypes from the
# current op.
# TODO(jgong5): A more accurate way of deciding the dtype of the variables is to
# propagate the dtypes here inside `update_on_args`.
if (
hasattr(V.interpreter, "current_node")
and get_current_node_opt_ctx() is not None
):
self.dtype = get_current_node_opt_ctx().dtype
def _set_dependent_itervars(self, index: sympy.Expr):
"""
Set the relevant itervars for this variable based on the `index` expression.
This includes the itervars directly used in the `index` as well as relevant itervars
of other cse variables used in the `index`.
"""
for s in index.free_symbols:
if s in V.kernel.itervars:
self.dependent_itervars.add(s) # type: ignore[arg-type]
elif s.name in V.kernel.cse.varname_map: # type: ignore[attr-defined]
self.dependent_itervars.update(
V.kernel.cse.varname_map[s.name].dependent_itervars # type: ignore[attr-defined]
)
def depends_on(self, itervar: sympy.Symbol):
return itervar in self.dependent_itervars
class CppOverrides(OpOverrides):
"""Map element-wise ops to C++"""
@staticmethod
def add(a, b):
return f"decltype({a})({a} + {b})"
@staticmethod
def sub(a, b):
return f"decltype({a})({a} - {b})"
@staticmethod
def mul(a, b):
return f"decltype({a})({a} * {b})"
@staticmethod
def to_dtype(x, dtype, src_dtype=None):
assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP"
return f"c10::convert<{DTYPE_TO_CPP[dtype]}>({x})"
@staticmethod
def to_dtype_bitcast(x, dtype, src_dtype):
assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP"
if src_dtype in (torch.float16, torch.bfloat16):
# c10::bit_cast requires the source and target have the bitwidth.
# Because the input tensor's dtype could be promoted, e.g. from float16 to
# float, we have to cast the tensor to its original source dtype before
# invoking bit_cast. We also need to convert the bit-casted tensor
# back to float to make sure we keep using higher precision values
# for the rest of the computation.
cast_x = f"c10::convert<{DTYPE_TO_CPP[src_dtype]}>({x})"
cast_x = f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({cast_x})"
return f"c10::convert<{DTYPE_TO_CPP[torch.float32]}>({cast_x})"
else:
return f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({x})"
@staticmethod
def abs(x):
return f"std::abs({x})"
@staticmethod
def sin(x):
return f"std::sin({x})"
@staticmethod
def cos(x):
return f"std::cos({x})"
@staticmethod
def neg(x):
return f"decltype({x})(-{x})"
@staticmethod
def exp(x):
# return f"Sleef_expf_u10({x})"
return f"std::exp({x})"
@staticmethod
def exp2(x):
return f"std::exp2({x})"
@staticmethod
def expm1(x):
return f"std::expm1({x})"
@staticmethod
def erf(x):
return f"std::erf({x})"
@staticmethod
def erfc(x):
return f"std::erfc({x})"
@staticmethod
def erfinv(x):
return f"calc_erfinv({x})"
@staticmethod
def sqrt(x):
return f"std::sqrt({x})"
@staticmethod
def rsqrt(x):
return f"1 / std::sqrt({x})"
@staticmethod
def log1p(x):
bug = config.cpp.inject_log1p_bug_TESTING_ONLY
if bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"std::log1p({x})"
else:
raise AssertionError(
f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def tan(x):
return f"std::tan({x})"
@staticmethod
def tanh(x):
return f"std::tanh({x})"
@staticmethod
def signbit(x):
return f"std::signbit({x})"
@staticmethod
def pow(a, b):
return f"std::pow({a}, {b})"
@staticmethod
def log(x):
return f"std::log({x})"
@staticmethod
def round(x):
return f"std::nearbyint({x})"
@staticmethod
def floor(x):
return f"std::floor({x})"
@staticmethod
def floordiv(a, b):
# a and b are integer type
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})"
@staticmethod
def ceil(x):
return f"std::ceil({x})"
@staticmethod
def trunc(x):
return f"std::trunc({x})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
return f"{a} / {b}"
@staticmethod
def fmod(a, b):
return f"std::fmod({a}, {b})"
@staticmethod
def isinf(x):
return f"std::isinf({x})"
@staticmethod
def isnan(x):
return f"std::isnan({x})"
@staticmethod
def lgamma(x):
return f"std::lgamma({x})"
@staticmethod
def acos(x):
return f"std::acos({x})"
@staticmethod
def acosh(x):
return f"std::acosh({x})"
@staticmethod
def cosh(x):
return f"std::cosh({x})"
@staticmethod
def sinh(x):
return f"std::sinh({x})"
@staticmethod
def asin(x):
return f"std::asin({x})"
@staticmethod
def asinh(x):
return f"std::asinh({x})"
@staticmethod
def atan2(x, y):
return f"std::atan2({x}, {y})"
@staticmethod
def atan(x):
return f"std::atan({x})"
@staticmethod
def atanh(x):
return f"std::atanh({x})"
@staticmethod
def copysign(x, y):
return f"std::copysign({x}, {y})"
@staticmethod
def hypot(x, y):
return f"std::hypot({x}, {y})"
@staticmethod
def log10(x):
return f"std::log10({x})"
@staticmethod
def nextafter(x, y):
return f"std::nextafter({x}, {y})"
@staticmethod
def relu(x):
bug = config.cpp.inject_relu_bug_TESTING_ONLY
if bug == "compile_error":
return "compile error!"
elif bug == "runtime_error":
return f"{x}; throw 1"
elif bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"std::max({x}, decltype({x})(0))"
else:
raise AssertionError(
f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def minimum(a, b):
return f"min_propagate_nan({a}, {b})"
@staticmethod
def maximum(a, b):
return f"max_propagate_nan({a}, {b})"
@staticmethod
def where(a, b, c):
return f"{a} ? {b} : {c}"
@staticmethod
def mod(a, b):
return f"mod({a}, {b})"
@staticmethod
def constant(val, dtype):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx and opt_ctx.dtype is not None
dtype = opt_ctx.dtype
if dtype in DTYPE_LOWP_FP:
# Since load promotes all half-precision inputs to float, constants
# must be promoted as well
dtype = torch.float32
return value_to_cpp(val, DTYPE_TO_CPP[dtype])
@staticmethod
def index_expr(expr, dtype):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx and opt_ctx.dtype is not None
dtype = opt_ctx.dtype
return ops.to_dtype(cexpr(V.kernel.rename_indexing(expr)), dtype)
@staticmethod
def masked(mask, body, other):
code = BracesBuffer()
# Write masked operation into a lambda
body_var = V.kernel.cse.newvar()
code.writeline(f"auto {body_var} = [&]")
with V.kernel.swap_buffers(code), code.indent():
result = body()
code.writeline(f"return {result};")
code.writeline(";")
V.kernel.compute.splice(code)
# Use the lambda's return type as the type of other
other_code = value_to_cpp(other, f"decltype({body_var}())")
return f"{mask} ? {body_var}() : {other_code}"
@staticmethod
def logical_and(a, b):
return f"{a} && {b}"
@staticmethod
def logical_not(a):
return f"!{a}"
@staticmethod
def logical_or(a, b):
return f"{a} || {b}"
@staticmethod
def logical_xor(a, b):
return f"{a} != {b}"
@staticmethod
def bitwise_and(a, b):
return f"decltype({a})({a} & {b})"
@staticmethod
def bitwise_not(a):
return f"decltype({a})(~{a})"
@staticmethod
def bitwise_or(a, b):
return f"decltype({a})({a} | {b})"
@staticmethod
def bitwise_xor(a, b):
return f"decltype({a})({a} ^ {b})"
@staticmethod
def bitwise_left_shift(a, b):
return f"decltype({a})({a} << {b})"
@staticmethod
def bitwise_right_shift(a, b):
return f"decltype({a})({a} >> {b})"
@staticmethod
def rand(seed: sympy.Expr, offset: sympy.Expr):
return f"normalized_rand_cpu({seed}, {offset})"
@staticmethod
def randn(seed: sympy.Expr, offset: sympy.Expr):
return f"randn_cpu({seed}, {offset})"
@staticmethod
def randint64(seed: sympy.Expr, offset: sympy.Expr, low, high):
return f"randint64_cpu({seed}, {offset}, {low}, {high})"
@staticmethod
def sigmoid(x):
return f"decltype({x})(1) / (decltype({x})(1) + std::exp(-{x}))"
@staticmethod
def sign(x):
code = BracesBuffer()
# auto tmp5 = tmp4 < 0 ? -1 : 1;
left = V.kernel.cse.newvar()
right = V.kernel.cse.newvar()
result = V.kernel.cse.newvar()
scalar_zero = f"decltype({x})(0)"
scalar_one = f"decltype({x})(1)"
code.writeline(f"auto {left} = {x} > 0 ? {scalar_one} : {scalar_zero};")
code.writeline(f"auto {right} = {x} < 0 ? {scalar_one} : {scalar_zero};")
code.writeline(f"auto {result} = {left} - {right};")
V.kernel.compute.splice(code)
return result
@staticmethod
def bessel_j0(x):
return f"bessel_j0_forward({x})"
class CppVecOverrides(CppOverrides):
"""Map element-wise ops to aten vectorization C++"""
def __new__(cls, *args, **kargs):
self = super().__new__(cls)
def wrap(func):
