Files
pytorch/torch/csrc/jit/runtime/static/passes.cpp
PyTorch MergeBot dbb55b448b Revert "[7/N] Fix Wextra-semi warning (#140225)"
This reverts commit ffb979032dc149b4c895526fe5b92d713ed7b1e1.

Reverted https://github.com/pytorch/pytorch/pull/140225 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/140225#issuecomment-2469312229))
2024-11-12 00:02:06 +00:00

1460 lines
54 KiB
C++

#include <torch/csrc/jit/runtime/static/passes.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/variadic_ops.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/static/ops.h>
C10_DEFINE_bool(
enable_clip_ranges_gather_fusions,
true,
"If on, static runtime or optimize_sparse_nn_model will fuse clip ranges gather ops.");
namespace torch::jit {
bool graphHasOp(std::shared_ptr<Graph>& graph, const char* op_name) {
DepthFirstGraphNodeIterator graph_it(graph);
for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) {
const char* node_qual_string = node->kind().toQualString();
if (strcmp(node_qual_string, op_name) == 0) {
return true;
}
}
return false;
}
bool forwardHasOp(
const torch::jit::script::Module& module,
const char* op_name) {
using Method = ::torch::jit::Method;
Method method = module.get_method("forward");
auto graph = method.graph();
return graphHasOp(graph, op_name);
}
namespace {
[[maybe_unused]] void ConcatAddMulReplaceNaNClip(
std::shared_ptr<torch::jit::Graph>& graph) {
// TODO:: check restrictions for inputs; outputs not used elsewhere
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h, %i, %j):
%y0 = aten::cat(%a, %b)
%y1 = aten::add(%y0, %c, %d)
%y2 = aten::mul(%y1, %e)
%y3 = aten::nan_to_num(%y2, %f, %g, %h)
%res = aten::clamp(%y3, %i, %j)
return (%res))IR";
std::string pattern2 = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h, %i, %j):
%y0 = aten::cat(%a, %b)
%y1 = aten::add(%y0, %c, %d)
%y2 = aten::mul(%y1, %e)
%y3 = aten::nan_to_num_(%y2, %f, %g, %h)
%res = aten::clamp(%y3, %i, %j)
return (%res))IR";
std::string pattern3 = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h, %i, %j):
%y0 = aten::cat(%a, %b)
%y1 = aten::add(%y0, %c, %d)
%y2 = aten::mul(%y1, %e)
%y3 = aten::nan_to_num_(%y2, %f, %g, %h)
%res = aten::clamp_(%y3, %i, %j)
return (%res))IR";
std::string pattern4 = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h, %i, %j):
%y0 = aten::cat(%a, %b)
%y1 = aten::add(%y0, %c, %d)
%y2 = aten::mul(%y1, %e)
%y3 = aten::nan_to_num(%y2, %f, %g, %h)
%res = aten::clamp_(%y3, %i, %j)
return (%res))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h, %i, %j):
%res = fb::concat_add_mul_replacenan_clip(%c, %e, %a, %i, %j, %b)
return (%res))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
fuse.RegisterRewritePattern(pattern2, fused_pattern);
fuse.runOnGraph(graph);
fuse.RegisterRewritePattern(pattern3, fused_pattern);
fuse.runOnGraph(graph);
fuse.RegisterRewritePattern(pattern4, fused_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void CastedBatchOneHotLengths(
std::shared_ptr<torch::jit::Graph>& graph) {
// TODO:: check restrictions for inputs; outputs not used elsewhere
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g):
%y0 : Tensor = aten::to(%a, %b, %c, %c, %d)
%y1 : Tensor = fb::batch_one_hot_lengths(%y0, %e, %f)
%res : Tensor = aten::to(%y1, %g, %c, %c, %d)
return (%res))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g):
%res : Tensor = fb::casted_batch_one_hot_lengths(%a, %e, %f)
return (%res))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
std::string pattern2 = R"IR(
graph(%a, %b, %c, %d, %e, %f):
%y0 : Tensor = aten::to(%a, %b, %c, %c)
%y1 : Tensor = fb::batch_one_hot_lengths(%y0, %d, %e)
%res : Tensor = aten::to(%y1, %f, %c, %c)
return (%res))IR";
std::string fused_pattern2 = R"IR(
graph(%a, %b, %c, %d, %e, %f):
%res : Tensor = fb::casted_batch_one_hot_lengths(%a, %d, %e)
return (%res))IR";
fuse.RegisterRewritePattern(pattern2, fused_pattern2);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ConcatBatchMatMulBatchGather(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f):
%y0 : Tensor = aten::stack(%a, %b)
%y1 : Tensor = aten::transpose(%y0, %b, %c)
%y2 : Tensor = aten::bmm(%y0, %y1)
%y3 : Tensor = aten::flatten(%y2, %d, %e)
%res : Tensor = aten::index_select(%y3, %b, %f)
return (%res))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f):
%res : Tensor = fb::concat_batch_matmul_batch_gather(%f, %a)
return (%res))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
// this pattern found in several models has a redundant second `flatten`
std::string pattern_broadcast = R"IR(
graph(%a, %b, %c, %d, %e, %indices):
%y0 : Tensor = fb::broadcast_stack(%a, %b)
%y1 : Tensor = aten::transpose(%y0, %b, %c)
%y2 : Tensor = aten::matmul(%y0, %y1)
%y3 : Tensor = aten::flatten(%y2, %b, %e)
%y4 : Tensor = aten::flatten(%y3, %d, %d)
%res : Tensor = aten::index_select(%y4, %b, %indices)
return (%res))IR";
std::string fused_pattern_broadcast = R"IR(
graph(%a, %b, %c, %d, %e, %indices):
%res : Tensor = fb::broadcast_concat_batch_matmul_batch_gather(%indices, %a)
return (%res))IR";
fuse.RegisterRewritePattern(pattern_broadcast, fused_pattern_broadcast);
std::string pattern_broadcast2 = R"IR(
graph(%a, %b, %c, %d, %indices):
%y0 : Tensor = fb::broadcast_stack(%a, %b)
%y1 : Tensor = aten::transpose(%y0, %b, %c)
%y2 : Tensor = aten::matmul(%y0, %y1)
%y3 : Tensor = aten::flatten(%y2, %b, %d)
%res : Tensor = aten::index_select(%y3, %b, %indices)
return (%res))IR";
std::string fused_pattern_broadcast2 = R"IR(
graph(%a, %b, %c, %d, %indices):
%res : Tensor = fb::broadcast_concat_batch_matmul_batch_gather(%indices, %a)
return (%res))IR";
fuse.RegisterRewritePattern(pattern_broadcast2, fused_pattern_broadcast2);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesGatherRangesLengthsToOffsets(
std::shared_ptr<torch::jit::Graph>& graph) {
// TODO:: check restrictions for inputs; outputs not used elsewhere
