mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
As per title. The kernel did not handle `out=` correctly and returned a different tensor which only shared storage with `out`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/96648 Approved by: https://github.com/cpuhrsch
610 lines
22 KiB
Python
610 lines
22 KiB
Python
import torch
|
|
from torch._inductor.cuda_properties import get_device_capability
|
|
|
|
def _has_triton():
|
|
if not torch.cuda.is_available():
|
|
return False
|
|
try:
|
|
import triton
|
|
|
|
return triton is not None and get_device_capability() >= (7, 0)
|
|
except ImportError:
|
|
return False
|
|
|
|
def compressed_indices_to_plain_indices(cidx, pidx):
|
|
nnz = pidx.shape[-1]
|
|
cdim = cidx.shape[-1] - 1
|
|
batch_numel = cidx.shape[0]
|
|
batch_offset = torch.arange(batch_numel, dtype=cidx.dtype, device=cidx.device)[
|
|
:, None
|
|
]
|
|
|
|
cidx_batch_offsetted = cidx[:, :-1] + nnz * batch_offset
|
|
cidx_linear = torch.empty(
|
|
(batch_numel * cdim + 1,), dtype=cidx.dtype, device=cidx.device
|
|
)
|
|
cidx_linear[:-1] = cidx_batch_offsetted.reshape(-1)
|
|
cidx_linear[-1] = nnz * batch_numel
|
|
|
|
idx_linear = torch._convert_indices_from_csr_to_coo(
|
|
cidx_linear, pidx.reshape(-1), out_int32=(cidx.dtype == torch.int32)
|
|
).select(0, 0)
|
|
|
|
return idx_linear.reshape(batch_numel, -1).sub_(cdim * batch_offset)
|
|
|
|
|
|
def slicer(dim, slice_range, *tensors):
|
|
for t in tensors:
|
|
slices = [slice(None)] * t.dim()
|
|
slices[dim] = slice_range
|
|
yield t[slices]
|
|
|
|
if _has_triton():
|
|
import triton
|
|
import triton.language as tl
|
|
from typing import Optional, Tuple
|
|
|
|
@triton.jit
|
|
def _bsr_strided_dense_rowspace_kernel(
|
|
BLOCKSIZE_ROW: tl.constexpr,
|
|
BLOCKSIZE_COL: tl.constexpr,
|
|
# values prologue
|
|
values_ptr,
|
|
values_batch_stride,
|
|
values_nnz_stride,
|
|
values_row_block_stride,
|
|
values_col_block_stride,
|
|
# values epilogue
|
|
# crow_indices prologue
|
|
crow_indices_ptr,
|
|
crow_indices_batch_stride,
|
|
crow_indices_stride,
|
|
# crow_indices epilogue
|
|
# col_indices prologue
|
|
col_indices_ptr,
|
|
col_indices_batch_stride,
|
|
col_indices_stride,
|
|
# col_indices epilogue
|
|
# dense prologue
|
|
dense_ptr,
|
|
dense_batch_stride,
|
|
dense_tiled_row_stride,
|
|
dense_tiled_col_stride,
|
|
dense_row_block_stride,
|
|
dense_col_block_stride,
|
|
# dense epilogue
|
|
# output prologue
|
|
output_ptr,
|
|
output_batch_stride,
|
|
output_tiled_row_stride,
|
|
output_tiled_col_stride,
|
|
output_row_block_stride,
|
|
output_col_block_stride,
|
|
# output epilogue
|
|
GROUP_SIZE_ROW: tl.constexpr,
|
|
):
|
|
batch_pid = tl.program_id(axis=2)
|
|
row_block_pid = tl.program_id(axis=0)
|
|
col_block_pid = tl.program_id(axis=1)
|
|
n_block_rows = tl.num_programs(axis=0)
|
|
n_block_cols = tl.num_programs(axis=1)
|
|
|
|
row_block_pid, col_block_pid = tl.swizzle2d(
|
|
row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
|
|
)
|
|
|
|
crow_indices_offset_ptr = (
|
|
crow_indices_ptr
|
|
+ crow_indices_batch_stride * batch_pid
|
|
+ crow_indices_stride * row_block_pid
|
|
)
|
|
nnz_offset = tl.load(crow_indices_offset_ptr)