# `CppVecKernel` generates both scalar ops and vector ops according to
# whether the inputs are scalars or vectors while all ops in `CppVecOverrides`
# (except for some ops explained below) assume the inputs are vectors. We wrap the ops in
# `CppVecOverrides` to broadcast scalar inputs to vectors if needed or fallback to
# `CppOverrides` when all inputs are scalars.
#
# Notes on ops handled separately in their own functions:
# `ops.masked`:
# needs recursive handling of masked body.
# `ops.index_expr`:
# needs to further analyze the dependency of the index expression on
# the tiling itervar.
def wrapper(*args, **kwargs):
has_scalar = any(
not arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)
)
has_vector = any(
arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)
)
new_args = list(args)
if has_scalar and has_vector:
# broadcast scalar args to vector if needed
new_args = []
for arg in args:
if isinstance(arg, CppCSEVariable) and not arg.is_vec:
assert isinstance(V.kernel, CppVecKernel)
new_arg = V.kernel.broadcast(arg)
new_args.append(new_arg)
else:
new_args.append(arg)
if has_vector:
return func(*new_args, **kwargs)
else:
# fallback to scalar ops
scalar_ops = super(CppVecOverrides, self)
scalar_func = getattr(
scalar_ops, func.__name__, scalar_ops.__getattr__(func.__name__) # type: ignore[attr-defined]
)
assert scalar_func is not None
return scalar_func(*args, **kwargs)
return wrapper
for name, method in vars(CppVecOverrides).items():
if getattr(method, "__class__", None) == staticmethod and name not in [
"masked",
"index_expr",
]:
setattr(self, name, wrap(method.__func__))
return self
@staticmethod
def add(a, b):
return f"{a} + {b}"
@staticmethod
def sub(a, b):
return f"{a} - {b}"
@staticmethod
def mul(a, b):
return f"{a} * {b}"
@staticmethod
def truediv(a, b):
return f"{a} / {b}"
@staticmethod
def abs(x):
return f"{x}.abs()"
@staticmethod
def sin(x):
return f"{x}.sin()"
@staticmethod
def cos(x):
return f"{x}.cos()"
@staticmethod
def exp(x):
return f"{x}.exp()"
@staticmethod
def exp2(x):
return f"{x}.exp2()"
@staticmethod
def expm1(x):
# decompose for a better performance
vec_one = f"decltype({x})(1)"
return f"{x}.exp() - {vec_one}"
@staticmethod
def erf(x):
return f"{x}.erf()"
@staticmethod
def erfc(x):
return f"{x}.erfc()"
@staticmethod
def erfinv(x):
return f"{x}.erfinv()"
@staticmethod
def sqrt(x):
return f"{x}.sqrt()"
@staticmethod
def eq(x, y):
return f"to_float_mask({x} == {y})"
@staticmethod
def ne(x, y):
return f"to_float_mask({x} != {y})"
@staticmethod
def lt(x, y):
return f"to_float_mask({x} < {y})"
@staticmethod
def gt(x, y):
return f"to_float_mask({x} > {y})"
@staticmethod
def le(x, y):
return f"to_float_mask({x} <= {y})"
@staticmethod
def ge(x, y):
return f"to_float_mask({x} >= {y})"
@staticmethod
def and_(x, y):
return f"{x} & {y}"
@staticmethod
def rsqrt(x):
return f"{x}.rsqrt()"
@staticmethod
def pow(a, b):
return f"{a}.pow({b})"
@staticmethod
def log(x):
return f"{x}.log()"
@staticmethod
def round(x):
return f"{x}.round()"
@staticmethod
def floor(x):
return f"{x}.floor()"
@staticmethod
def ceil(x):
return f"{x}.ceil()"
@staticmethod
def trunc(x):
return f"{x}.trunc()"
@staticmethod
def fmod(a, b):
return f"{a}.fmod({b})"
@staticmethod
def lgamma(x):
return f"{x}.lgamma()"
@staticmethod
def logical_and(a, b):
return f"({a} != 0) & ({b} != 0)"
@staticmethod
def logical_not(a):
return f"{a} == 0"
@staticmethod
def logical_or(a, b):
return f"({a} != 0) | ({b} != 0)"
@staticmethod
def logical_xor(a, b):
return f"({a} != 0) ^ ({b} != 0)"
@staticmethod
def tan(a):
return f"{a}.tan()"
@staticmethod
def tanh(a):
vec_one = f"decltype({a})(1)"
vec_two = f"decltype({a})(2)"
vec_minus_two = f"decltype({a})(-2)"
return f"{vec_two} / ({vec_one} + ({vec_minus_two} * {a}).exp()) - {vec_one}"
@staticmethod
def reciprocal(a):
return f"{a}.reciprocal()"
@staticmethod
def atan(x):
return f"{x}.atan()"
@staticmethod
def acos(x):
return f"{x}.acos()"
@staticmethod
def asin(x):
return f"{x}.asin()"
@staticmethod
def cosh(x):
return f"{x}.cosh()"
@staticmethod
def sinh(x):
return f"{x}.sinh()"
@staticmethod
def log10(x):
return f"{x}.log10()"
@staticmethod
def nextafter(x):
return f"{x}.nextafter()"
@staticmethod
def copysign(a, b):
return f"{a}.copysign({b})"
@staticmethod
def atan2(a, b):
return f"{a}.atan2({b})"
@staticmethod
def hypot(a, b):
return f"{a}.hypot({b})"
@staticmethod
def atanh(x):
# For real x, atanh(x) = 1/2 * log((1+x)/(1-x))
vec_one = f"decltype({x})(1)"
vec_one_half = f"decltype({x})(0.5)"
return f"{vec_one_half} * (({vec_one} + {x})/({vec_one} - {x})).log()"
@staticmethod
def asinh(x):
# For real x, asinh(x) = log(x + sqrt(1 + x**2))
vec_one = f"decltype({x})(1)"
return f"({x} + ({vec_one} + {x}*{x}).sqrt()).log()"
@staticmethod
def acosh(x):
return f"{x}.acosh()"
@staticmethod
def relu(x):
bug = config.cpp.inject_relu_bug_TESTING_ONLY
if bug == "compile_error":
return "compile error!"
elif bug == "runtime_error":
return f"{x}; throw 1"
elif bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"at::vec::clamp_min({x}, decltype({x})(0))"
else:
raise AssertionError(
f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}"
)
# TODO: this seems to be dead
@staticmethod
def sigmoid(x):
return f"decltype({x})(1)/(decltype({x})(1) + {x}.neg().exp())"
@staticmethod
def neg(x):
return f"{x}.neg()"
@staticmethod
def floordiv(a, b):
# a and b are integer type
_t = f"decltype({a})"
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < {_t}(0)) != ({b} < {_t}(0)) ? ({rem} != {_t}(0) ? {quot} - {_t}(1) : {quot}) : {quot})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
return f"{a} / {b}"
@staticmethod
def minimum(a, b):
return f"at::vec::minimum({a}, {b})"
@staticmethod
def maximum(a, b):
return f"at::vec::maximum({a}, {b})"
@staticmethod
def square(a):
return f"{a} * {a}"
@staticmethod
def where(a, b, c):
return f"decltype({b})::blendv({c}, {b}, {a})"
@staticmethod
def sign(x):
code = BracesBuffer()
# auto tmp5 = tmp4 < 0 ? -1 : 1;
vec_zero = f"decltype({x})(0)"
vec_one = f"decltype({x})(1)"
blendv = f"decltype({x})::blendv({vec_zero}, {vec_one}, {vec_zero} < {x})"
left = V.kernel.cse.newvar()
code.writeline(f"auto {left} = {blendv};")
# auto tmp6 = tmp4 == 0 ? 0 : tmp5;
blendv = f"decltype({x})::blendv({vec_zero}, {vec_one}, {x} < {vec_zero})"
right = V.kernel.cse.newvar()
code.writeline(f"auto {right} = {blendv};")
result = V.kernel.cse.newvar()
code.writeline(f"auto {result} = {left} - {right};")
V.kernel.compute.splice(code)
return result
@staticmethod
def to_dtype(x, dtype, src_dtype=None):
assert dtype in [
torch.bool,
torch.float,
torch.bfloat16,
torch.float16,
torch.uint8,
torch.int32,
], f"{__name__} does not support {dtype}"
node: torch.fx.Node = V.interpreter.current_node
assert node and isinstance(node, torch.fx.Node)
opt_ctx_x = get_opt_ctx(node.args[1])
assert opt_ctx_x
if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype == torch.bool:
return f"vec_convert_to_mask({x})"
if opt_ctx_x.dtype == torch.bool and dtype in (torch.float, torch.float32):
return f"mask_convert_to_float({x})"
if opt_ctx_x.dtype == torch.bool and dtype in DTYPE_LOWP_FP:
return f"mask_convert_to_lowp<{DTYPE_TO_CPP[dtype]}>({x})"
if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype in DTYPE_LOWP_FP:
return f"cvt_fp32_to_lowp_fp<{DTYPE_TO_CPP[dtype]}>({x})"
if opt_ctx_x.dtype in DTYPE_LOWP_FP and dtype in (torch.float, torch.float32):
return f"cvt_lowp_fp_to_fp32<{DTYPE_TO_CPP[opt_ctx_x.dtype]}>({x})"
if opt_ctx_x.dtype == torch.uint8 and dtype in (torch.float, torch.float32):
# Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
return f"at::vec::convert_uint8_to_float({x})"
if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype == torch.uint8:
# TODO(Leslie): Add fast path to at::vec::convert_float_to_uint8,
# if we already handle the saturation previously.
# * Pattern match of quantization op in the loop body.
# * Skip the explicit saturation and clamp inside at::vec::convert_float_to_uint8.
return f"at::vec::convert_float_to_uint8({x})"
# TODO(jgong5): support conversion for other types
# currently we only allow load/store torch.uint8 and handle conversion there
return f"({x})"
@staticmethod
def log1p(x):
bug = config.cpp.inject_log1p_bug_TESTING_ONLY
if bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"{x}.log1p()"
else:
raise AssertionError(
f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def masked(mask, body, other):
code = BracesBuffer()
var = V.kernel.cse.newvar()
with V.kernel.masked(mask) as new_mask:
code.writeline(f"auto {var} = [&]")
with V.kernel.swap_buffers(code), code.indent():
result = body()
code.writeline(f"return {result};")
code.writeline(";")
V.kernel.compute.splice(code)
body_code = f"{var}()"
body_code_vec = (
body_code if result.is_vec else f"at::vec::Vectorized<float>({body_code})"
)
other_code = value_to_cpp(other, "float")
other_code_vec = f"at::vec::Vectorized<float>({other_code})"
assert isinstance(new_mask, CppCSEVariable), new_mask
if new_mask.is_vec or result.is_vec:
type = f"decltype({body_code_vec})"
float_mask = f"to_float_mask({new_mask})"
code = BracesBuffer()
code.writeline("[&]")
with V.kernel.swap_buffers(code), code.indent():
code.writeline(f"if (all_zero({float_mask}))")
with code.indent():
code.writeline(f"return {other_code_vec};")
code.writeline("else")
with code.indent():
code.writeline(
f"return {type}::blendv({other_code_vec}, {body_code_vec}, {float_mask});"
)
code.writeline("()")
csevar = V.kernel.cse.generate(
V.kernel.compute,
code,
)
else:
csevar = V.kernel.cse.generate(
V.kernel.compute, f"{mask} ? {body_code} : {other_code}"
)
# `result` is explicitly added to the args for correct propagation
# of relevant itervars and vectorization status.
csevar.update_on_args("masked", (mask, body, other, result), {})
return csevar
@staticmethod
def index_expr(expr, dtype):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx and opt_ctx.dtype is not None
dtype = opt_ctx.dtype
assert dtype == torch.int32
assert isinstance(V.kernel, CppVecKernel)
index = V.kernel.rename_indexing(expr)
tiling_var = V.kernel.itervars[V.kernel.tiling_idx]
stride = stride_at_vec_range(index, tiling_var, V.kernel.tiling_factor)
if stride.is_number and not V.kernel.index_indirect_depends_on(
index, tiling_var
):
if stride == 0:
return CppOverrides.index_expr(expr, dtype)
value = ops.to_dtype(cexpr(index), dtype)
if isinstance(value, OpsValue):
value = value.value
csevar = V.kernel.arange(value, stride)
else:
csevar = V.kernel.load_non_contiguous(None, index, dtype, V.kernel.compute)
csevar.update_on_args("index_expr", (expr, dtype), {})
return csevar
class CppTile2DOverrides(CppVecOverrides):
@staticmethod
def index_expr(expr, dtype):
assert isinstance(V.kernel, CppTile2DKernel)
expr = V.kernel.transform_indexing(expr)
return CppVecOverrides.index_expr(expr, dtype)
class CppKernel(Kernel):
overrides = CppOverrides # type: ignore[assignment]
sexpr = cexpr
newvar_prefix = "auto "
suffix = ";"
def __init__(self, args, num_threads):
super().__init__(args)
self.call_ranges: Optional[Tuple[sympy.Expr, ...]] = None
self.ranges: List[sympy.Expr] = []
self.itervars: List[sympy.Symbol] = []
self.reduction_depth = None
self.reduction_prefix = IndentedBuffer()
self.reduction_suffix = IndentedBuffer()
self.reduction_var_map = {}
self.reduction_cse = CSE(self.newvar_prefix, self.suffix, name_prefix="tmp_acc")
self.preloads = IndentedBuffer()
self.poststores = IndentedBuffer()
self.num_threads = num_threads # num_threads the kernel specialized for
self.reduction_omp_dec: Dict[Tuple[str, str], str] = {}
@contextlib.contextmanager
def masked(self, mask):
"""Context manager to add an additional mask to loads and stores."""
prior = self._load_mask
if prior:
mask = ops.and_(mask, prior)
if isinstance(mask, OpsValue):
mask = mask.value
assert isinstance(mask, CppCSEVariable)
# see NOTE [dtype of CppCSEVariable]
# mask's dtype should be bool
mask.dtype = torch.bool
self._load_mask = mask
try:
yield mask
finally:
self._load_mask = prior
def scale_index_with_offset(
self, index: sympy.Expr, scale=1, itervar_idx=-1, offset=0
):
var = self.itervars[itervar_idx]
replacement = {var: var * scale + offset}
new_index = sympy_subs(index, replacement)
return new_index
def index_to_str(self, index: sympy.Expr) -> str:
"""
Convert an index expr to a string that can be used in cpp code.
e.g. a sympy expression "s2" may actually appear as "ks1" in the cpp kernel.
"""
return cexpr(self.rename_indexing(index))
def index_indirect_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol):
"""
Check if an index has free symbol CppCSEVariable that depends on `itervar`.