std::string pattern = R"IR(
graph(%a, %b, %c, %d):
%y0 : Tensor = fb::clip_ranges(%b, %c)
%y1 : Tensor, %y2 : Tensor = fb::gather_ranges(%a, %y0)
%y3 : Tensor = fb::lengths_to_offsets(%y2, %d)
return (%y3, %y1))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather_lengths_to_offsets(%a, %b, %c, %d)
return (%y1, %y0))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesGather(
std::shared_ptr<torch::jit::Graph>& graph) {
// TODO:: check restrictions for inputs; outputs not used elsewhere
// fuse without lengths-to-offsets
std::string pattern = R"IR(
graph(%a, %b, %c):
%y0 : Tensor = fb::clip_ranges(%b, %c)
%y1 : Tensor, %y2 : Tensor = fb::gather_ranges(%a, %y0)
return (%y2, %y1))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather(%a, %b, %c)
return (%y1, %y0))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void PrecomputeMultiplierShiftForSigridHash(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e):
%y0 : Tensor = fb::sigrid_hash(%a, %b, %c, %d, %e)
return (%y0)
)IR";
std::string split_pattern = R"IR(
graph(%a, %b, %c, %d, %e):
%y0 : Tensor = fb::sigrid_hash_compute_multipler_shift(%c)
%y2 : Tensor = fb::sigrid_hash_precompute(%a, %b, %c, %y0, %d, %e)
return (%y2)
)IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, split_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesToGatherToOffsets(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %to0_in0, %to0_in1, %to0_in2):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather(%a, %b, %c)
%y2 : Tensor = aten::to(%y1, %to0_in0, %to0_in1, %to0_in1, %to0_in2)
%y3 : Tensor = fb::lengths_to_offsets(%y2, %d)
return (%y3, %y0))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %to0_in0, %to0_in1, %to0_in2):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather_to_offsets(%a, %b, %c, %d, %to0_in0)
return (%y1, %y0))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
std::string pattern2 = R"IR(
graph(%a, %b, %c, %d, %to0_in0, %to0_in1):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather(%a, %b, %c)
%y2 : Tensor = aten::to(%y1, %to0_in0, %to0_in1, %to0_in1)
%y3 : Tensor = fb::lengths_to_offsets(%y2, %d)
return (%y3, %y0))IR";
std::string fused_pattern2 = R"IR(
graph(%a, %b, %c, %d, %to0_in0, %to0_in1):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather_to_offsets(%a, %b, %c, %d, %to0_in0)
return (%y1, %y0))IR";
fuse.RegisterRewritePattern(pattern2, fused_pattern2);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ToLengthsToOffsets(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%a, %includelastoffset, %dtype, %nonblocking, %copy, %memoryformat):
%y0 : Tensor = aten::to(%a, %dtype, %nonblocking, %copy, %memoryformat)
%y1 : Tensor = fb::lengths_to_offsets(%y0, %includelastoffset)
return (%y1))IR";
std::string fused_pattern = R"IR(
graph(%a, %includelastoffset, %dtype, %nonblocking, %copy, %memoryformat):
%y0 : Tensor = fb::to_lengths_to_offsets(%a, %includelastoffset, %dtype)
return (%y0))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
std::string pattern2 = R"IR(
graph(%a, %includelastoffset, %dtype, %nonblocking, %copy):
%y0 : Tensor = aten::to(%a, %dtype, %nonblocking, %copy)
%y1 : Tensor = fb::lengths_to_offsets(%y0, %includelastoffset)
return (%y1))IR";
std::string fused_pattern2 = R"IR(
graph(%a, %includelastoffset, %dtype, %nonblocking, %copy):
%y0 : Tensor = fb::to_lengths_to_offsets(%a, %includelastoffset, %dtype)
return (%y0))IR";
fuse.RegisterRewritePattern(pattern2, fused_pattern2);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesGatherSigridHash(
std::shared_ptr<torch::jit::Graph>& graph) {
// TODO:: check restrictions for inputs; outputs not used elsewhere
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h):
%y0 : Tensor, %y1 : Tensor = fb::clip_ranges_gather_lengths_to_offsets(%a, %b, %c, %d)
%y2 : Tensor = fb::sigrid_hash_precompute(%y0, %e, %f, %g, %h)
return (%y2, %y1))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g, %h):
%off : Tensor, %out : Tensor = fb::clip_ranges_gather_sigrid_hash_precompute_offsets(%b, %a, %c, %e, %f, %g, %h, %d)
return (%out, %off))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesGatherRangesSigridHash(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g):
%y0 : Tensor = fb::clip_ranges(%b, %c)
%y1 : Tensor, %y2 : Tensor = fb::gather_ranges(%a, %y0)
%y3 : Tensor = fb::sigrid_hash_precompute(%y1, %d, %e, %f, %g)
return (%y3, %y2))IR";
std::string fused_pattern = R"IR(
graph(%a, %b, %c, %d, %e, %f, %g):
%off : Tensor, %out : Tensor = fb::clip_ranges_gather_sigrid_hash_precompute_v3(%b, %a, %c, %d, %e, %f, %g)
return (%out, %off))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void ClipRangesGatherRangesX2SigridHashPrecompute(
std::shared_ptr<torch::jit::Graph>& graph) {
// Placeholder is a dummy op used to capture the first subgraph
std::string pattern = R"IR(
graph(%ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32):
%clipped : Tensor = fb::clip_ranges(%ranges, %max_length)
%output : Tensor, %unused : Tensor = fb::gather_ranges(%values, %clipped)
%sigrid_hash_out : Tensor = fb::sigrid_hash_precompute(%output, %salt, %max_value, %mul_shift, %hash_into_int32)
return (%sigrid_hash_out, %clipped))IR";
std::string fused_pattern = R"IR(
graph(%ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32):
%sigrid_hash_out : Tensor, %clipped : Tensor = fb::placeholder(%ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32)
return (%sigrid_hash_out, %clipped))IR";
// the second gather_ranges can be eliminated because the `lengths` is
// produces is identical to the lengths produced by
// clip_ranges_gather_sigrid_hash_v3 (caveat, the fused ops makes some
// simplifying assumptions about the ranges input)
std::string pattern2 = R"IR(
graph(%gather2_values, %ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32):