|
|
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
|
|
|
|
# Compute nnz for the row with number row_block_pid.
|
|
# If it is zero, skip the row.
|
|
row_nnz = nnz_offset_next - nnz_offset
|
|
if row_nnz == 0:
|
|
return
|
|
|
|
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
|
|
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
|
|
|
|
# Pointers are set to the first block of the current row.
|
|
values_block_ptrs = (
|
|
values_ptr
|
|
+ values_batch_stride * batch_pid
|
|
+ values_nnz_stride * nnz_offset
|
|
+ values_row_block_stride * row_block_arange[:, None]
|
|
+ values_col_block_stride * col_block_arange[None, :]
|
|
)
|
|
|
|
# NOTE: dense is advanced into all dimensions but the tiled row one.
|
|
# That will be advanced in the loop according to values in col_indices.
|
|
dense_block_ptrs = (
|
|
dense_ptr
|
|
+ dense_batch_stride * batch_pid
|
|
+ dense_tiled_col_stride * col_block_pid
|
|
+ dense_row_block_stride * col_block_arange[:, None]
|
|
+ dense_col_block_stride * row_block_arange[None, :]
|
|
)
|
|
|
|
# Pointers are set to exact write-to locations
|
|
output_ptrs = (
|
|
output_ptr
|
|
+ output_batch_stride * batch_pid
|
|
+ output_tiled_row_stride * row_block_pid
|
|
+ output_tiled_col_stride * col_block_pid
|
|
+ output_row_block_stride * row_block_arange[:, None]
|
|
+ output_col_block_stride * row_block_arange[None, :]
|
|
)
|
|
|
|
# Set pointer to the first nonzero element in the current row
|
|
col_index_nnz_ptr = (
|
|
col_indices_ptr
|
|
+ col_indices_batch_stride * batch_pid
|
|
+ col_indices_stride * nnz_offset
|
|
)
|
|
|
|
output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_ROW), tl.float32)
|
|
for _ in range(row_nnz):
|
|
values_block = tl.load(values_block_ptrs)
|
|
|
|
# find which row of dense needs to get loaded
|
|
# for multiplication with values_block.
|
|
dense_row_idx = tl.load(col_index_nnz_ptr)
|
|
dense_block = tl.load(dense_block_ptrs + dense_tiled_row_stride * dense_row_idx)
|
|
|
|
# do block mm
|
|
output_acc_block += tl.dot(values_block, dense_block)
|
|
|
|
# move val/col_index ptrs to the next block in the row
|
|
values_block_ptrs += values_nnz_stride
|
|
col_index_nnz_ptr += col_indices_stride
|
|
|
|
# write back the result
|
|
tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))
|
|
|
|
|
|
@triton.jit
|
|
def _bsr_strided_sparse_rowspace_kernel(
|
|
BLOCKSIZE_ROW: tl.constexpr,
|
|
BLOCKSIZE_COL: tl.constexpr,
|
|
batch_idx_ptr,
|
|
row_idx_ptr,
|
|
nnz_per_row_ptr,
|
|
nnz_per_row_cumsum_ptr,
|
|
col_indices_ptr,
|
|
col_indices_stride,
|
|
# values prologue
|
|
values_ptr,
|
|
values_nnz_stride,
|
|
values_row_block_stride,
|
|
values_col_block_stride,
|
|
# values epilogue
|
|
# dense prologue
|
|
dense_ptr,
|
|
dense_batch_stride,
|
|
dense_tiled_row_stride,
|
|
dense_tiled_col_stride,
|
|
dense_row_block_stride,
|
|
dense_col_block_stride,
|
|
# dense epilogue
|
|
# output prologue
|
|
output_ptr,
|
|
output_batch_stride,
|
|
output_tiled_row_stride,
|
|
output_tiled_col_stride,
|
|
output_row_block_stride,
|
|
output_col_block_stride,
|
|
# output epilogue
|
|
GROUP_SIZE_ROW: tl.constexpr,
|
|
):
|
|
row_block_pid = tl.program_id(axis=0)
|
|
col_block_pid = tl.program_id(axis=1)
|
|
n_block_rows = tl.num_programs(axis=0)
|
|
n_block_cols = tl.num_programs(axis=1)
|
|
|
|
row_block_pid, col_block_pid = tl.swizzle2d(
|
|
row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
|
|
)
|
|
|
|
batch_idx = tl.load(batch_idx_ptr + row_block_pid)
|
|
row_idx = tl.load(row_idx_ptr + row_block_pid)
|
|
row_idx_nnz = tl.load(nnz_per_row_ptr + row_block_pid)
|
|
row_idx_nnz_cumsum = tl.load(nnz_per_row_cumsum_ptr + row_block_pid)