"""
return any(
self.cse.varname_map[s.name].depends_on(itervar) # type: ignore[attr-defined]
for s in index.free_symbols
if s.name in self.cse.varname_map # type: ignore[attr-defined]
and isinstance(self.cse.varname_map[s.name], CppCSEVariable) # type: ignore[attr-defined]
)
def index_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol):
return itervar in index.free_symbols or self.index_indirect_depends_on(
index, itervar
)
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
line = f"{var}[{cexpr_index(index)}]"
if V.graph.get_dtype(name) in [torch.float16]:
line = f"static_cast<float>({line})"
csevar = self.cse.generate(self.loads, line)
csevar.update_on_args("load", (name, index), {})
return csevar
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
index = self.rename_indexing(index)
if mode is None:
line = f"{var}[{cexpr_index(index)}] = {value};"
elif mode == "atomic_add":
if not config.cpp.dynamic_threads and self.num_threads == 1:
line = f"{var}[{cexpr_index(index)}] += {value};"
else:
line = f"atomic_add(&{var}[{cexpr_index(index)}], {value});"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(DeferredLine(name, line))
def reduction(self, dtype, src_dtype, reduction_type, value):
argmax_or_argmin = reduction_type in {"argmax", "argmin"}
reduction_key = src_dtype, reduction_type, value
if reduction_key in self.reduction_cse.reduction_cache:
return self.reduction_cse.reduction_cache[reduction_key]
acc = self.reduction_cse.generate(
self.loads, f"reduction {reduction_key}", write=False
)
self.reduction_var_map[acc] = reduction_type
if argmax_or_argmin:
self.reduction_prefix.writelines(
argmax_argmin_prefix(reduction_type, src_dtype, acc)
)
compare_op = (
"greater_or_nan" if reduction_type == "argmax" else "less_or_nan"
)
assert self.reduction_depth is not None
index = self.itervars[self.reduction_depth]
for i in range(self.reduction_depth + 1, len(self.itervars)):
index = index * self.ranges[i] + self.itervars[i]
self.stores.writelines(
[
f"if(!({compare_op}({acc}.value, {value}, {acc}.index, {cexpr_index(index)}))) {{",
f" {acc}.index = {cexpr_index(index)}; {acc}.value = {value};",
"}",
],
)
else:
acc_type = reduction_acc_type(reduction_type, dtype)
if (reduction_type, acc_type) not in self.reduction_omp_dec:
if RTYPE_TO_CPP[reduction_type] not in NATIVE_OMP_RTYPES:
# Scalar reduction for other reductions are declared by default
self.reduction_prefix.splice(
f"""\
#pragma omp declare reduction(\
{RTYPE_TO_CPP[reduction_type]}:{acc_type}:\
omp_out = {reduction_combine(reduction_type, "omp_out", "omp_in")}) \
initializer(omp_priv={{{reduction_init(reduction_type, dtype)}}})
"""
)
self.reduction_omp_dec[reduction_type, acc_type] = RTYPE_TO_CPP[
reduction_type
]
self.reduction_prefix.writeline(
f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};"
)
self.stores.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, value)};"
)
result = reduction_project(reduction_type, acc)
self.reduction_cse.reduction_cache[reduction_key] = result
return result
def store_reduction(self, name, index, value):
index = self.rename_indexing(index)
var = self.args.output(name)
self.reduction_suffix.writeline(
DeferredLine(name, f"{var}[{cexpr_index(index)}] = {value};")
)
def set_ranges(self, lengths, reduction_lengths):
if self.call_ranges:
assert self.call_ranges == tuple(lengths) + tuple(
reduction_lengths
), f"{self.call_ranges} == {tuple(lengths)} + {tuple(reduction_lengths)}"
assert self.reduction_depth == len(lengths)
else:
self.call_ranges = tuple(lengths) + tuple(reduction_lengths)
self.ranges = [self.rename_indexing(x) for x in self.call_ranges]
self.itervars = [
sympy_index_symbol(f"x{n}") for n in range(len(self.ranges))
]
self.reduction_depth = len(lengths)
return (
self.itervars[: self.reduction_depth],
self.itervars[self.reduction_depth :],
)
def size_hint(self):
return V.graph.sizevars.size_hint(
sympy_product(self.call_ranges), fallback=8192
)
def codegen_loops_impl(self, loop_nest, code, worksharing):
threads = parallel_num_threads()
assert self.call_ranges is not None
par_depth = self.decide_parallel_depth(
self.call_ranges[: loop_nest.max_parallel_depth()], threads
)
with contextlib.ExitStack() as stack:
if par_depth:
if loop_nest.is_reduction_only():
# need to close the worksharing scope to define reduction vars outside it
worksharing.close()
else:
worksharing.parallel(threads)
loop_nest.mark_parallel(par_depth)
elif threads > 1:
if worksharing.single():
stack.enter_context(code.indent())
def gen_kernel(kernel):
with contextlib.ExitStack() as stack:
assert kernel
if hasattr(kernel, "codegen_inner_loops"):
code.splice(kernel.preloads)
kernel.codegen_inner_loops(code)
stack.enter_context(code.indent())
code.splice(kernel.loads)
code.splice(kernel.compute)
code.splice(kernel.stores)
if hasattr(kernel, "codegen_inner_loops"):
code.splice(kernel.poststores)
def get_reduction_code_buffer(loops, is_suffix=True):
for loop in loops:
for kernel in loop.get_kernels():
if is_suffix:
return kernel.reduction_suffix
else:
return kernel.reduction_prefix
return None
def gen_loops(loops: List[LoopLevel], in_reduction=False):
with contextlib.ExitStack() as stack_outer:
if loops:
loop = loops[0]
if loop.is_reduction() and not in_reduction:
reduction_prefix = get_reduction_code_buffer(
loops, is_suffix=False
)
if reduction_prefix:
stack_outer.enter_context(code.indent())
code.splice(reduction_prefix)
if loop_nest.is_reduction_only() and loop.parallel:
worksharing.parallel(threads)
for loop in loops:
gen_loop(loop, in_reduction)
if loops:
loop = loops[0]
if loop_nest.is_reduction_only() and loop.parallel:
worksharing.close()
if loop.is_reduction() and not in_reduction:
code.splice(
get_reduction_code_buffer(loops, is_suffix=True)
)
def gen_loop(loop: LoopLevel, in_reduction=False):
with contextlib.ExitStack() as stack:
loop_lines = loop.lines()
if loop_lines is None:
return
code.writelines(loop_lines)
stack.enter_context(code.indent())
# generate inner loops or loop body
if loop.inner:
gen_loops(loop.inner, loop.is_reduction())
else:
kernels = loop.get_kernels()
assert len(kernels) == 1
gen_kernel(kernels[0])
stack.enter_context(code.indent())
if loop_nest.root:
gen_loops(loop_nest.root)
else:
gen_kernel(loop_nest.kernel)
def codegen_loops(self, code, worksharing):
loop_nest = LoopNestWithSplit.build(self)
self.codegen_loops_impl(loop_nest, code, worksharing)
@property
def assert_function(self) -> str:
return "TORCH_CHECK"
def decide_parallel_depth(self, ranges, threads):
seq = self.size_hint()
par = 1
depth = 0
for expr in ranges:
hint = V.graph.sizevars.size_hint(expr, fallback=8192)
if par >= 2 * threads or par == threads:
break
if seq // threads < config.cpp.min_chunk_size:
# not enough work
break
depth += 1
par *= hint
seq /= hint
# if we assume thread number is dynamic, make sure we
# have at least one parallel scope and let OMP runtime
# to manage the serial vs. parallel.
if config.cpp.dynamic_threads and depth == 0 and len(ranges) > 0:
depth = 1
return depth
@contextlib.contextmanager
def write_to_suffix(self):
prior = (self.loads, self.compute, self.stores, self.cse)
self.loads = IndentedBuffer()
self.compute = IndentedBuffer()
self.stores = IndentedBuffer()
self.cse = self.cse.clone()
yield
self.reduction_suffix.splice(self.loads)
self.reduction_suffix.splice(self.compute)
self.reduction_suffix.splice(self.stores)
(self.loads, self.compute, self.stores, self.cse) = prior
def create_cse_var(self, *args, **kwargs):
return CppCSEVariable(*args, **kwargs)
class CppVecKernel(CppKernel):
overrides = CppVecOverrides # type: ignore[assignment]
def __init__(
self,
args,
num_threads,
tiling_factor=0,
tiling_idx=-1,
tiling_dtype=torch.float,
):
super().__init__(args, num_threads)
assert codecache.pick_vec_isa()
if tiling_factor == 0:
tiling_factor = codecache.pick_vec_isa().nelements(dtype=tiling_dtype)
self.tiling_factor = tiling_factor
self.tiling_idx = tiling_idx
metrics.generated_cpp_vec_kernel_count += 1
def _get_vec_load_line(
self,
var: str,
index: sympy.Expr,
dtype: torch.dtype,
load_mask: Optional[CppCSEVariable] = None,
):
"""
Get a load line str that loads a vector from `var` at `index` of type `dtype`.
If `load_mask` is not None, we do a masked load accordingly.
Notes on the `dtype`:
1. We always load `self.tiling_factor` number of elements regardless of the `dtype`.
It means we load half of the vector lanes for 16-bit data types and quarter of the
vector lanes for 8-bit data types.
2. `torch.bool` and `torch.uint8` could mean masks and we load them as float mask vectors.
"""
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx is not None
load_mask_str = f"to_float_mask({load_mask})" if load_mask else None
loadbuf = f"{var} + {cexpr_index(index)}" if index != 0 else var
if dtype == torch.uint8 and opt_ctx.is_load_uint8_as_float:
line = (
f"masked_load({loadbuf}, {load_mask_str})"
if load_mask_str
else f"at::vec::Vectorized<uint8_t>::loadu_one_fourth({loadbuf})"
)
elif opt_ctx.is_load_as_mask:
line = f"flag_to_float_vec({loadbuf})"
elif dtype in DTYPE_LOWP_FP:
line = (
f"masked_load({loadbuf}, {load_mask_str})"
if load_mask_str
else f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>::loadu({loadbuf}, {self.tiling_factor})"
)
else:
line = (
f"masked_load({loadbuf}, {load_mask_str})"
if load_mask_str
else f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>::loadu({loadbuf})"
)
return line
def load_non_contiguous(
self,
var: Optional[str],
index: sympy.Expr,
dtype: torch.dtype,
buffer: Optional[IndentedBuffer] = None,
) -> CppCSEVariable:
"""
Load a vector in a non-contiguous way. The vector is initialized from an array that is
filled in an inner loop over the tiling factor.
:param var: buffer to load from, i.e. `var[transformed(index)]`. If None, we load the index
as index expression, i.e. `transformed(index)`.
:param index: index into the `var` or the index expression by its own if `var` is None.
The `index` could contain indirect indexing or the tiling itervar. When used in
the inner loop, the index is transformed as follows:
1. the index is linearized along the tiling dim.
2. the indirect indexing vector variables are transformed into arrays over the tiling dim.
:param dtype: data type of `var` or `index` if `var` is None.
:param buffer: the code buffer to write the generated code to. If None, we write to `self.loads`.
:return: a CppCSEVariable that represents the loaded vector.