%sigrid_hash_out : Tensor, %clipped : Tensor = fb::placeholder(%ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32)
%unused : Tensor, %lengths : Tensor = fb::gather_ranges(%gather2_values, %clipped)
return (%lengths, %sigrid_hash_out))IR";
std::string fused_pattern2 = R"IR(
graph(%gather2_values, %ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32):
%lengths : Tensor, %sigrid_hash_out : Tensor = fb::clip_ranges_gather_sigrid_hash_precompute_v3(%ranges, %values, %max_length, %salt, %max_value, %mul_shift, %hash_into_int32)
return (%lengths, %sigrid_hash_out))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
fuse.RegisterRewritePattern(pattern2, fused_pattern2);
fuse.runOnGraph(graph);
// reverse the ops that got fused in step 1 but not in step2
fuse.RegisterRewritePattern(fused_pattern, pattern);
fuse.runOnGraph(graph);
}
[[maybe_unused]] void SplitOutPrecomputeOpsForSparseNN(
std::shared_ptr<torch::jit::Graph>& graph) {
#ifdef FBCODE_CAFFE2
PrecomputeMultiplierShiftForSigridHash(graph);
ConstantPropagation(graph);
ConstantPooling(graph);
#endif
}
} // namespace
void FuseInferenceOpsForSparseNN(std::shared_ptr<torch::jit::Graph>& graph) {
#ifdef FBCODE_CAFFE2
SplitOutPrecomputeOpsForSparseNN(graph);
ConcatAddMulReplaceNaNClip(graph);
CastedBatchOneHotLengths(graph);
ConcatBatchMatMulBatchGather(graph);
if (FLAGS_enable_clip_ranges_gather_fusions) {
ClipRangesGatherRangesLengthsToOffsets(graph);
}
ClipRangesGatherSigridHash(graph);
ClipRangesGatherRangesSigridHash(graph);
ClipRangesGatherRangesX2SigridHashPrecompute(graph);
if (FLAGS_enable_clip_ranges_gather_fusions) {
// prioritize clip_ranges+gather_ranges+sigrid_hash fusion over
// clip_ranges+gather_ranges
ClipRangesGather(graph);
ClipRangesToGatherToOffsets(graph);
}
ToLengthsToOffsets(graph);
#endif
}
TORCH_LIBRARY_FRAGMENT(static_runtime, m) {
m.def(torch::schema(
"static_runtime::permute_copy(Tensor self, int[] dims) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::reshape_copy(Tensor self, int[] shape) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::flatten_copy.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::expand_dims_copy(Tensor input, int[] dims) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_maybe_copy_out.prim_dtype(Tensor self, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor, bool)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_maybe_copy_out.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> (Tensor, bool)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_maybe_copy_out.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> (Tensor, bool)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_copy.prim_dtype(Tensor self, int? dtype=None, bool non_blocking=False, bool copy=False) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_copy.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::to_copy.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> (Tensor, Tensor, Tensor)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def("static_runtime::signed_log1p(Tensor input) -> Tensor");
m.def(torch::schema(
"static_runtime::dict_unpack(...) -> ...",
c10::AliasAnalysisKind::CONSERVATIVE));
m.def(torch::schema(
"static_runtime::VarTupleUnpack(...) -> ...",
c10::AliasAnalysisKind::CONSERVATIVE));
m.def(torch::schema(
"static_runtime::fused_equally_split(Tensor input, int num_split, int dim) -> ...",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::dequantize_copy.self(Tensor self) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::select_tensor(Tensor(a) a, Tensor(b) b, bool use_b) -> Tensor(a|b)",
c10::AliasAnalysisKind::FROM_SCHEMA));
m.def(torch::schema(
"static_runtime::create_owned_ref(...) -> ...",
c10::AliasAnalysisKind::CONSERVATIVE));
m.def(torch::schema(
"static_runtime::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor)",
c10::AliasAnalysisKind::PURE_FUNCTION));
m.def(torch::schema(
"static_runtime::clamp_nan_to_num(Tensor input, Scalar? min, Scalar? max, float? nan, float? posinf, float? posinf) -> Tensor",
c10::AliasAnalysisKind::PURE_FUNCTION));
}
void FuseSignLog1P(std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%input):
%0 : Tensor = aten::sign(%input)
%1 : Tensor = aten::abs(%input)
%2 : Tensor = aten::log1p(%1)
%res : Tensor = aten::mul(%0, %2)
return (%res)
)IR";
std::string fused_pattern = R"IR(
graph(%input):
%res : Tensor = static_runtime::signed_log1p(%input)
return (%res)
)IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph);
}
namespace {
using TupleUnpackBlock = std::vector<Node*>;
std::vector<TupleUnpackBlock> CollectVariadicTupleUnpackFusionCandidates(
const std::shared_ptr<Graph>& graph) {
std::vector<TupleUnpackBlock> candidates;
auto nodes = graph->nodes();
std::vector<Node*> block;
for (Node* cur_node : nodes) {
if (cur_node->kind() == prim::TupleUnpack) {
block.push_back(cur_node);
continue;
}
if (block.size() > 1) {
candidates.emplace_back(std::move(block));
}
block.clear();
}
TORCH_CHECK(block.empty());
return candidates;
}
void FuseTupleUnpackBlock(const TupleUnpackBlock& nodes) {
TORCH_CHECK(!nodes.empty());
auto graph = nodes[0]->owningGraph();
auto var_unpack = graph->create(
fromQualString("static_runtime::VarTupleUnpack"),
/* num_outputs */ 0);
var_unpack->insertAfter(nodes[nodes.size() - 1]);
for (Node* node : nodes) {
TORCH_CHECK(
node->kind() == prim::TupleUnpack && node->inputs().size() == 1);
var_unpack->addInput(node->input());
for (Value* output : node->outputs()) {
auto new_output = var_unpack->addOutput();
new_output->copyMetadata(output);
output->replaceAllUsesWith(new_output);
}
node->destroy();
}
}
} // namespace
void UseVariadicTupleUnpack(const std::shared_ptr<Graph>& graph) {
for (auto& c : CollectVariadicTupleUnpackFusionCandidates(graph)) {
FuseTupleUnpackBlock(c);
}
}
// This macro makes maps from c10::Symbol -> c10::Symbol a lot easier to read.