|
|
row_idx_nnz_offset = row_idx_nnz_cumsum - row_idx_nnz
|
|
|
|
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
|
|
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
|
|
|
|
# Pointers are set to the first block of the current row.
|
|
values_block_ptrs = (
|
|
values_ptr
|
|
+ values_nnz_stride * row_idx_nnz_offset
|
|
+ values_row_block_stride * row_block_arange[:, None]
|
|
+ values_col_block_stride * col_block_arange[None, :]
|
|
)
|
|
|
|
# NOTE: dense is advanced into all dimensions but the tiled row one.
|
|
# That will be advanced in the loop according to values in col_indices.
|
|
dense_block_ptrs = (
|
|
dense_ptr
|
|
+ dense_batch_stride * batch_idx
|
|
+ dense_tiled_col_stride * col_block_pid
|
|
+ dense_row_block_stride * col_block_arange[:, None]
|
|
+ dense_col_block_stride * row_block_arange[None, :]
|
|
)
|
|
|
|
# Pointers are set to exact write-to locations
|
|
output_ptrs = (
|
|
output_ptr
|
|
+ output_batch_stride * batch_idx
|
|
+ output_tiled_row_stride * row_idx
|
|
+ output_tiled_col_stride * col_block_pid
|
|
+ output_row_block_stride * row_block_arange[:, None]
|
|
+ output_col_block_stride * row_block_arange[None, :]
|
|
)
|
|
|
|
output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_ROW), tl.float32)
|
|
col_index_nnz_ptr = col_indices_ptr + row_idx_nnz_offset * col_indices_stride
|
|
for _ in range(row_idx_nnz):
|
|
values_block = tl.load(values_block_ptrs)
|
|
|
|
# find which row of dense needs to get loaded
|
|
# for multiplication with values_block.
|
|
dense_row_idx = tl.load(col_index_nnz_ptr)
|
|
dense_block = tl.load(dense_block_ptrs + dense_tiled_row_stride * dense_row_idx)
|
|
|
|
# do block mm
|
|
output_acc_block += tl.dot(values_block, dense_block)
|
|
|
|
# move val/col_index ptrs to the next block in the row
|
|
values_block_ptrs += values_nnz_stride
|
|
col_index_nnz_ptr += col_indices_stride
|
|
|
|
# write back the result
|
|
tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))
|
|
|
|
|
|
def _run_sparse_rowspace_kernel(
|
|
blocksize, values, crow_indices, col_indices, dense, output, max_grid
|
|
):
|
|
# Compute a vector of non-zero elements numbers per each row.
|
|
# We want to ultimately iterate over non-zero rows.
|
|
nnz_per_row = crow_indices[:, 1:] - crow_indices[:, :-1]
|
|
|
|
# Compute indices of non-zero counts.
|
|
# batch_idx maps to a broadcasted batch index, while
|
|
# row_idx tracks non-zero rows of the sparse argument
|
|
# and rows of the output that get modified.
|
|
batch_idx, row_idx = nnz_per_row.nonzero(as_tuple=True)
|
|
|
|
# Compress the vector of counts to hold only non-zero values.
|
|
nnz_per_row = nnz_per_row[batch_idx, row_idx]