"""
if buffer is None:
buffer = self.loads
def get_result_size(dtype: torch.dtype) -> int:
assert dtype.itemsize <= 4
return self.tiling_factor * (4 // dtype.itemsize)
def vec_to_array(vec_var: CppCSEVariable) -> CppCSEVariable:
assert vec_var.is_vec
code = BracesBuffer()
code.writeline("[&]")
with self.swap_buffers(code), code.indent():
vec_dtype = vec_var.dtype
assert vec_dtype is not None
if vec_dtype == torch.bool:
vec_dtype = torch.float
result_size = get_result_size(vec_dtype)
code.writeline(
f"__at_align__ std::array<{DTYPE_TO_CPP[vec_dtype]}, {result_size}> tmpbuf;"
)
line = f"{vec_var}.store(tmpbuf.data());"
code.writeline(line)
code.writeline("return tmpbuf;")
code.writeline("()")
csevar = self.cse.generate(buffer, code)
assert isinstance(csevar, CppCSEVariable)
return csevar
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx is not None
is_mask = opt_ctx.is_load_as_mask
code = BracesBuffer()
code.writeline("[&]")
with self.swap_buffers(code), code.indent():
result_type = "float" if is_mask else f"{DTYPE_TO_CPP[dtype]}"
result_size = get_result_size(dtype)
result_declare = (
f"__at_align__ std::array<{result_type}, {result_size}> tmpbuf;"
)
code.writeline(result_declare)
itervar_inner = sympy_index_symbol(
f"{self.itervars[self.tiling_idx]}_inner"
)
replacements = {}
for indirect_var in (
self.cse.varname_map[s.name] # type: ignore[attr-defined]
for s in index.free_symbols
if s.name.startswith("tmp") # type: ignore[attr-defined]
):
assert isinstance(indirect_var, CppCSEVariable)
if indirect_var.is_vec:
array_var = vec_to_array(indirect_var)
replacements[indirect_var] = f"{array_var}[{itervar_inner}]"
load_mask = None
if self._load_mask is not None:
assert isinstance(self._load_mask, CppCSEVariable), self._load_mask
if self._load_mask.is_vec:
load_mask = (
f"vector_lane_mask_check({self._load_mask}, {itervar_inner})"
)
else:
load_mask = f"{self._load_mask} != 0"
index = sympy_subs(index, replacements) # type: ignore[arg-type]
index = self.scale_index_with_offset(
index, itervar_idx=self.tiling_idx, offset=itervar_inner
)
if codecache.is_gcc():
code.writeline(f"#pragma GCC unroll {self.tiling_factor}")
else:
code.writeline(f"#pragma unroll {self.tiling_factor}")
code.writeline(
f"for (long {itervar_inner} = 0; {itervar_inner} < {self.tiling_factor}; {itervar_inner}++)"
)
with code.indent(), contextlib.ExitStack() as stack:
rhs = (
f"{var}[{cexpr_index(index)}]"
if var is not None
else f"{cexpr_index(index)}"
)
if is_mask:
rhs = f"flag_to_float_scalar({rhs})"
if load_mask:
code.writeline(f"if ({load_mask})")
stack.enter_context(code.indent())
code.writeline(f"tmpbuf[{itervar_inner}] = {rhs};")
load_line = self._get_vec_load_line("tmpbuf.data()", 0, dtype) # type: ignore[arg-type]
code.writeline(f"return {load_line};")
code.writeline("()")
csevar = self.cse.generate(buffer, code)
assert isinstance(csevar, CppCSEVariable)
csevar.is_vec = True
return csevar
def load(self, name: str, index: sympy.Expr):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
var = self.args.input(name)
index = self.rename_indexing(index)
dtype = V.graph.get_dtype(name)
tiling_var = self.itervars[self.tiling_idx]
stride = stride_at_vec_range(index, tiling_var, self.tiling_factor)
if stride == 0:
# load scalar and lazily broadcast it on demand
return super().load(name, index)
non_contiguous = stride != 1 or self.index_indirect_depends_on(
index, tiling_var
)
if non_contiguous:
csevar = self.load_non_contiguous(var, index, dtype)
else:
line = self._get_vec_load_line(var, index, dtype, self._load_mask)
csevar = self.cse.generate(self.loads, line) # type: ignore[assignment]
assert isinstance(csevar, CppCSEVariable)
csevar.update_on_args("load", (name, index), {})
csevar.is_vec = True
return csevar
def _get_vec_store_line(
self,
value: Union[str, CppCSEVariable],
var: str,
index: sympy.Expr,
dtype: torch.dtype,
):
"""
Get a store line str that stores `value` into `var` at `index` of `dtype`.
:param value: Vectorized type templaterized on `dtype`.
:param var: buffer to store into.
:index: index into the `var`.
"""
# when value's type is str (e.g., welford reduction), caller should make sure
# it is a vector
assert isinstance(value, str) or (
isinstance(value, CppCSEVariable) and value.is_vec
), value
tiling_var = self.itervars[self.tiling_idx]
assert index.has(tiling_var)
var_expr = f"{var} + {cexpr_index(index)}"
stride = stride_at_vec_range(index, tiling_var, self.tiling_factor)
non_contiguous = stride != 1 or self.index_indirect_depends_on(
index, tiling_var
)
if non_contiguous:
var_expr = "tmpbuf"
if dtype == torch.float:
line = f"{value}.store({var_expr});"
else:
line = f"{value}.store({var_expr}, {self.tiling_factor});"
if non_contiguous:
inner = sympy_index_symbol(f"{tiling_var}_inner")
new_index = self.scale_index_with_offset(
index, itervar_idx=self.tiling_idx, offset=inner
)
tmp_bufsize = (
f"{self.tiling_factor}*sizeof(float)/sizeof({DTYPE_TO_CPP[dtype]})"
)
line = (
f"{{ __at_align__ {DTYPE_TO_CPP[dtype]} tmpbuf[{tmp_bufsize}]; {line} "
f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++) "
f"{var}[{cexpr_index(new_index)}] = tmpbuf[{inner}]; }}"
)
return line
def store(self, name, index, value, mode=None):
assert "buf" in name
assert mode is None
assert isinstance(value, CppCSEVariable), value
if not value.is_vec:
# this happens when we store a scalar into a vectorized buffer like "fill"
value = self.broadcast(value)
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
var = self.args.output(name)
index = self.rename_indexing(index)
self.stores.writeline(
DeferredLine(
name,
self._get_vec_store_line(value, var, index, V.graph.get_dtype(name)),
)
)
def reduction(self, dtype, src_dtype, reduction_type, value):
assert reduction_type in {
"max",
"min",
"sum",
"prod",
"xor_sum",
"welford_reduce",
"welford_combine",
}
assert dtype == torch.float
assert src_dtype == torch.float
assert isinstance(value, CppCSEVariable), value
if not value.is_vec:
value = self.broadcast(value)
vec_ns = "at::vec"
vec = f"{vec_ns}::Vectorized<{DTYPE_TO_CPP[dtype]}>"
acc_type = reduction_acc_type(reduction_type, dtype)
acc_type_vec = reduction_acc_type_vec(reduction_type, dtype)
if (reduction_type, acc_type) not in self.reduction_omp_dec:
if RTYPE_TO_CPP[reduction_type] not in NATIVE_OMP_RTYPES:
# Scalar reduction for other reductions are declared by default
self.reduction_prefix.splice(
f"""\
#pragma omp declare reduction(\
{RTYPE_TO_CPP[reduction_type]}:{acc_type}:\
omp_out = {reduction_combine(reduction_type, "omp_out", "omp_in")}) \
initializer(omp_priv={{{reduction_init(reduction_type, dtype)}}})
"""
)
self.reduction_omp_dec[reduction_type, acc_type] = RTYPE_TO_CPP[
reduction_type
]
if (reduction_type, acc_type_vec) not in self.reduction_omp_dec:
self.reduction_prefix.splice(
f"""\
#pragma omp declare reduction(\
{RTYPE_TO_CPP[reduction_type]}:{acc_type_vec}:\
omp_out = {reduction_combine_vec(reduction_type, "omp_out", "omp_in")}) \
initializer(omp_priv={{{reduction_init_vec(reduction_type, dtype)}}})
"""
)
self.reduction_omp_dec[reduction_type, acc_type_vec] = RTYPE_TO_CPP[
reduction_type
]
reduction_key = src_dtype, reduction_type, value
if reduction_key in self.reduction_cse.reduction_cache:
return self.reduction_cse.reduction_cache[reduction_key]
acc = self.reduction_cse.generate(
self.loads, f"reduction {reduction_key}", write=False
)
acc_vec = f"{acc}_vec"
self.reduction_var_map[acc_vec] = reduction_type
self.reduction_prefix.writeline(
f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};"
)
self.reduction_prefix.writeline(
f"{acc_type_vec} {acc_vec} = {reduction_init_vec(reduction_type, dtype)};"
)
self.stores.writeline(
f"{acc_vec} = {reduction_combine_vec(reduction_type, acc_vec, value)};"
)
tmpvar: Union[str, CSEVariable]
if self.tiling_idx >= self.reduction_depth:
# Horizontal reduction
if is_welford_reduction(reduction_type):
next_value = f"welford_vec_reduce_all({acc_vec})"
else:
reduce_all_body = (
"{ return "
+ reduction_combine_vec(reduction_type, "x", "y")
+ "; }"
)
vec_reduce_all_func = f"{vec_ns}::vec_reduce_all<{DTYPE_TO_CPP[dtype]}>"
next_value = f"{vec_reduce_all_func}([]({vec}& x, {vec}& y) {reduce_all_body}, {acc_vec})"
self.reduction_suffix.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, next_value)};"
)
tmpvar = acc
else:
tmpvar = acc_vec
result = reduction_project(reduction_type, tmpvar)
self.reduction_cse.reduction_cache[reduction_key] = result
return result
def store_reduction(self, name, index, value):
index = self.rename_indexing(index)
var = self.args.output(name)
out_dtype = V.graph.get_dtype(name)
# Only float reductions are vectorized currently
dtype = torch.float
if self.tiling_idx >= self.reduction_depth:
# Horizontal reduction
self.reduction_suffix.writeline(
DeferredLine(
name,
f"{var}[{cexpr_index(index)}] = static_cast<{DTYPE_TO_CPP[out_dtype]}>({value});",
)
)
else:
# Vertical reduction
store_lines = []
if out_dtype != dtype:
if out_dtype in DTYPE_LOWP_FP and dtype == torch.float:
_lowp_fp_tmpvar_vec = f"{DTYPE_TO_CPP[out_dtype]}_{value}"
store_lines = [
DeferredLine(
name,
f"auto {_lowp_fp_tmpvar_vec} = cvt_fp32_to_lowp_fp<{DTYPE_TO_CPP[out_dtype]}>({value});",
)
]
value = _lowp_fp_tmpvar_vec
else:
raise AssertionError(
f"Unsupported reduction type from {dtype} to {out_dtype}"
)
store_lines += [
DeferredLine(
name,
self._get_vec_store_line(value, var, index, out_dtype),
)
]
self.reduction_suffix.writelines(store_lines)
def broadcast(self, scalar_var: CppCSEVariable) -> CppCSEVariable:
assert not scalar_var.is_vec
if scalar_var.dtype == torch.bool:
vec_var = self.cse.generate(
self.compute, f"to_float_mask({scalar_var.name})"
)
else:
assert scalar_var.dtype is not None
vec_var = self.cse.generate(
self.compute,
f"at::vec::Vectorized<{DTYPE_TO_CPP[scalar_var.dtype]}>({scalar_var.name})",
)
assert isinstance(vec_var, CppCSEVariable)
vec_var.dtype = scalar_var.dtype
vec_var.dependent_itervars = scalar_var.dependent_itervars
vec_var.is_vec = True
return vec_var
def arange(
self, index: Union[sympy.Expr, CppCSEVariable], stride: sympy.Symbol
) -> CppCSEVariable:
if isinstance(index, sympy.Expr):
index = cexpr(index)
else:
assert isinstance(index, CppCSEVariable)
assert not index.is_vec
csevar = self.cse.generate(
self.compute, f"at::vec::Vectorized<int32_t>::arange({index}, {stride})"
)
assert isinstance(csevar, CppCSEVariable)
csevar.dtype = torch.int32
csevar.is_vec = True
return csevar
class CppTile2DKernel(CppVecKernel):
"""
A vector kernel that handles the 2d tiles with the tile size defined in `tiling_factor` on
the inner-most loop level and one of the outer loop level (`outer_tiling_idx`). When the data
tile is accessed in a contiguous way from the outer loop axis, a transposition is applied on the
tile to make the access contiguous from the inner-most loop axis. Then, the same vectorization
logic from its parent `CppVecKernel` is leveraged for load/store/compute. The transposed tile load
and store are generated into kernel.preloads and kernel.poststores buffers.
The loop structure looks like below:
for ...
for i_outer ...
for ...
for inner_most ...
// generated by CppTile2DKernel
float tmp0[16*16]; at::vec::transpose_mxn<...>(tmp0, in_ptr0 + ..., ...); // into kernel.preloads
float tmp1[16*16]; // into kernel.preloads
for i_inner ... { // the kernel inner loop
vectorized loads/compute/stores (e.g., load tmp0, store tmp1) // into kernel.loads/compute/stores
}
at::vec::transpose_mxn(out_ptr0 + ..., tmp1, ...) // into kernel.poststores
for inner_most ... (tail)
// generated by CppVecKernel
...
for i_outer ... (tail)
for ...
for ...