#define OP_PAIR(first, second) \
{ fromQualString(first), fromQualString(second) }
// Out variants of ops cannot participate in memory planning if they
// have outputs that alias inputs. For ops that either return their
// input directly or copy it (most notably aten::to), we adopt the
// following strategy instead of directly making them out variants so
// that they can participate in memory planning anyway. Let `a` denote
// the input Tensor to the op.
//
// 1) Pass `a` (and the other operator inputs) to a special
// `static_runtime::$OP_maybe_copy_out` variant of the op. This op
// returns a normal output Tensor (call it `b_out` as well as a
// `did_copy` flag indicating whether the output should be used. If
// `did_copy` is false, the value of `b_out` is unspecified. Note that
// this operator is an ordinary out variant that is perfectly amenable
// to memory planning.
//
// 2) Pass `a`, `b_out`, and `did_copy` to a special
// `static_runtime::select_tensor` op, which returns `b_out` if
// `did_copy` is true and `a` otherwise. Note that this operator does
// not need to participate in memory planning because its output
// always aliases one of its inputs.
//
// Here is an illustration:
//
// |
// |----------------------+ a
// | v
// | +------------------------------------+
// | | |
// | | static_runtime::$OP_maybe_copy_out |
// | | |
// | +------------------+--------+--------+
// | | |
// +--------------+ | b_out | did_copy
// | a | |
// v v v
// +------------------------------------+
// | |
// | static_runtime::select_tensor |
// | |
// +------------------+-----------------+
// |
// |
// | either a or b_out
// |
// v
void ReplaceWithMaybeCopy(
std::shared_ptr<Graph>& graph,
bool outputs_are_immutable) {
AliasDb db(graph);
// for ops that have overloads, match the schema
static const std::array<std::pair<c10::FunctionSchema, c10::Symbol>, 3> supported_schema =
{{{torch::schema(
"aten::to.prim_dtype(Tensor(a) self, int? dtype=None, bool non_blocking=False, bool copy=False) -> Tensor(a|b)"),
fromQualString("static_runtime::to_maybe_copy_out")},
{torch::schema(
"aten::to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)"),
fromQualString("static_runtime::to_maybe_copy_out")},
{torch::schema(
"aten::to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)"),
fromQualString("static_runtime::to_maybe_copy_out")}}};
auto match_schema = [](const Node* node, c10::Symbol& out_matched_symbol) {
for (auto& schema : supported_schema) {
if (node->matches(schema.first)) {
out_matched_symbol = schema.second;
return true;
}
}
return false;
};
// old node, new node, select_tensor node
std::vector<std::tuple<Node*, Node*, Node*>> replacement;
DepthFirstGraphNodeIterator graph_it(graph);
for (auto n = graph_it.next(); n != nullptr; n = graph_it.next()) {
c10::Symbol new_symbol;
if (!match_schema(n, new_symbol)) {
continue;
}
TORCH_CHECK(n->outputs().size() == 1);
// Duplicate input writers guard from ReplaceWithCopy below.
if (db.hasInputWriters(n)) {
continue;
}
auto* out = n->output();
if (!outputs_are_immutable && db.mayContainAlias(out, graph->outputs())) {
continue;
}
// Add the did_copy flag to outputs.
auto* new_node = graph->create(new_symbol, n->outputs().size() + 1);
for (auto* input : n->inputs()) {
new_node->addInput(input);
}
new_node->outputs().at(1)->setType(c10::BoolType::get());
static const auto select_tensor_symbol =
fromQualString("static_runtime::select_tensor");
auto* select_tensor_node = graph->create(select_tensor_symbol, 1);
TORCH_DCHECK_EQ(new_node->outputs().size(), 2);
select_tensor_node->addInput(n->input(0));
for (auto* output : new_node->outputs()) {
select_tensor_node->addInput(output);
}
replacement.emplace_back(n, new_node, select_tensor_node);
}
for (const auto& tup : replacement) {
auto* const old_node = std::get<0>(tup);
auto* const new_node = std::get<1>(tup);
auto* const select_tensor_node = std::get<2>(tup);
new_node->insertBefore(old_node);
select_tensor_node->insertBefore(old_node);
new_node->outputs()[0]->copyMetadata(old_node->output());
select_tensor_node->output()->copyMetadata(old_node->output());
old_node->replaceAllUsesWith(select_tensor_node);
old_node->destroy();
}
#ifndef NDEBUG
graph->lint();
AliasDb db2(graph);
torch::jit::Lint(&db2);
#endif
}
static void ReplaceWithCopyImpl(
std::shared_ptr<Graph>& graph,
const c10::FastMap<c10::Symbol, c10::Symbol>& supported,
const std::vector<std::pair<c10::FunctionSchema, c10::Symbol>>&
supported_schema,
const std::function<bool(Node*)>& f_extra_checks,
bool outputs_are_immutable) {
AliasDb db(graph);
auto match_schema = [&supported_schema](
const Node* node, c10::Symbol& out_matched_symbol) {
for (auto& schema : supported_schema) {
if (node->matches(schema.first)) {
out_matched_symbol = schema.second;
return true;
}
}
return false;
};
std::vector<std::pair<Node*, Node*>> replacement;
DepthFirstGraphNodeIterator graph_it(graph);
for (auto n = graph_it.next(); n != nullptr; n = graph_it.next()) {
c10::Symbol new_symbol;
if (supported.count(n->kind()) && opIsRegistered(supported.at(n->kind()))) {
new_symbol = supported.at(n->kind());
} else if (!match_schema(n, new_symbol)) {
continue;
}
TORCH_CHECK(n->outputs().size() == 1);
// We do not want to replace operators with their copy variant when the
// inputs to the operators have writers (can be updated). With an output
// that aliases to the input, updates to the input will be visible to the
// operator's output as well. For example:
//
// def forward(self, inp: Tensor, shape: List[int]):
// a = inp + inp
// b = a.reshape(shape)
// c = b.sigmoid_()
// d = c + c
// e = a + a
// f = b + b
// return (d, e, f)
//
// b and c are aliases of a, sigmoid_ changes b, c, as well as a. e should
// equal to d in this case. If we replace reshape with the copy version, b
// and c are no longer aliases of a, the value of e would change as a
// result. To keep static runtime consistent with the jit interpreter, here
// we choose not to replace reshape with the copy version
if (db.hasInputWriters(n)) {
continue;
}
auto* out = n->output();
if (!outputs_are_immutable && db.mayContainAlias(out, graph->outputs())) {
continue;
}
if (!f_extra_checks(n)) {
continue;
}
auto* new_node = graph->create(new_symbol, n->outputs().size());
for (auto* input : n->inputs()) {
new_node->addInput(input);
}
replacement.emplace_back(n, new_node);
}
for (const auto& p : replacement) {
auto* old_node = p.first;
auto* new_node = p.second;
new_node->insertBefore(old_node);
new_node->output()->copyMetadata(old_node->output());
old_node->replaceAllUsesWith(new_node);
old_node->destroy();
}
#ifndef NDEBUG
graph->lint();
AliasDb db2(graph);
torch::jit::Lint(&db2);
#endif
}
// replace aten::permute with copy version only when it's followed by
// reshape/flatten. It's only enabled when ReplaceWithCopy is off.