|
|
# Compute cumulative counts which along with nnz_per_row
|
|
# are used to compute offsets into nnz values.
|
|
nnz_per_row_cumsum = nnz_per_row.cumsum(-1)
|
|
|
|
n_nnz_block_rows = row_idx.size(-1)
|
|
n_block_cols = dense.size(-3)
|
|
max_n_nnz_block_rows, max_n_block_cols = max_grid[:2]
|
|
|
|
for c_start in range(0, n_block_cols, max_n_block_cols):
|
|
c_dense, c_output = slicer(
|
|
-3, slice(c_start, c_start + max_n_block_cols), dense, output
|
|
)
|
|
c_grid = min(n_block_cols - c_start, max_n_block_cols)
|
|
|
|
for r_start in range(0, n_nnz_block_rows, max_n_nnz_block_rows):
|
|
r_batch_idx, r_row_idx, r_nnz_per_row, r_nnz_per_row_cumsum = slicer(
|
|
0,
|
|
slice(r_start, r_start + max_n_nnz_block_rows),
|
|
batch_idx,
|
|
row_idx,
|
|
nnz_per_row,
|
|
nnz_per_row_cumsum,
|
|
)
|
|
r_grid = min(n_nnz_block_rows - r_start, max_n_nnz_block_rows)
|
|
|
|
_bsr_strided_sparse_rowspace_kernel[(r_grid, c_grid)](
|
|
*blocksize,
|
|
r_batch_idx,
|
|
r_row_idx,
|
|
r_nnz_per_row,
|
|
r_nnz_per_row_cumsum,
|
|
col_indices,
|
|
*col_indices.stride(),
|
|
values,
|
|
*values.stride(),
|
|
c_dense,
|
|
*c_dense.stride(),
|
|
c_output,
|
|
*c_output.stride(),
|
|
GROUP_SIZE_ROW=4,
|
|
num_stages=1,
|
|
num_warps=4,
|
|
)
|
|
|
|
|
|
def _run_dense_rowspace_kernel(
|
|
blocksize, values, crow_indices, col_indices, dense, output, max_grid
|
|
):
|
|
# Launch kernel
|
|
n_batches = dense.size(0)
|
|
n_block_rows = crow_indices.size(-1) - 1
|
|
n_block_cols = dense.size(-3)
|
|
max_n_block_rows, max_n_block_cols, max_n_batches = max_grid
|
|
|
|
for b_start in range(0, n_batches, max_n_batches):
|
|
b_v, b_crow, b_col, b_d, b_o = slicer(
|
|
0,
|
|
slice(b_start, b_start + max_n_batches),
|
|
values,
|
|
crow_indices,
|
|
col_indices,
|
|
dense,
|
|
output,
|
|
)
|
|
b_grid = min(n_batches - b_start, max_n_batches)
|
|
|
|
for c_start in range(0, n_block_cols, max_n_block_cols):
|
|
bc_d, bc_o = slicer(
|
|
-3, slice(c_start, c_start + max_n_block_cols), b_d, b_o
|
|
)
|
|
c_grid = min(n_block_cols - c_start, max_n_block_cols)
|
|
|
|
for r_start in range(0, n_block_rows, max_n_block_rows):
|
|
r_slice = slice(r_start, r_start + max_n_block_rows)
|
|
br_crow = next(slicer(-1, r_slice, b_crow))
|
|
brc_o = next(slicer(-4, r_slice, bc_o))
|
|
r_grid = min(n_block_rows - r_start, max_n_block_rows)
|
|
|
|
_bsr_strided_dense_rowspace_kernel[(r_grid, c_grid, b_grid)](
|
|
*blocksize,
|
|
b_v,
|
|
*b_v.stride(),
|
|
br_crow,
|
|
*br_crow.stride(),
|
|
b_col,
|
|
*b_col.stride(),
|
|
bc_d,
|
|
*bc_d.stride(),
|
|
brc_o,
|
|
*brc_o.stride(),
|
|
GROUP_SIZE_ROW=4,
|
|
num_stages=1,
|
|
num_warps=4,
|
|
)
|
|
|
|
|
|
def bsr_dense_mm(
|
|
bsr: torch.Tensor,
|
|
dense: torch.Tensor,
|
|
*,
|
|
skip_checks: bool = False,
|
|