// generated by CppKernel
...
"""
overrides = CppTile2DOverrides # type: ignore[assignment]
def __init__(self, args, num_threads, tiling_factor, tiling_indices, tiling_dtype):
super().__init__(
args, num_threads, tiling_factor, tiling_indices[1], tiling_dtype
)
self.tiling_indices = tiling_indices
def inner_itervar(self):
return sympy_index_symbol(f"{self.itervars[self.outer_idx]}_inner")
def need_vec_transpose(self, index):
outer_var = self.itervars[self.outer_idx]
inner_var = self.itervars[self.tiling_idx]
outer_stride = stride_at_vec_range(index, outer_var, self.tiling_factor)
inner_stride = stride_at_vec_range(index, inner_var, self.tiling_factor)
return (
self._load_mask is None # TODO: support transposition with mask
and outer_stride == 1
and index.has(inner_var)
and not inner_stride.has(inner_var)
and not inner_stride.has(outer_var)
)
def gen_transposed_tile_load_store(self, name, var, index, is_store):
# transposed tile load/store outside the kernel inner loop
dtype = V.graph.get_dtype(name)
factor = self.tiling_factor
src = f"{var} + {cexpr_index(index)}"
dst = "__place_holder__"
ld_src = f"{cexpr_index(stride_at_vec_range(index, self.itervars[self.tiling_idx], self.tiling_factor))}"
ld_dst = f"{factor}"
if is_store:
src, dst = dst, src
ld_src, ld_dst = ld_dst, ld_src
need_define = True
load_or_store = f"at::vec::transpose_mxn<{DTYPE_TO_CPP[dtype]},{factor},{factor}>({src}, {ld_src}, {dst}, {ld_dst});"
if is_store:
tile_var = self.cse.newvar()
elif load_or_store not in self.cse.cache:
tile_var = self.cse.generate(self.preloads, load_or_store, write=False)
else:
need_define = False
tile_var = self.cse.cache[load_or_store]
if need_define:
define_line = f"{DTYPE_TO_CPP[dtype]} {tile_var}[{factor}*{factor}] __attribute__ ((aligned ({factor})));"
self.preloads.writeline(define_line)
load_or_store = load_or_store.replace("__place_holder__", str(tile_var))
if is_store:
self.poststores.writeline(DeferredLine(name, load_or_store))
else:
self.preloads.writeline(load_or_store)
return tile_var
def load(self, name: str, index: sympy.Expr):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
var = self.args.input(name)
index = self.rename_indexing(index)
inner = self.inner_itervar()
if self.need_vec_transpose(index):
tile_var = self.gen_transposed_tile_load_store(
name, var, index, is_store=False
)
# vector load inside the kernel inner loop
loadbuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}"
dtype = V.graph.get_dtype(name)
line = self._get_vec_load_line(loadbuf, 0, dtype) # type: ignore[arg-type]
csevar = self.cse.generate(self.loads, line)
csevar.update_on_args("load", (name, index), {})
assert isinstance(csevar, CppCSEVariable)
csevar.is_vec = True
return csevar
else:
new_index = self.transform_indexing(index)
return super().load(name, new_index)
def store(self, name, index, value, mode=None):
assert "buf" in name
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
var = self.args.output(name)
inner = self.inner_itervar()
index = self.rename_indexing(index)
assert mode is None
if self.need_vec_transpose(index):
tile_var = self.gen_transposed_tile_load_store(
name, var, index, is_store=True
)
# vector store inside the kernel inner loop
storebuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}"
if V.graph.get_dtype(name) in DTYPE_LOWP_FP:
line = f"{value}.store({storebuf}, {self.tiling_factor});"
elif V.graph.get_dtype(name) in [torch.uint8]:
line = f"{value}.store({storebuf}, {self.tiling_factor});"
else:
line = f"{value}.store({storebuf});"
self.stores.writeline(DeferredLine(name, line))
else:
new_index = self.transform_indexing(index)
super().store(name, new_index, value, mode)
def codegen_inner_loops(self, code):
inner = self.inner_itervar()
code.writeline(
f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++)"
)
def set_ranges(self, group, reduction_group):
vars = super().set_ranges(group, reduction_group)
# do vertical reduction as the tail loop
self.outer_idx, self.tiling_idx = (
self.tiling_indices
if self.tiling_indices[1] < self.reduction_depth
else reversed(self.tiling_indices)
)
return vars
def transform_indexing(self, index: sympy.Expr) -> sympy.Expr:
return self.scale_index_with_offset(
index,
itervar_idx=self.outer_idx,
offset=self.inner_itervar(),
)
class CppVecKernelChecker(CppVecKernel):
def __init__(self, args, num_threads, tiling_factor, tiling_idx=-1):
super().__init__(args, num_threads, tiling_factor, tiling_idx)
# Since this kernel is only for checker but does not generate any
# code, so we need to decrease the kernel count.
metrics.generated_kernel_count -= 1
metrics.generated_cpp_vec_kernel_count -= 1
# Used to record the graph wrapper code as the wrapper_code status could be
# changed during graph run.
self._orig_wrapper_code = None
self.simd_vec = True
self.fast_vec_list = []
for k, v in CppVecOverrides.__dict__.items():
if isinstance(v, staticmethod):
self.fast_vec_list.append(k)
self.exit_stack = contextlib.ExitStack()
# Cache all the load result
self.load_supported_dtypes: List[torch.dtype] = [
torch.float,
torch.bfloat16,
torch.float16,
torch.bool,
torch.uint8,
]
self.store_supported_dtypes: List[torch.dtype] = [
torch.float,
torch.bfloat16,
torch.float16,
torch.uint8,
]
# Cache the dtypes of the store operation. If the store is mixing dtypes, the
# vectorization would not support it as it is hard to determine the vec dtype
self.store_dtypes: List[torch.dtype] = []
# The dtype is used for vectorization
self.vec_dtype: torch.dtype = torch.float32
def disable_vec(self, msg=None):
if schedule_log.isEnabledFor(logging.DEBUG):
schedule_log.debug("Disabled vectorization: %s", msg)
self.simd_vec = False
def is_mask(self, name: str, users: Dict[torch.fx.Node, None]):
load_type = V.graph.get_dtype(name)
if load_type == torch.bool:
return all(user.target in ("where", "masked") for user in users.keys())
elif load_type == torch.uint8:
"""
If the load value is torch.uint8, then we only support the loaded
value is as the mask.
"""
if not all(
user.target == "to_dtype" and user.args[-1] == torch.bool
for user in users.keys()
):
return False
for to_dtype_node in users.keys():
assert to_dtype_node.target == "to_dtype"
if not all(
user.target in ("where", "masked")
for user in to_dtype_node.users.keys()
):
return False
return True
else:
return False
def is_load_uint8_as_float(self, name: str, users: Dict[torch.fx.Node, None]):
"""
Check:
1. load_type is torch.uint8
2. has 1 user node of target to_dtype
3. dtype of to_dtype is torch.float
"""
load_type = V.graph.get_dtype(name)
if load_type is not torch.uint8:
return False
if len(users) == 1:
user = next(iter(users))
if (user.target == "to_dtype") and (user.args[-1] == torch.float):
return True
return False
return False
def can_store_fp32_as_uint8(self, store_var: str, value_node: torch.fx.Node):
"""
Check:
1. store_type is torch.uint8
2. value_node is of target to_dtype
3. dtype of to_dtype node is torch.uint8
"""
store_type = V.graph.get_dtype(store_var)
if store_type not in [torch.uint8]:
return False
if value_node.target == "to_dtype" and value_node.args[-1] == torch.uint8:
return True
return False
def is_load_integer_scalar_tensor(self, name: str, index: sympy.Expr):
load_dtype = V.graph.get_dtype(name)
buffer = V.graph.get_buffer(name)
return (
load_dtype in [torch.int32, torch.int64]
and isinstance(buffer, TensorBox)
and isinstance(buffer.data, StorageBox)
and (len(buffer.data.layout.size) == 0)
and (index == 0)
)
def load(self, name: str, index: sympy.Expr):
with RecordOptimizationContext(__name__) as node_ctx:
load_dtype = V.graph.get_dtype(name)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = load_dtype
opt_ctx.is_load_as_mask = self.is_mask(name, node_ctx.get_fx_node().users)
opt_ctx.is_load_uint8_as_float = self.is_load_uint8_as_float(
name, node_ctx.get_fx_node().users
)
var = self.cse.newvar()
if len(self.itervars) == 0:
self.disable_vec("not a loop")
return var
if load_dtype in [torch.bool, torch.uint8] and not (
opt_ctx.is_load_as_mask or opt_ctx.is_load_uint8_as_float
):
if not opt_ctx.is_load_as_mask:
self.disable_vec(f"{load_dtype} not loaded as mask")
elif not opt_ctx.is_load_uint8_as_float:
self.disable_vec(f"{load_dtype} not loaded as float")
return var
if (
(load_dtype not in self.load_supported_dtypes)
and not self.is_load_integer_scalar_tensor(name, index)
and index.has(self.itervars[self.tiling_idx])
):
self.disable_vec(f"{load_dtype} not supported by load")
return var
return var
def store(self, name, index, value, mode=None):
with RecordOptimizationContext(__name__) as node_ctx:
if len(self.itervars) == 0:
self.disable_vec("not a loop")
return self.simd_vec
store_dtype = V.graph.get_dtype(name)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = store_dtype
store_dtype = torch.float if store_dtype == torch.float32 else store_dtype
self.store_dtypes.append(store_dtype)
if store_dtype not in self.store_supported_dtypes:
self.disable_vec(f"{store_dtype} not supported by store")
return self.simd_vec
if store_dtype in [torch.uint8]:
value_node = node_ctx.get_fx_node().all_input_nodes[-1]
if not self.can_store_fp32_as_uint8(name, value_node):
self.disable_vec("not support store float32 as uint8")
return self.simd_vec
assert "buf" in name
index = self.rename_indexing(index)
if mode:
self.disable_vec(f"store mode: {mode}")
return self.simd_vec
if index.is_number:
self.disable_vec(f"constant store index: {index}")
return self.simd_vec
def reduction(self, dtype, src_dtype, reduction_type, value):
if (
dtype == torch.float
and src_dtype == torch.float
and reduction_type in VECTORIZABLE_RTYPES
):
pass
else:
self.disable_vec(
f"reduction: dtype {dtype}, src_dtype {src_dtype}, reduction_type {reduction_type}"
)
if is_welford_reduction(reduction_type):
return tuple([self.simd_vec] * 3)
return self.simd_vec
def store_reduction(self, name, index, value):
return self.simd_vec
def is_supported_cmp(self, node: torch.fx.Node):
def get_node_dtype(node):
if type(node) == torch.fx.Node:
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
return opt_ctx.dtype if opt_ctx else None
else:
return None
def get_cmp_dtypes(node: torch.fx.Node):
return get_node_dtype(node.args[-2]), get_node_dtype(node.args[-1])
assert len(node.args) >= 2
# cmp(x, y): y is a magic value like x >= 1
if type(node.args[-1]) in [int, float]:
return True
# cmp(x, y): x is a magic value like 1 >= y
if type(node.args[-2]) in [int, float]:
return False
left_dtype, right_dtype = get_cmp_dtypes(node)
if left_dtype is None or right_dtype is None:
# TODO(Eikan): To record, deduce and propagate the data type of every expression.
return True
else:
return left_dtype == right_dtype
def __exit__(self, exc_type, exc_val, exc_tb):
assert self._orig_wrapper_code is not None
# Restore the wrapper_code
V.graph.wrapper_code = self._orig_wrapper_code
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
def __enter__(self):