void ReplacePermuteWithCopy(
std::shared_ptr<Graph>& graph,
bool outputs_are_immutable) {
AliasDb db(graph);
const c10::FastMap<c10::Symbol, c10::Symbol> supported = {
#ifdef FBCODE_CAFFE2
OP_PAIR("aten::permute", "static_runtime::permute_copy"),
#endif
};
auto f_extra_checks = [](Node* n) {
Value* out = n->output();
Node* next_node = out->uses()[0].user;
if (next_node->kind() != aten::reshape ||
next_node->kind() != aten::flatten) {
return true;
}
return false;
};
ReplaceWithCopyImpl(
graph, supported, {}, f_extra_checks, outputs_are_immutable);
}
void ReplaceWithCopy(
std::shared_ptr<Graph>& graph,
bool outputs_are_immutable) {
AliasDb db(graph);
const c10::FastMap<c10::Symbol, c10::Symbol> supported = {
#ifdef FBCODE_CAFFE2
OP_PAIR("aten::permute", "static_runtime::permute_copy"),
OP_PAIR("fb::expand_dims", "static_runtime::expand_dims_copy"),
#endif
OP_PAIR("aten::narrow", "aten::narrow_copy"),
OP_PAIR("aten::reshape", "static_runtime::reshape_copy"),
OP_PAIR("aten::flatten", "static_runtime::flatten_copy")};
static const std::vector<std::pair<c10::FunctionSchema, c10::Symbol>>
supported_schema = {
{{torch::schema("aten::dequantize.self(Tensor self) -> Tensor"),
fromQualString("static_runtime::dequantize_copy")}}};
ReplaceWithCopyImpl(
graph,
supported,
supported_schema,
[](Node* n) { return true; },
outputs_are_immutable);
}
void EliminateTrivialEquallySplit(std::shared_ptr<torch::jit::Graph>& graph) {
const auto equally_split = fromQualString("fb::equally_split");
std::vector<Node*> to_remove;
DepthFirstGraphNodeIterator graph_it(graph);
for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) {
if (node->kind() != equally_split) {
continue;
}
const Value* value_out = node->outputs()[0];
if (value_out->uses().size() != 1) {
continue;
}
Node* list_unpack_node = value_out->uses()[0].user;
if (list_unpack_node->kind() != prim::ListUnpack) {
continue;
}
auto list_unpack_outputs = list_unpack_node->outputs();
if (list_unpack_outputs.size() != 1) {
continue;
}
list_unpack_node->output()->replaceAllUsesWith(node->input(0));
to_remove.push_back(list_unpack_node);
to_remove.push_back(node);
}
for (Node* node : to_remove) {
node->destroy();
}
}
namespace {
bool shouldNotFuseListUnpackSpecialCase(const Node* node) {
const static std::array<c10::Symbol, 3> sigrid_transforms_symbols{
c10::Symbol::fromQualString("fb::variadic_sigrid_transforms_torch_bind"),
c10::Symbol::fromQualString("fb::sigrid_transforms_torch_bind"),
c10::Symbol::fromQualString("fb::sigrid_transforms")};
if (std::find(
sigrid_transforms_symbols.begin(),
sigrid_transforms_symbols.end(),
node->kind()) == sigrid_transforms_symbols.end()) {
return false;
}
// To fuse with sigrid transforms, we must be able to statically determine
// `instance` and `use_offsets` - these two together let us statically
// determine the types of the outputs. Rationale: it is a huge pain to write
// fused sigrid transforms without static type information, and these two
// arguments are indeed statically known in every model we've seen.
// The reason why trying to fuse the outputs is annoying without static type
// information is that, if one of the outputs is not managed, you need to
// reset to an empty tensor of the correct type each iteration. So, if we
// can't collect types ahead of time, we would have to do it lazily on the
// first iteration, which would could be wasteful in terms of time/memory
// - either each thread would have its own set of output types, or we would
// need a lock to prevent data races.
const auto num_inputs = node->inputs().size();
return !toIValue(node->input(0)).has_value() ||
!toIValue(node->input(num_inputs - 1)).has_value();
}
} // namespace
void FuseListUnpack(std::shared_ptr<torch::jit::Graph>& graph) {
const c10::FastMap<c10::Symbol, c10::Symbol> unfused_to_fused = {
OP_PAIR(
"torcharrow::inference_wrapper_run_flat",
"static_runtime::fused_inference_wrapper_run_flat"),
OP_PAIR(
"torcharrow::variadic_inference_wrapper_run_flat",
"static_runtime::fused_variadic_inference_wrapper_run_flat"),
OP_PAIR("fb::equally_split", "static_runtime::fused_equally_split"),
OP_PAIR(
"fb::sigrid_transforms", "static_runtime::fused_sigrid_transforms"),
OP_PAIR(
"static_runtime::variadic_grouped_accessor_op_v2",
"static_runtime::fused_variadic_grouped_accessor_op_v2"),
OP_PAIR(
"fb::sigrid_transforms_torch_bind",
"static_runtime::fused_sigrid_transforms_torch_bind"),
OP_PAIR(
"fb::variadic_sigrid_transforms_torch_bind",
"static_runtime::fused_variadic_sigrid_transforms_torch_bind"),
OP_PAIR(
"fb::gather_ranges_to_dense",
"static_runtime::fused_gather_ranges_to_dense"),
OP_PAIR(
"fb::gather_ranges_to_dense_v2",
"static_runtime::fused_gather_ranges_to_dense_v2"),
OP_PAIR(
"fb::split_and_squeeze",
"static_runtime::fused_split_and_squeeze_copy")};
// replacement contains (old_node, new_node, list_unpack_node)
std::vector<std::tuple<Node*, Node*, Node*>> replacement;
DepthFirstGraphNodeIterator graph_it(graph);
for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) {
auto unfused_to_fused_it = unfused_to_fused.find(node->kind());
if (unfused_to_fused_it == unfused_to_fused.end()) {
continue;
}
const Value* value_out = node->outputs()[0];
if (value_out->uses().size() != 1) {
continue;
}
Node* list_unpack_node = value_out->uses()[0].user;
if (list_unpack_node->kind() != prim::ListUnpack) {
continue;
}
auto list_unpack_outputs = list_unpack_node->outputs();
if (list_unpack_outputs.empty()) {
continue;
}
if (shouldNotFuseListUnpackSpecialCase(node)) {
continue;
}
const auto& new_sym = unfused_to_fused_it->second;
auto* new_node = graph->create(new_sym, 0);
for (Value* in : node->inputs()) {
new_node->addInput(in);
}
for (Value* out : list_unpack_outputs) {
Value* new_out = new_node->addOutput();
new_out->copyMetadata(out);
out->replaceAllUsesWith(new_out);
}
replacement.emplace_back(node, new_node, list_unpack_node);
}
for (const auto& nodes : replacement) {
auto* old_node = std::get<0>(nodes);
auto* new_node = std::get<1>(nodes);
auto* list_unpack_node = std::get<2>(nodes);
new_node->insertAfter(old_node);
list_unpack_node->destroy();
old_node->destroy();
}
} // namespace jit
void RemoveImmutableInputDictLookups(
std::shared_ptr<torch::jit::Graph>& graph) {
auto nodes = graph->nodes();
AliasDb db(graph);
// Gather all dict -> getitems where dict is immutable and getitems use
// constant keys.