is_sparse_rowspace_mode: Optional[bool] = None,
|
|
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
|
|
out: Optional[torch.Tensor] = None,
|
|
):
|
|
m, kl = bsr.shape[-2:]
|
|
kr, n = dense.shape[-2:]
|
|
|
|
def check(cond, msg):
|
|
if not cond:
|
|
raise ValueError(msg)
|
|
|
|
if not skip_checks:
|
|
check(
|
|
bsr.layout == torch.sparse_bsr,
|
|
"bsr_dense_mm(): only BSR sparse format is supported for the sparse argument.",
|
|
)
|
|
|
|
check(
|
|
bsr.device == dense.device and bsr.device.type == "cuda",
|
|
"bsr_dense_mm(): all inputs are expected to be on the same GPU device.",
|
|
)
|
|
|
|
check(
|
|
bsr.dtype == dense.dtype
|
|
and bsr.dtype in (torch.half, torch.bfloat16, torch.float),
|
|
"bsr_dense_mm(): all inputs are expected to be of the same dtype "
|
|
"and one of (half, bfloat16, float32), "
|
|
f"but got bsr.dtype == {bsr.dtype} and dense.dtype == {dense.dtype}.",
|
|
)
|
|
|
|
check(
|
|
bsr.dim() >= 2 and dense.dim() >= 2,
|
|
"bsr_dense_mm(): all inputs are expected to be at least 2D, "
|
|
f"but got bsr.dim() == {bsr.dim()} and dense.dim() == {dense.dim()}.",
|
|
)
|
|
|
|
check(
|
|
kl == kr,
|
|
"bsr_dense_mm(): argument sizes are not compatible for matrix multiplication, "
|
|
f"got bsr.shape[-1] == {kl} which is not equal to dense.shape[-2] == {kr}.",
|
|
)
|
|
|
|
row_block = bsr.values().shape[-2]
|
|
check(
|
|
not n % row_block,
|
|
f"bsr_dense_mm(): dense.size(-1) == {n} should be divisible by "
|
|
f"blocksize[0] == {row_block}.",
|
|
)
|
|
|
|
# Required to undo the fake batch dimension insertion.
|
|
original_batch_dims_broadcasted = torch.broadcast_shapes(
|
|
bsr.shape[:-2], dense.shape[:-2]
|
|
)
|
|
|
|
if out is not None and not skip_checks:
|
|
expected_out_shape = original_batch_dims_broadcasted + (m, n)
|
|
check(
|
|
out.shape == expected_out_shape,
|
|
"bsr_dense_mm(): `out` argument has wrong shape, "
|
|
f"expected {expected_out_shape}, but got {out.shape}.",
|
|
)
|
|
check(
|
|
out.is_contiguous() or out.transpose(-2, -1).is_contiguous(),
|
|
"bsr_dense_mm(): only row-major/col-major `out` arguments are supported, "
|
|
"i.e. (out.is_contiguous() or out.transpose(-2, -1).is_contiguous()) "
|
|
"should be True.",
|
|
)
|
|
|
|
# Allocate out
|
|
if out is None:
|
|
out = dense.new_zeros(original_batch_dims_broadcasted + (m, n))
|
|
else:
|
|
out.zero_()
|
|
|
|
# Short circuit if lhs is zero
|
|
if bsr._nnz() == 0:
|
|
return out
|
|
|
|
# TODO: insert switch
|
|
if is_sparse_rowspace_mode is None:
|
|
is_sparse_rowspace_mode = False
|
|
|
|
# Introduce fake batch dimension if not present for convenience.
|
|
def unsqueeze_batch_dim(t, n_non_batch_dims):
|
|
if t.dim() > n_non_batch_dims:
|
|
return t
|
|
else:
|
|
return t.unsqueeze(0)
|
|
|
|
def make_triton_contiguous(t):