# Record the graph wrapper code. The wrapper_code status could be
# changed during graph run. Regarding this checker, we also need to
# run the graph but we don't expect to change any status that would
# impact the code generation. Hence, we record the graph wrapper code
# and replace it with a dummy wrapper_code and then restore to the
# original one as long as the checker is finished.
self._orig_wrapper_code = V.graph.wrapper_code
V.graph.wrapper_code = WrapperCodeGen()
class VecCheckerProxy:
bin_cmp_ops = ["eq", "ne", "le", "ge", "lt", "gt"]
@staticmethod
def _bin_cmp_op(x, y):
current_node: torch.fx.Node = V.interpreter.current_node
if not self.is_supported_cmp(current_node):
self.disable_vec(f"binary comparison op: {current_node}")
return self.simd_vec
@staticmethod
def __getattr__(name): # type: ignore[misc]
def inner(*args, **kwargs):
if name in VecCheckerProxy.bin_cmp_ops:
return VecCheckerProxy._bin_cmp_op(args, kwargs)
if name not in self.fast_vec_list:
self.disable_vec(f"op: {name}")
return self.simd_vec
return inner
@staticmethod
def load(name: str, index: sympy.Expr):
return self.load(name, index)
@staticmethod
def store(name, index, value, mode=None):
return self.store(name, index, value, mode=mode)
@staticmethod
def reduction(dtype, src_dtype, reduction_type, value):
return self.reduction(dtype, src_dtype, reduction_type, value)
@staticmethod
def store_reduction(name, index, value):
return self.store_reduction(name, index, value)
@staticmethod
def constant(val, dtype):
with RecordOptimizationContext(__name__) as node_ctx:
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
# VecKernel override dtype for constant
# Vectorization only support int32/fp32 now
# So if dtype = int64/fp64, we will cast it to int32/fp32 if possible
i32_iinfo = torch.iinfo(torch.int32)
if (
dtype == torch.int64
and val <= i32_iinfo.max
and val >= i32_iinfo.min
):
opt_ctx.dtype = torch.int32
f32_iinfo = torch.finfo(torch.float32)
if dtype == torch.double:
if (
(val <= f32_iinfo.max and val >= f32_iinfo.min)
or (val == torch.inf)
or (val == -torch.inf)
):
opt_ctx.dtype = torch.float32
supported_dtypes = [
torch.float32,
torch.int32,
torch.bfloat16,
torch.float16,
torch.bool,
]
if opt_ctx.dtype not in supported_dtypes or (
opt_ctx.dtype == torch.int32
and not all(
user.target in VecCheckerProxy.bin_cmp_ops
for user in node_ctx.current_node.users
)
):
self.disable_vec(f"constant dtype: {opt_ctx.dtype}")
return val
@staticmethod
def index_expr(expr, dtype):
assert len(self.ranges) == len(self.itervars)
if not len(self.ranges) or not all(
not isinstance(range, sympy.Expr) or sympy.simplify(range).is_number
for range in self.ranges
):
# if the range value is sympy.Expr, we might could not deduce the accurate loop interval.
self.disable_vec(f"index_expr: {expr}, dtype {dtype}")
return self.cse.newvar()
def can_use_int32():
free_symbols = list(expr.free_symbols)
sizes = {
k: v
for k, v in zip(self.itervars, self.ranges)
if k in free_symbols
}
# Trivial case: Range empty
if any(v == 0 for v in sizes.values()):
return True
vars_ranges = {k: ValueRanges(0, v - 1) for k, v in sizes.items()}
if not vars_ranges or len(vars_ranges) != len(free_symbols):
i32_iinfo = torch.iinfo(torch.int32)
return (
expr.is_number
and expr <= i32_iinfo.max
and expr >= i32_iinfo.min
)
expr_ranges = bound_sympy(expr, vars_ranges)
if math.isinf(expr_ranges.lower) or math.isinf(expr_ranges.upper): # type: ignore[arg-type]
return False
# If something takes the values 0..7, we will compare in the loop
# x < 8. As such, for the loop not to overflow in the last iteration, we want
# to check that expr_ranges.upper + 1 is representable as well
return range_expressable_in_32_bits(
ValueRanges(
int(expr_ranges.lower), int(expr_ranges.upper) + 1 # type: ignore[arg-type]
)
)
with RecordOptimizationContext(__name__) as node_ctx:
assert len(self.ranges) == len(self.itervars)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
if (
dtype == torch.int64
and can_use_int32()
and all(
user.target in VecCheckerProxy.bin_cmp_ops
for user in node_ctx.current_node.users
)
):
opt_ctx.dtype = torch.int32
else:
opt_ctx.dtype = dtype
self.disable_vec(f"index_expr: {expr}, dtype {dtype}")
tmp_var = self.cse.newvar()
return tmp_var
@staticmethod
def indirect_indexing(index_var, size, check=True):
return sympy_index_symbol(str(index_var))
@staticmethod
def masked(mask, body, other):
body()
return self.cse.newvar()
@staticmethod
def to_dtype(x, dtype, src_dtype=None):
with RecordOptimizationContext(__name__) as node_ctx:
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = dtype
cur_node = node_ctx.get_fx_node()
input_value: torch.fx.Node = cur_node.all_input_nodes[1]
if dtype == torch.float:
if input_value.target in [
"load",
]:
# Support masked_load for BF16/FP16. Because the legalization will
# insert to_dtype to convert the BF16/FP16 input to FP32.
dtype = (
V.graph.get_dtype(input_value.args[1]) # type: ignore[arg-type]
if input_value.target == "load"
else input_value.args[-1]
)
if dtype in [
torch.float16,
torch.bfloat16,
torch.float,
torch.uint8,
]:
# Convert from dtype to torch.float
pass
elif (
dtype in [torch.int32, torch.int64]
and input_value.target == "load"
):
buffer = V.graph.get_buffer(input_value.args[1]) # type: ignore[arg-type]
# Check if load of a scalar tensor of integer
if not (
isinstance(buffer, TensorBox)
and isinstance(buffer.data, StorageBox)
and len(buffer.data.layout.size) == 0
):
self.disable_vec(f"to_dtype: dtype {dtype}")
else:
self.disable_vec(f"to_dtype: dtype {dtype}")
elif dtype in DTYPE_LOWP_FP:
if not all(usr.target == "store" for usr in cur_node.users):
self.disable_vec(
"to_dtype: bfloat16/float16 expecting users are all stores"
)
return x
store_names = [usr.args[1] for usr in cur_node.users]
if not all(
V.graph.get_dtype(name) in [dtype] for name in store_names
):
self.disable_vec(
"to_dtype: expecting all stores into bfloat16 or float16"
)
return x
elif dtype == torch.bool:
pass
elif dtype == torch.uint8:
# Only allow below 2 cases:
# Case 1: to_uint8 and store which corresponding to the single quant node
# at last of fusion pattern.
is_to_uint8_and_store = all(
usr.target in ["store"] for usr in cur_node.users
)
# Case 2: to_uint8 and to_float which corresponding to pair of quant/dequant node
# at middle of fusion pattern.
is_to_uint8_and_to_float = all(
(
usr.target in ["to_dtype"]
and usr.args[2] == torch.float32
)
for usr in cur_node.users
)
if not (is_to_uint8_and_store or is_to_uint8_and_to_float):
self.disable_vec(f"to_dtype: dtype {dtype}")
else:
self.disable_vec(f"to_dtype: dtype {dtype}")
return x
self.exit_stack.enter_context(V.set_ops_handler(VecCheckerProxy()))
self.exit_stack.enter_context(V.set_kernel_handler(self))
return self
class CppKernelProxy(CppKernel):
def __init__(self, kernel_group):
super().__init__(kernel_group.args, kernel_group.ws.num_threads)
self.kernel_group = kernel_group
self.loop_nest = None
self.call_ranges = None
self.picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa()
def data_type_propagation(self, nodes):
for _node in nodes:
assert isinstance(_node, SchedulerNode)
DataTypePropagation.propagate_scheduler_node(_node)
# Check if all the nodes of a given fx graph can support BF16/FP16
def is_lowp_fp_scheduler(self, scheduler_node: SchedulerNode):
if not isinstance(scheduler_node._body, ir.LoopBody):
return True
_lowp_fp_type: Optional[torch.dtype] = None
# Propagate the dtype to check if all the fx node is bf16/fp16
DataTypePropagation.propagate_scheduler_node(scheduler_node)
sub_blocks = [scheduler_node._body.root_block] + list(
scheduler_node._body.subblocks.values()
)
for sub_block in sub_blocks:
for _node in sub_block.graph.nodes:
# TODO(Eikan): Regarding get_index and index_expr, we should conclude the
# the data type as well.
if _node.op == "placeholder" or _node.target in (
"get_index",
"index_expr",
):
continue
# Fast path if all operations can support bf16/fp16 without converting to fp32
if _node.target not in [
"load",
"store",
"abs",
"neg",
"output",
]:
return False
if hasattr(_node, "meta") and _node.meta:
assert OptimizationContext.key in _node.meta
opt_ctx: OptimizationContext = _node.meta[OptimizationContext.key]
if not opt_ctx.dtype or opt_ctx.dtype not in DTYPE_LOWP_FP:
return False
if _lowp_fp_type:
assert (
_lowp_fp_type == opt_ctx.dtype
), "scheduler node do not support bf16/fp16 mix"
else:
_lowp_fp_type = opt_ctx.dtype
else:
return False
scheduler_node._lowp_fp_type = _lowp_fp_type # type: ignore[attr-defined]
return True
def legalize_lowp_fp_dtype(self, nodes):
def add_to_dtype(sub_graph: torch.fx.Graph):
def is_lowp_fp_load(node: torch.fx.Node):
if node.target not in ["load"]:
return False
assert len(node.args) == 3
load_dtype = V.graph.get_dtype(node.args[1]) # type: ignore[arg-type]
return load_dtype in DTYPE_LOWP_FP
def is_lowp_fp_store(node: torch.fx.Node):
if node.target != "store":
return False
_, store_var, _, _, _ = node.args
store_dtype = V.graph.get_dtype(store_var) # type: ignore[arg-type]
return store_dtype in DTYPE_LOWP_FP
sub_graph_nodes = list(sub_graph.nodes)
to_lowp_fp_legalized_nodes = []
for _node in sub_graph_nodes:
if is_lowp_fp_load(_node):
# No need to promote to float if all users are direct stores
if all(user.target == "store" for user in _node.users):
continue
ops = _node.args[0]
with sub_graph.inserting_after(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, _node, torch.float)
)
to_type_node_args = to_type_node.args
_node.replace_all_uses_with(to_type_node)
to_type_node.args = to_type_node_args
metrics.cpp_to_dtype_count += 1
elif is_lowp_fp_store(_node):
ops, name, _, value_var, _ = _node.args
# No need to promote to float if it is a user of a load which are all directly stored
if value_var.target == "load" and all(
user.target == "store" for user in value_var.users
):
continue
dtype = V.graph.get_dtype(name)
with sub_graph.inserting_before(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, value_var, dtype)
)
_node.replace_input_with(value_var, to_type_node)
metrics.cpp_to_dtype_count += 1
elif _node.target == "reduction":
(
ops,
dtype,
src_dtype,
reduction_type,
value,
) = _node.args
if src_dtype in DTYPE_LOWP_FP:
# Since we always convert the load/store value to float if the tensor is bfloat16/float16.
# Therefore, the reduction should never work with bfloat16/float16 value. Hence, we update
# the bfloat16/float16 reduction by
# 1) updating the src_dtype to float
# and 2) updating the dtype to float if it is bfloat16/float16.
assert dtype in [
torch.float,
torch.bfloat16,
torch.float16,
torch.int64,
]
_node.args = (
ops,
torch.float if dtype in DTYPE_LOWP_FP else dtype,
torch.float,
reduction_type,
value,
)
elif _node.target == "to_dtype" and _node.args[-1] in DTYPE_LOWP_FP:
(ops, x, _) = _node.args
# The legalization always loads the BF16/FP16 tensor as FP32 for computation
# and converts back to BF16/FP16 after the computation.
# Hence, there should be no computation w/ BF16/FP16.
# Therefore, we update the to_dtype by replacing the bf16/fp16 dtype with fp32.
# Save the legalized to_dtype node for the elimination(eliminate_to_dtype step):
# 1) Eliminate the redundant to_dtype node if we have a pattern as follows:
# graph():
# %lowp_fp_legalized = call_method[target=to_dtype](args = (%ops, %input, torch.float))
# %to_dtype2 = call_method[target=to_dtype](args = (%ops, %lowp_fp_legalized, torch.bfloat16/float16))
# Regarding the first to_dtype, it is redundant because
# the second to_type also converts to the torch.bfloat16/torch.float16.
# Hence, we remove the first to_type.
to_lowp_fp_legalized_nodes.append(_node)
_node.args = (ops, x, torch.float)
else:
pass
def eliminate_to_dtype(sub_graph: torch.fx.Graph):
def _eliminate_duplicate_to_node(sub_graph: torch.fx.Graph):
# Eliminate the redundant to_dtype node. Let's consider a pattern as follows:
# graph():
# %to_dtype1 = call_method[target=to_dtype](args = (%ops, %input, torch.float), kwargs = {})
# %to_dtype2 = call_method[target=to_dtype](args = (%ops, %to_dtype1, torch.float), kwargs = {})
# Regarding the first to_dtype, it is redundant because the second to_type also converts to the
# torch.float. Hence, we remove the first to_type
def _used_by_to(to_node: torch.fx.Node):
return all(usr.target == "to_dtype" for usr in to_node.users)
all_to_nodes = [
node for node in sub_graph.nodes if node.target == "to_dtype"
]
all_to_nodes_and_users = [
{node: node.users} for node in all_to_nodes if _used_by_to(node)
]
for node_users in all_to_nodes_and_users:
for node, users in node_users.items():
if node in sub_graph.nodes and (
all(usr.args[-1] == node.args[-1] for usr in users)
or (
node in to_lowp_fp_legalized_nodes
and all(
usr.args[-1] in DTYPE_LOWP_FP for usr in users
)
)
):
val_node = node.all_input_nodes[-1]
node.replace_all_uses_with(val_node)
sub_graph.erase_node(node)
# For debug mode, the graph of LoopBody will attach a new GraphModule as
# owning_module for debugging while the release mode will not. The lint will
# check whether the graph has owning_module to decide if it needs to check
# call_module. LoopBody might contain get_index as a module call. But it
# is just a function. Hence, it cannot pass the lint check for debug mode.
# We bypass the check if the owning_module is None. Eventually, we should call
# get_index via call_function but not call_module.
if sub_graph.owning_module is None:
sub_graph.lint()
_eliminate_duplicate_to_node(sub_graph)
eliminate_to_dtype(sub_graph)
def _legalize_lowp_fp(loop_body: ir.LoopBody):
sub_blocks = [loop_body.root_block] + list(loop_body.subblocks.values())
for sub_block in sub_blocks:
add_to_dtype(sub_block.graph)
if all(
isinstance(_node, SchedulerNode) and self.is_lowp_fp_scheduler(_node)
for _node in nodes
):
# Mark the load node to load bf16/fp16
for _node in nodes:
sub_blocks = [_node._body.root_block] + list(
_node._body.subblocks.values()
)
for sub_block in sub_blocks:
for fx_node in sub_block.graph.nodes:
if fx_node.target in ["load", "store"]:
assert fx_node.meta
assert OptimizationContext.key in fx_node.meta
opt_ctx: OptimizationContext = fx_node.meta[
OptimizationContext.key
]
assert opt_ctx.dtype in DTYPE_LOWP_FP
# Bypass the legalization as the kernel can run with bf16/fp16 directly
return
for _node in nodes:
assert isinstance(_node, SchedulerNode)
assert isinstance(_node._body, ir.LoopBody)
node: SchedulerNode = _node
def is_memory_copy_scheduler_node(node: SchedulerNode):
op_counts = node.read_writes.op_counts
return (
len(op_counts) == 2 and "load" in op_counts and "store" in op_counts
)
should_legalize = not is_memory_copy_scheduler_node(node)
if should_legalize:
body: ir.LoopBody = node._body
_legalize_lowp_fp(body)
def codegen_nodes(self, nodes):
# Legalize BF16 node by adding to_dtype explicitly
self.legalize_lowp_fp_dtype(nodes)
self.data_type_propagation(nodes)
assert len(nodes) >= 1
first_node = nodes[0]
vec_dtype = (
first_node._lowp_fp_type
if all(
hasattr(_node, "_lowp_fp_type")
and _node._lowp_fp_type == first_node._lowp_fp_type
for _node in nodes
)
else torch.float
)
kernel_group = self.kernel_group
_, (group, reduction_group) = max(
nodes, key=lambda x: int(x.is_reduction())
).group
self.set_ranges(group, reduction_group)
def codegen_kernel(cls, *args):
with kernel_group.new_kernel(cls, *args) as kernel:
run(kernel)
# Ugly hack to maintain the metrics kernel count since
# we only count in CppKernelProxy, not those contained in it
metrics.generated_kernel_count -= 1
return kernel
def run(kernel):
vars, reduction_vars = kernel.set_ranges(group, reduction_group)
in_suffix = False
for node in nodes:
if node.group[1] in [
(group, reduction_group),
(group + reduction_group, ()),
]:
assert not in_suffix
node.run(vars, reduction_vars)
else:
in_suffix = True
assert node.group[1] == (
group,
(),
), f"unexpected group: {node.group[1]} != {group}, {reduction_group}"
# we can fuse in some extra pointwise into the suffix
with kernel.write_to_suffix():
node.run(vars, ())
scalar_kernel = codegen_kernel(CppKernel)
V.graph.removed_buffers |= scalar_kernel.removed_buffers
V.graph.inplaced_to_remove |= scalar_kernel.inplaced_to_remove
self.loop_nest = LoopNestWithSplit.build(scalar_kernel)
if not self.picked_vec_isa:
return
def select_tiling_indices(tiling_factor):
all_index = []
for node in nodes:
rw = dependencies.extract_read_writes(node._body, *node._sizes)
all_index += [dep.index for dep in itertools.chain(rw.reads, rw.writes)]
contig_vars = set()
contig_vars_list = []
non_contig_stride_const = set()
non_contig_stride_other = set()
for index in all_index:
for var in index.free_symbols:
if not re.search(r"^d\d+$", var.name):
continue
stride = stride_at_vec_range(index, var, tiling_factor)
if stride == 0:
continue
elif stride == 1:
contig_vars.add(int(var.name[1:]))
contig_vars_list.append(int(var.name[1:]))
elif all(s.name.startswith("s") for s in stride.free_symbols):
non_contig_stride_const.add(int(var.name[1:]))
else:
non_contig_stride_other.add(int(var.name[1:]))
contig_only = (
contig_vars - non_contig_stride_const - non_contig_stride_other
)
if len(contig_vars) == 0:
# no contiguous vars
return [len(self.itervars) - 1]
if contig_only:
return sorted(contig_only)[-1:]
contig_and_const_stride = (
contig_vars & non_contig_stride_const
) - non_contig_stride_other
contig_vars_sorted = sorted(contig_vars)
if (
len(contig_vars_sorted) == 2
and contig_vars_sorted[-1] in contig_and_const_stride
and contig_vars_sorted[-1] == len(self.itervars) - 1
):
return contig_vars_sorted
return sorted(contig_vars_sorted, key=contig_vars_list.count)[-1:]
def select_tiling(dtype: torch.dtype = torch.float):
# TODO(jgong5): support alternative tiling factors and data types
tiling_factor = self.picked_vec_isa.nelements(dtype=dtype)
tiling_indices = select_tiling_indices(tiling_factor)
if tiling_indices:
could_vec = True
for tiling_indice in tiling_indices:
with CppVecKernelChecker(
deepcopy(self.kernel_group.args),
parallel_num_threads(),
tiling_factor,
tiling_indice,
) as vec_checker:
run(vec_checker)
could_vec = could_vec and vec_checker.simd_vec
if not could_vec:
break
if could_vec:
if len(tiling_indices) == 1:
return [tiling_factor], tiling_indices
if len(tiling_indices) == 2:
return [tiling_factor, tiling_factor], tiling_indices
return [], []
# Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args.
# But the generated scalar kernel has updated these global contexts. Hence, the other kernels
# should not do this again to avoid context conflict. By now, we only control the
# config.inplace_buffers. In the future, we could maintain more contexts.
with torch._inductor.config.patch(inplace_buffers=False):
tiling_factors, tiling_indices = select_tiling(vec_dtype)
assert len(tiling_factors) == len(tiling_indices)
if len(tiling_indices) == 1:
main_loop, tail_loop = self.loop_nest.split_with_tiling(
tiling_indices[0], factor=tiling_factors[0]
)
main_loop.set_kernel(
codegen_kernel(
CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype
)
)
tail_loop.set_kernel(scalar_kernel)
main_loop.simd_vec = True
tail_loop.simd_omp = True
# We chop the loop into two cubes by the nelements - main loop and tail loop.
# Regarding the main loop, it is straightforward that it could be vectorized with
# nelements. But for the tail loop, it still could be vectorized. For example,
# if the nelements is 8(256bits), then the tail loop still could be vectorized
# as 4(128bits).
tail_loop.simd_nelements = tiling_factors[0] // 2
elif len(tiling_indices) == 2:
assert (
tiling_indices[1] == len(self.itervars) - 1
and tiling_factors[0] == tiling_factors[1]
)
outer_main_loop, outer_tail_loop = self.loop_nest.split_with_tiling(
tiling_indices[0], factor=tiling_factors[0]
)
outer_tail_loop.set_kernel(scalar_kernel)
inner_main_loop, inner_tail_loop = outer_main_loop.split_with_tiling(
tiling_indices[1] - tiling_indices[0], factor=tiling_factors[0]
)
inner_main_loop.set_kernel(
codegen_kernel(
CppTile2DKernel, tiling_factors[0], tiling_indices, vec_dtype
)
)
inner_tail_loop.set_kernel(
codegen_kernel(
CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype
)
)
def codegen_loops(self, code, worksharing):
self.codegen_loops_impl(self.loop_nest, code, worksharing)
class CppScheduling(BaseScheduling):
# ctypes limits the number of args to 1024, refer to:
# https://github.com/python/cpython/commit/a285af7e626d1b81cf09f8b2bf7656f100bc1237
# We set a conservative threshold here.
MAX_FUSED_KERNEL_ARGS_NUM = 500
def __init__(self, scheduler):
self.scheduler = scheduler
self.get_kernel_group()
self._ready_to_flush = False
def _set_flush_status(self, status: bool):
self._ready_to_flush = status
def group_fn(self, sizes):
return tuple(tuple(map(V.graph.sizevars.simplify, s)) for s in sizes)
def get_kernel_group(self):
from .wrapper import CppWrapperCodeGen
self.kernel_group: Union[CppWrapperKernelGroup, KernelGroup]
if isinstance(V.graph.wrapper_code, CppWrapperCodeGen):
self.kernel_group = CppWrapperKernelGroup()
else:
self.kernel_group = KernelGroup()
def _can_fuse_horizontal_impl(self, node1, node2):
_, (vars1, reduce1) = node1.group
_, (vars2, reduce2) = node2.group
if vars1 == vars2 and reduce1 == reduce2:
return True
if reduce1 == () and vars1 == vars2 + reduce2:
return True
# TODO(jansel): allow fusion pointwise (vars1, ()) suffix?
return False
def can_fuse_horizontal(self, node1, node2):
if (
len(node1.get_nodes()) + len(node2.get_nodes())
> config.cpp.max_horizontal_fusion_size
):
return False
return self._can_fuse_horizontal_impl(node1, node2)
def can_fuse_vertical(self, node1, node2):
return self._can_fuse_horizontal_impl(node1, node2) and not node1.is_reduction()
def codegen_nodes(self, nodes):
"""
Turn an set of pre-fused nodes into a C++ kernel.