std::unordered_map<Value*, std::vector<Node*>> dict_to_getitems;
std::unordered_set<Node*> keys;
for (Node* node : nodes) {
// Find aten::__getitem__(%dict, %constant_key).
if (node->kind() != aten::__getitem__) {
continue;
}
Node* getitem_node = node;
Value* dict = getitem_node->input(0);
if (db.hasWriters(dict)) {
// Mutable dict. Skip this optimization.
continue;
}
if (dict->type()->kind() != TypeKind::DictType ||
dict->node() != graph->param_node()) {
continue;
}
DCHECK(getitem_node->inputs().size() == 2);
Node* key = getitem_node->input(1)->node();
if (key->kind() != prim::Constant) {
continue;
}
keys.insert(key);
auto iter = dict_to_getitems.find(dict);
if (iter == dict_to_getitems.end()) {
dict_to_getitems.emplace(dict, std::vector<Node*>{getitem_node});
continue;
}
iter->second.push_back(getitem_node);
}
if (keys.empty()) {
return;
}
// Move all keys to the beginning of the graph and insert new dict_unpack
// nodes after that.
auto* marker = graph->create(prim::Constant);
graph->prependNode(marker);
graph->setInsertPoint(marker);
for (Node* key : keys) {
DCHECK(key->inputs().empty());
key->moveBefore(marker);
}
const c10::Symbol static_runtime_dict_unpack_symbol =
fromQualString("static_runtime::dict_unpack");
for (auto& it : dict_to_getitems) {
Value* dict = it.first;
std::vector<Node*>& getitems = it.second;
DCHECK(!getitems.empty());
auto* dict_unpack =
graph->create(static_runtime_dict_unpack_symbol, getitems.size());
graph->insertNode(dict_unpack);
dict_unpack->addInput(getitems[0]->input(0));
for (size_t i = 0; i < getitems.size(); ++i) {
Node* getitem_node = getitems[i];
DCHECK(getitem_node->input(0) == dict);
dict_unpack->addInput(getitem_node->input(1));
dict_unpack->output(i)->copyMetadata(getitem_node->output());
getitem_node->output(0)->replaceAllUsesWith(dict_unpack->output(i));
getitem_node->destroy();
}
}
graph->setInsertPoint(graph->block());
marker->destroy();
}
void UseVariadicGroupedAccessor(const std::shared_ptr<Graph>& graph) {
UseVariadicOp(
graph,
fromQualString("grouped_accessor::grouped_accessor_op_v2"),
fromQualString("static_runtime::variadic_grouped_accessor_op_v2"));
UseVariadicOp(
graph,
fromQualString("fb::grouped_accessor_op_async"),
fromQualString("static_runtime::variadic_grouped_accessor_op_async"));
}
namespace {
void CreateOwnedRefsForSpecialValuesHelper(Graph& graph, Block* block) {
for (auto* node : block->nodes()) {
for (auto* sub_block : node->blocks()) {
CreateOwnedRefsForSpecialValuesHelper(graph, sub_block);
}
}
auto outputs = block->outputs();
// Create owned refs for inputs. Otherwise, the input cleanup process
// will destroy our outputs before we return.
c10::FastSet<Value*> inputs = {
block->inputs().begin(), block->inputs().end()};
for (const auto i : c10::irange(outputs.size())) {
auto* output = outputs[i];
if (output->type()->kind() == c10::TypeKind::NoneType) {
// No need to create owned refs of NoneType since moving
// from None will have no effect
continue;
}
if ((inputs.find(output) != inputs.end()) || toIValue(output).has_value() ||
// If the output's owning block is not this one, it's from an outer
// scope
output->node()->owningBlock() != block) {
auto* create_owned_ref_node =
graph.create(fromQualString("static_runtime::create_owned_ref"));
create_owned_ref_node->addInput(output);
create_owned_ref_node->output()->copyMetadata(output);
block->appendNode(create_owned_ref_node);
block->replaceOutput(i, create_owned_ref_node->output());
}
}
}
void ForceNonEmptyOutputsHelper(Value* none_value, Block* block) {
for (auto* node : block->nodes()) {
bool needs_output = false;
for (auto* sub_block : node->blocks()) {
if (sub_block->outputs().empty()) {
sub_block->registerOutput(none_value);
needs_output = true;
}
ForceNonEmptyOutputsHelper(none_value, sub_block);
}
if (needs_output) {
// Loop sub-blocks should always return at least one output (the new loop
// condition)
DCHECK(node->kind() == prim::If);
auto* output = node->addOutput();
output->setType(c10::NoneType::get());
}
}
}
Node* findOrCreateNoneConstant(Graph& graph) {
// Only search the top-level block
for (auto* node : graph.nodes()) {
if (node->kind() != prim::Constant) {
continue;
}
const auto ival_opt = toIValue(node->output());
DCHECK(ival_opt.has_value());
if (ival_opt->isNone()) {
return node;
}
}
auto* none_node = graph.create(prim::Constant);
none_node->output()->setType(c10::NoneType::get());
graph.prependNode(none_node);
return none_node;
}
} // namespace
void CreateOwnedRefsForSpecialValues(Graph& graph) {
CreateOwnedRefsForSpecialValuesHelper(graph, graph.block());
}
void ForceNonEmptyOutputs(Graph& graph) {
auto* none_node = findOrCreateNoneConstant(graph);
ForceNonEmptyOutputsHelper(none_node->output(), graph.block());
if (!none_node->hasUses()) {
none_node->destroy();
}
}
namespace {
bool inputIsConstantList(
Node* node,
size_t input_idx,
const c10::List<int64_t>& expected) {
auto input_opt = toIValue(node->input(input_idx));
if (!input_opt.has_value() || !input_opt->isIntList()) {
return false;
}
return input_opt->toIntList() == expected;
}
bool inputIsConstantInt(Node* node, size_t input_idx, int64_t expected) {
auto input_opt = toIValue(node->input(input_idx));
if (!input_opt.has_value() || !input_opt->isInt()) {
return false;
}
return input_opt->toInt() == expected;
}
void eliminatePermuteOpsSumPattern(std::shared_ptr<Graph>& graph) {
// SubgraphRewriter can't pattern-match on constants, so we use this
// extra filter to make sure the values of the `dim` arguments are
// correct.
auto dims_are_valid_constants =
[](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
// Get the nodes in the real graph from the nodes in the template
// pattern graph
const auto& node_map = match.nodes_map;
auto* sum_node = node_map.at(vmap.at("c")->node());
auto* permute_node = node_map.at(vmap.at("b")->node());
return inputIsConstantList(sum_node, 1, c10::List<int64_t>{-1}) &&
inputIsConstantList(permute_node, 1, c10::List<int64_t>{0, 2, 1});
};
const auto pattern = R"IR(
graph(%a, %sum_dim, %permute_dim, %keepdim, %dtype):
%b = aten::permute(%a, %permute_dim)
%c = aten::sum(%b, %sum_dim, %keepdim, %dtype)
return (%c))IR";
const auto fused_pattern = R"IR(
graph(%a, %sum_dim, %permute_dim, %keepdim, %dtype):
%new_sum_dim: int[] = prim::Constant[value=[1]]()
%d = aten::sum(%a, %new_sum_dim, %keepdim, %dtype)
return (%d))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph, dims_are_valid_constants);
}
void eliminatePermuteOpsSoftmaxPattern(std::shared_ptr<Graph>& graph) {
const auto pattern = R"IR(
graph(%a, %permute_dim_1, %permute_dim_2, %softmax_dim, %softmax_dtype):
%b = aten::permute(%a, %permute_dim_1)
%c = aten::softmax(%b, %softmax_dim, %softmax_dtype)
%d = aten::permute(%c, %permute_dim_2)
return (%d)
)IR";
const auto fused_pattern = R"IR(
graph(%a, %permute_dim_1, %permute_dim_2, %softmax_dim, %softmax_dtype):
%new_softmax_dim: int = prim::Constant[value=1]()
%e = aten::softmax(%a, %new_softmax_dim, %softmax_dtype)
return (%e)
)IR";
// Check that permute_dim is (0, 2, 1) and softmax_dim is 2
auto dims_are_valid_constants =
[](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& node_map = match.nodes_map;
auto* permute_node_1 = node_map.at(vmap.at("b")->node());
auto* permute_node_2 = node_map.at(vmap.at("d")->node());
auto* softmax_node = node_map.at(vmap.at("c")->node());
return inputIsConstantInt(softmax_node, 1, 2) &&
inputIsConstantList(
permute_node_1, 1, c10::List<int64_t>{0, 2, 1}) &&
inputIsConstantList(permute_node_2, 1, c10::List<int64_t>{0, 2, 1});
};
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph, dims_are_valid_constants);
}
} // namespace
void EliminateExtraPermuteOps(std::shared_ptr<Graph>& graph) {
eliminatePermuteOpsSumPattern(graph);
eliminatePermuteOpsSoftmaxPattern(graph);
}
namespace {
Node* maybeUserWithKind(Value* value, c10::Symbol kind) {
auto& uses = value->uses();
if (uses.size() != 1) {
return nullptr;
}
auto* user = uses[0].user;
if (user->kind() != kind) {
return nullptr;
}
return user;
}
} // namespace
void UseSplitAndSqueeze(std::shared_ptr<Graph>& graph) {
std::vector<Node*> to_erase;
for (auto* node : graph->nodes()) {
if (node->kind() != aten::split) {
continue;
}
auto axis_opt = toIValue(node->input(2));
if (!axis_opt) {
continue;
}
auto axis = *axis_opt;
auto* split_node_output = node->output();
auto* list_unpack_node =
maybeUserWithKind(split_node_output, prim::ListUnpack);
if (list_unpack_node == nullptr) {
continue;
}
std::vector<Node*> squeeze_nodes;
squeeze_nodes.reserve(list_unpack_node->outputs().size());
for (auto* output : list_unpack_node->outputs()) {
auto* squeeze_node = maybeUserWithKind(output, aten::squeeze);
if (squeeze_node == nullptr) {
break;
}
auto dim_opt = toIValue(squeeze_node->input(1));
if (!dim_opt || *dim_opt != axis) {
break;
}
squeeze_nodes.push_back(squeeze_node);
}
auto num_outputs = list_unpack_node->outputs().size();
if (squeeze_nodes.size() != num_outputs) {
continue;
}
auto* split_and_squeeze_node = graph->create(
c10::Symbol::fromQualString(
"static_runtime::fused_split_and_squeeze_copy"),
num_outputs);
split_and_squeeze_node->addInput(node->input(0));
split_and_squeeze_node->addInput(node->input(1));
split_and_squeeze_node->addInput(node->input(2));
split_and_squeeze_node->insertBefore(node);
for (const auto i : c10::irange(num_outputs)) {
auto* squeeze_node = squeeze_nodes[i];
split_and_squeeze_node->output(i)->copyMetadata(squeeze_node->output());
squeeze_node->output()->replaceAllUsesWith(
split_and_squeeze_node->output(i));
}
to_erase.insert(to_erase.end(), squeeze_nodes.begin(), squeeze_nodes.end());
to_erase.push_back(list_unpack_node);
to_erase.push_back(node);
}
for (auto* node : to_erase) {
node->destroy();
}
}
[[maybe_unused]] void RemoveUnnecessaryOutputs(
std::shared_ptr<torch::jit::Graph>& graph) {
RemoveUnnecessaryEmbeddingBagOutputs(graph);
}
[[maybe_unused]] void RemoveUnnecessaryEmbeddingBagOutputs(
std::shared_ptr<torch::jit::Graph>& graph) {
std::string pattern = R"IR(
graph(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset):
%y0 : Tensor, %y1 : Tensor, %y2 : Tensor, %y3 : Tensor = aten::embedding_bag(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset)
return (%y2, %y1, %y0))IR";
std::string transformed_pattern = R"IR(
graph(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset):
%y0 : Tensor, %y1 : Tensor, %y2 : Tensor = static_runtime::embedding_bag(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset)
return (%y2, %y1, %y0))IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, transformed_pattern);