"""
kernel_group = self.kernel_group
cpp_kernel_proxy = CppKernelProxy(kernel_group)
cpp_kernel_proxy.codegen_nodes(nodes)
kernel_group.finalize_kernel(cpp_kernel_proxy, nodes)
args_num = self._get_scheduled_num_args()
if args_num > CppScheduling.MAX_FUSED_KERNEL_ARGS_NUM:
self._set_flush_status(True)
def _get_scheduled_num_args(self):
return self.kernel_group.get_num_args()
def ready_to_flush(self):
return self._ready_to_flush
def codegen_sync(self):
pass
def flush(self):
self.kernel_group.codegen_define_and_call(V.graph.wrapper_code)
self.get_kernel_group()
self._set_flush_status(False)
class KernelGroup:
def __init__(self):
super().__init__()
self.args = KernelArgs()
self.loops_code = BracesBuffer()
self.ws = WorkSharing(self.loops_code)
self.stack = contextlib.ExitStack()
self.stack.enter_context(self.ws)
self.scheduled_nodes = []
def new_kernel(self, cls, *args):
return cls(self.args, parallel_num_threads(), *args)
def finalize_kernel(self, new_kernel, nodes):
self.scheduled_nodes += nodes
code = self.loops_code
ws = self.ws
new_kernel.codegen_loops(code, ws)
def get_num_args(self):
arg_defs, call_args, arg_types = self.args.cpp_argdefs()
args_num = len(arg_defs)
return args_num
def codegen_define_and_call(self, wrapper):
self.stack.close()
if not self.scheduled_nodes:
return
fused_name = (
get_fused_kernel_name(self.scheduled_nodes, config.cpp.descriptive_names)
if config.cpp.descriptive_names
else ""
)
kernel_name = "_".join(["cpp", fused_name, wrapper.next_kernel_suffix()])
arg_defs, call_args, arg_types = self.args.cpp_argdefs()
arg_defs = ",\n".ljust(25).join(arg_defs)
code = BracesBuffer()
# TODO: support kernel profile on other platforms
enable_kernel_profile = (
config.cpp.enable_kernel_profile and sys.platform == "linux"
)
if enable_kernel_profile:
code.writelines(["#include <ATen/record_function.h>"])
kernel_decl_name = kernel_name if V.graph.cpp_wrapper else "kernel"
code.writeline(codecache.cpp_prefix())
code.writeline(f'extern "C" void {kernel_decl_name}({arg_defs})')
with code.indent():
if enable_kernel_profile:
graph_id = V.graph.graph_id
prefix = "graph_" + str(graph_id) + "_" if graph_id is not None else ""
code.writelines(
[
f'RECORD_FUNCTION("{prefix + kernel_name}", c10::ArrayRef<c10::IValue>({{}}));'
]
)
for old, new in self.args.aliases():
code.writeline(f"auto {old} = {new};")
code.splice(self.loops_code)
codecache_def = IndentedBuffer()
if not V.graph.cpp_wrapper:
codecache_def.writeline(f"async_compile.cpp_pybinding({arg_types!r}, '''")
codecache_def.splice(code)
if not V.graph.cpp_wrapper:
codecache_def.writeline("''')")
codecache_str = codecache_def.getvalue()
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
codecache_str = codecache_str.replace("#pragma CMT", "//")
wrapper.define_kernel(kernel_name, codecache_str, cuda=False)
# generate the code to call this
wrapper.generate_kernel_call(kernel_name, call_args, cuda=False)
class CppWrapperKernelGroup(KernelGroup):
def __init__(self):
super().__init__()
self.args = CppWrapperKernelArgs()
class WorkSharing:
def __init__(self, code):
self.code = code
self.in_parallel = False
self.num_threads = None
self.stack = contextlib.ExitStack()
def parallel(self, threads):
if self.in_parallel and threads != self.num_threads:
# wrong number of threads
self.close()
if not self.in_parallel:
self.num_threads = threads
self.in_parallel = True
if config.cpp.dynamic_threads:
self.code.writeline("#pragma omp parallel")
else:
self.code.writeline(f"#pragma omp parallel num_threads({threads})")
self.stack.enter_context(self.code.indent())
def single(self):
if self.in_parallel:
self.code.writeline("#pragma omp single")
return self.in_parallel
def close(self):
self.stack.close()
self.in_parallel = False
def __enter__(self):
self.stack.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stack.__exit__(exc_type, exc_val, exc_tb)
@dataclasses.dataclass
class LoopLevel:
var: Optional[sympy.Expr] = None
size: Optional[sympy.Expr] = None
offset: sympy.Expr = sympy.Integer(0)
steps: sympy.Expr = sympy.Integer(1)
parallel: int = 0
simd_omp: bool = False
simd_vec: bool = False
collapsed: bool = False
reduction_var_map: Optional[Dict[str, str]] = None
parent: Optional["LoopLevel"] = None
# the next inner level of the loop, empty if it is inner-most
# contains >1 LoopLevel if the inner level of loop is split
inner: List["LoopLevel"] = dataclasses.field(default_factory=list)
# kernel assigned to this loop level, only valid when it is a leaf
kernel: Optional[CppKernel] = None
def __post_init__(self):
# Regarding the C++/OpenMP backend, `codecache.pick_vec_isa()` to check
# vectorization ISA is a time-consuming and one-shot operation. It leads
# to taking a longer time to import `codegen.cpp` package because the
# `LoopLevel` of the package is decorated by `@dataclasses.dataclass` while
# the decorator will invoke `codecache.pick_vec_isa()` to initialize the
# `simd_nelements` of the `LoopLevel`. It might introduce additional compilation
# overhead to the Triton backend. Therefore, we moved the `simd_nelements` to
# `__post_init__`
picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa()
self.simd_nelements: int = picked_vec_isa.nelements() if picked_vec_isa else 0
def get_kernels(self) -> List[CppKernel]:
"""Get all kernel objects under this loop level"""
if self.kernel:
return [self.kernel]
kernels = []
for loop in self.inner:
kernels += loop.get_kernels()
return kernels
def set_kernel(self, kernel: CppKernel):
"""
Set the kernel under this loop level. No split is allowed under
this loop level.
"""
if not self.inner:
self.kernel = kernel
loop: Optional[LoopLevel] = self
assert loop is not None
if loop.is_reduction():
loop.reduction_var_map = kernel.reduction_var_map.copy()
loop = loop.parent
while loop is not None and loop.is_reduction():
assert loop.reduction_var_map is not None
loop.reduction_var_map.update(kernel.reduction_var_map)
loop = loop.parent
return
assert len(self.inner) == 1
self.inner[0].set_kernel(kernel)
def get_loops_at(self, depth) -> List["LoopLevel"]:
if depth == 0:
return [self]
else:
loops = []
for loop in self.inner:
loops += loop.get_loops_at(depth - 1)
return loops
def is_reduction(self):
return bool(self.reduction_var_map)
def split_with_tiling(self, depth, factor):
def clone_inner():
inner = []
if self.inner:
for loop in self.inner:
inner.append(loop.clone())
return inner
def do_split_with_tiling():
sympy_factor = sympy.Integer(factor)
offset = FloorDiv(self.size, sympy_factor) * sympy_factor
main_loop = LoopLevel(self.var, offset)
main_loop.steps = sympy_factor
main_loop.parallel = self.parallel
main_loop.collapsed = False
main_loop.reduction_var_map = self.reduction_var_map
main_loop.inner = clone_inner()
if main_loop.inner:
for loop in main_loop.inner:
loop.parent = main_loop
tail_loop = LoopLevel(self.var, self.size)
tail_loop.offset = offset
tail_loop.parallel = self.parallel
tail_loop.collapsed = False
tail_loop.reduction_var_map = self.reduction_var_map
tail_loop.inner = clone_inner()
if tail_loop.inner:
for loop in tail_loop.inner:
loop.parent = tail_loop
return main_loop, tail_loop
if depth == 0:
main_loop, tail_loop = do_split_with_tiling()
parent = self.parent
if parent:
parent.inner = [main_loop, tail_loop]
main_loop.parent = parent
tail_loop.parent = parent
return main_loop, tail_loop
else:
assert len(self.inner) == 1
return self.inner[0].split_with_tiling(depth - 1, factor)
def clone(self):
loop = copy(self)
loop.inner = []
if self.inner:
for inner_loop in self.inner:
inner_loop_clone = inner_loop.clone()
inner_loop_clone.parent = loop
loop.inner.append(inner_loop_clone)
loop.kernel = deepcopy(self.kernel)
return loop
def lines(self):
offset_expr = cexpr_index(self.offset)
size_expr = cexpr_index(self.size)
if config.cpp.no_redundant_loops and offset_expr == size_expr:
return None
if self.reduction_var_map:
reduction = " " + " ".join(
f"reduction({RTYPE_TO_CPP[rtype]}:{var})"
for var, rtype in self.reduction_var_map.items()
)
else:
reduction = ""
simd = (
f"simd simdlen({self.simd_nelements}) "
if self.simd_omp and self.simd_nelements > 1
else ""
)
if self.parallel:
# TODO(jansel): look into chunk size and other schedules
line1 = f"#pragma omp for{reduction} "
if self.parallel > 1:
line1 += f" collapse({self.parallel})"
if self.simd_omp:
line1 = line1.replace(" for ", f" for {simd}")
elif self.simd_vec:
line1 = ""
elif self.simd_omp:
line1 = f"#pragma omp {simd}{reduction}"
elif not self.reduction_var_map and codecache.is_gcc():
line1 = "#pragma GCC ivdep"
else:
line1 = ""
offset_str = f"{INDEX_TYPE} {self.var}={offset_expr}"
size_str = f"{self.var}<{size_expr}"
steps_str = f"{self.var}+={cexpr_index(self.steps)}"
line2 = f"for({offset_str}; {size_str}; {steps_str})"
if self.collapsed or not line1:
return [line2]
return [line1, line2]
@dataclasses.dataclass
class LoopNestWithSplit:
"""
A loop-nest like structure but with some loop level split along
the loop range into the main tiling loop and the tail. It is built
with the `build` method as a loop nest and then split with
`split_with_tiling` at some depth.
A typical case is for vectorization where we typically split at the inner-most
loop level. A more complicated case is 2D tiling where we split at
both inner-most and outer levels.
"""
root: Optional[List[LoopLevel]] = None
kernel: Optional[CppKernel] = None
@staticmethod
def build(kernel: CppKernel):
"""Build a LoopNest with the given `kernel` as the leaf"""
itervars = kernel.itervars
ranges = kernel.ranges
reduction_depth = kernel.reduction_depth
assert reduction_depth is not None
root: List[LoopLevel] = []
levels: List[LoopLevel] = root
loop: Optional[LoopLevel] = None
for loop_idx, (var, size) in enumerate(zip(itervars, ranges)):
loop = LoopLevel(var, size, parent=loop)
if loop_idx >= reduction_depth:
loop.reduction_var_map = kernel.reduction_var_map.copy()
levels.append(loop)
levels = loop.inner
loop_nest = LoopNestWithSplit(root)
if loop:
loop.kernel = kernel
else:
loop_nest.kernel = kernel
return loop_nest
def __bool__(self):
return bool(self.root)
def get_loops_at(self, depth) -> List[LoopLevel]:
"""Get all the loop levels at the given `depth` (most outer loop has depth 0)"""
loops: List[LoopLevel] = []
assert self.root is not None
for loop in self.root:
loops += loop.get_loops_at(depth)
return loops
@cache_on_self
def max_parallel_depth(self):
"""
Maximal allowed depth for parallelism:
1) Levels without splitting and
2) All reduction or non-reduction levels
When the loop is split at the top level, the max depth is 1.
"""
max_depth = 0
assert self.root is not None
loops = self.root
if len(loops) > 1:
return 1
is_reduction = loops[0].is_reduction() if loops else False
while len(loops) == 1 and loops[0].is_reduction() == is_reduction:
max_depth += 1
loops = loops[0].inner
return max_depth
def is_reduction_only(self):
"""
Whether all the loops are for reduction. Reduction loops
are always the inner most ones.
"""
return (
self.root is not None and len(self.root) > 0 and self.root[0].is_reduction()
)
def mark_parallel(self, par_depth):
assert (
par_depth <= self.max_parallel_depth()
), "Parallel depth cannot exceed the maximal allowed parallel depth"
assert self.root is not None
loops = self.root
for loop in loops:
loop.parallel = par_depth
for i in range(1, par_depth):
loops = loops[0].inner
loops[0].collapsed = True
def split_with_tiling(self, depth, factor):
"""
Split the loop into main and tail loops at given `depth` so that the range
of the main loop has range `floor_div(range, factor) * factor` and
the tail loop handles the remainder. The main loop is tiled
according to the `factor`.
"""
loops = self.get_loops_at(depth)
assert len(loops) == 1
split_loops = loops[0].split_with_tiling(0, factor)
if depth == 0:
self.root = split_loops
return split_loops