fuse.runOnGraph(graph);
std::string pattern2 = R"IR(
graph(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset, %padding_idx):
%y0 : Tensor, %y1 : Tensor, %y2 : Tensor, %y3 : Tensor = aten::embedding_bag(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset, %padding_idx)
return (%y2, %y1, %y0))IR";
std::string transformed_pattern2 = R"IR(
graph(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset, %padding_idx):
%y0 : Tensor, %y1 : Tensor, %y2 : Tensor = static_runtime::embedding_bag(%weight, %indices, %offsets, %scale_grad_by_freq, %mode, %sparse, %per_sample_weights, %include_last_offset, %padding_idx)
return (%y2, %y1, %y0))IR";
fuse.RegisterRewritePattern(pattern2, transformed_pattern2);
fuse.runOnGraph(graph);
}
namespace {
bool isNoOpSlice(Node* node) {
DCHECK(node->kind() == aten::slice);
auto step = toIValue(node->input(3));
if (!step.has_value() || step->toInt() != 1) {
return false;
}
auto start = toIValue(node->input(1));
if (!start.has_value() || (start->isInt() && start->toInt() != 0)) {
return false;
}
auto end = toIValue(node->input(2));
// Could also look at list length, but most models that have this pattern are
// just doing list[0:], so it's not needed for now.
return end.has_value() && end->isNone();
}
} // namespace
void EliminateNoOpSlice(std::shared_ptr<Graph>& graph) {
DepthFirstGraphNodeIterator it(graph);
auto schema = torch::schema(
"aten::slice.t(t[] l, int? start=None, int? end=None, int step=1) -> t[]",
/*allow_typevars*/ true);
Node* node = nullptr;
std::vector<Node*> to_delete;
while ((node = it.next()) != nullptr) {
if (!node->matches(schema) || !isNoOpSlice(node)) {
continue;
}
node->output()->replaceAllUsesWith(node->input(0));
to_delete.push_back(node);
}
for (auto* node : to_delete) {
node->destroy();
}
}
void UseInPlaceGetRealInputsFromOptionalInputsV2(
std::shared_ptr<Graph>& graph) {
#ifdef FBCODE_CAFFE2
const std::string original_pattern = R"IR(
graph(%optional_input: (Tensor, Tensor?, Tensor?)?[], %include_last_offsets: bool[]):
%x : (Tensor, Tensor?, Tensor?)[] = remote_collection::get_real_inputs_from_optional_inputs_v2(%optional_input, %include_last_offsets)
return (%x))IR";
const std::string new_pattern = R"IR(
graph(%optional_input: (Tensor, Tensor?, Tensor?)?[], %include_last_offsets: bool[]):
%x : (Tensor, Tensor?, Tensor?)[] = static_runtime::get_real_inputs_from_optional_inputs_v2_inplace(%optional_input, %include_last_offsets)
return (%x))IR";
auto isSingleUse = [](Value* value) { return value->uses().size() == 1; };
auto filter = [&isSingleUse](
const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
auto* real_node = match.nodes_map.at(vmap.at("x")->node());
return isSingleUse(real_node->input(0));
};
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(original_pattern, new_pattern);
fuse.runOnGraph(graph, filter);
#endif
}
void FuseClampNaNToNum(std::shared_ptr<Graph>& graph) {
#ifdef FBCODE_CAFFE2
std::string pattern = R"IR(
graph(%input, %clamp_min: Scalar?, %clamp_max: Scalar?, %nan, %posinf, %neginf):
%x : Tensor = aten::clamp(%input, %clamp_min, %clamp_max)
%y : Tensor = aten::nan_to_num(%x, %nan, %posinf, %neginf)
return (%y))IR";
std::string fused_pattern = R"IR(
graph(%input, %clamp_min: Scalar?, %clamp_max: Scalar?, %nan, %posinf, %neginf):
%x : Tensor = static_runtime::clamp_nan_to_num(%input, %clamp_min, %clamp_max, %nan, %posinf, %neginf)
return (%x))IR";
auto isConstantAndNotNone = [](Value* value) {
auto ival_opt = toIValue(value);
if (!ival_opt.has_value()) {
return false;
}
auto scalar_opt = ival_opt->toOptional<at::Scalar>();
return scalar_opt.has_value();
};
auto clampValuesAreConstant =
[&isConstantAndNotNone](
const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
// Get the nodes in the real graph from the nodes in the template
// pattern graph
const auto& node_map = match.nodes_map;
auto* clamp_node = node_map.at(vmap.at("x")->node());
return isConstantAndNotNone(clamp_node->input(1)) &&
isConstantAndNotNone(clamp_node->input(2));
};
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, fused_pattern);
fuse.runOnGraph(graph, clampValuesAreConstant);
#endif
}
void PrepackWeights(std::shared_ptr<Graph>& graph) {
const auto pattern = R"IR(
graph(%input: Tensor, %weight: Tensor, %bias: Tensor?, %scale: Tensor, %zero_point: Tensor):
%result: Tensor = fb::quantized_linear_unpacked_weight_v2(%input, %weight, %bias, %scale, %zero_point)
return (%result)
)IR";
const auto split_pattern = R"IR(
graph(%input: Tensor, %weight: Tensor, %bias: Tensor?, %scale: Tensor, %zero_point: Tensor):
%packed_params = quantized::linear_prepack(%weight, %bias)
%scale_float: float = aten::item(%scale)
%zero_point_int: int = aten::item(%zero_point)
%result: Tensor = quantized::linear(%input, %packed_params, %scale_float, %zero_point_int)
return (%result)
)IR";
SubgraphRewriter fuse;
fuse.RegisterRewritePattern(pattern, split_pattern);
fuse.runOnGraph(graph);
// Constant propagation should be called after this pass + others.
}
} // namespace torch::jit