|
|
# Triton does not distinguish between row- and col-majorness
|
|
# and will be fast as long as there is a contiguous dimension.
|
|
if not (t.is_contiguous() or t.transpose(-2, -1).is_contiguous()):
|
|
return t.contiguous()
|
|
else:
|
|
return t
|
|
|
|
crow_indices = unsqueeze_batch_dim(bsr.crow_indices(), 1)
|
|
col_indices = unsqueeze_batch_dim(bsr.col_indices(), 1)
|
|
values = make_triton_contiguous(unsqueeze_batch_dim(bsr.values(), 3))
|
|
dense = make_triton_contiguous(unsqueeze_batch_dim(dense, 2))
|
|
nnz = values.shape[-3]
|
|
blocksize = values.shape[-2:]
|
|
|
|
# Compute broadcasted batch dimension
|
|
bsr_batch_dims = values.shape[:-3]
|
|
dense_batch_dims = dense.shape[:-2]
|
|
batch_dims_broadcasted = torch.broadcast_shapes(bsr_batch_dims, dense_batch_dims)
|
|
|
|
# Broadcast batch dimensions and squash
|
|
def batch_broadcast_and_squash(t, batch_dims, invariant_dims):
|
|
return t.broadcast_to(batch_dims + invariant_dims).flatten(
|
|
0, len(batch_dims) - 1
|
|
)
|
|
|
|
crow_indices = batch_broadcast_and_squash(
|
|
crow_indices, batch_dims_broadcasted, (-1,)
|
|
)
|
|
|
|
if is_sparse_rowspace_mode:
|
|
# Flatten batch dimension with nnz dimension
|
|
# as required by the sparse rowspace kernel.
|
|
col_indices = batch_broadcast_and_squash(
|
|
col_indices, batch_dims_broadcasted + (-1,), ()
|
|
)
|
|
values = batch_broadcast_and_squash(
|
|
values, batch_dims_broadcasted + (values.shape[-3],), values.shape[-2:]
|
|
)
|
|
else:
|
|
col_indices = batch_broadcast_and_squash(
|
|
col_indices, batch_dims_broadcasted, (-1,)
|
|
)
|
|
values = batch_broadcast_and_squash(
|
|
values, batch_dims_broadcasted, values.shape[-3:]
|
|
)
|
|
|
|
dense = batch_broadcast_and_squash(dense, batch_dims_broadcasted, dense.shape[-2:])
|
|
|
|
# NOTE: out is contiguous, so batch_broadcast_and_squash will create a view
|
|
# out gets modified in-place, so we store a backup copy.
|
|
out_backup = out
|
|
out = batch_broadcast_and_squash(out, batch_dims_broadcasted, out.shape[-2:])
|
|
|
|
# NOTE: this function will ALWAYS create a view
|
|
def tile_to_blocksize(t, blocksize):
|
|
*rest, m, n = t.shape
|
|
new_shape = rest + [
|
|
m // blocksize[0],
|
|
blocksize[0],
|
|
n // blocksize[1],
|
|
blocksize[1],
|
|
]
|
|
return t.reshape(new_shape).transpose(-3, -2)
|
|
|
|
# "Blockify" the row dimension of dense with blocksize[1]
|
|
# since dense is on the rhs of matmul
|
|
dense = tile_to_blocksize(dense, blocksize[::-1])
|
|
# "Blockify" the row dimension of out with blocksize[0]
|
|
# which is inherited from the bsr input.
|
|
# NOTE: tile_to_blocksize will create a view.
|
|
# NOTE: out.blocksize[-1] == dense.blocksize[-1],
|
|
# so it could be any value in [1, dense.shape[-1]).
|
|
# We need to probably use the largest possible blocksize
|
|
# so that it fits into SRAM.
|
|
out = tile_to_blocksize(out, (blocksize[0], blocksize[0]))
|
|
|
|
# Launch kernel
|
|
if is_sparse_rowspace_mode:
|
|
kernel = _run_sparse_rowspace_kernel
|
|
else:
|
|
kernel = _run_dense_rowspace_kernel
|
|
|
|
# cuda_max_grid = (2 ** 31 - 1, 2 ** 16 - 1, 2 ** 16 - 1)
|
|
cuda_max_grid = (2147483647, 65535, 65535)
|
|
if max_grid is None:
|
|
max_grid = cuda_max_grid
|
|
else:
|
|
|
|
def valid_grid_dim(g, mg):
|
|
if g is None:
|
|
return mg
|
|
else:
|
|
# grid must be at least 1 and no greater than mg
|
|
return max(1, min(g, mg))
|
|
|
|
max_grid = tuple(
|
|
valid_grid_dim(g, mg) for g, mg in zip(max_grid, cuda_max_grid)
|
|
) # type: ignore[assignment]
|
|
|
|
kernel(blocksize, values, crow_indices, col_indices, dense, out, max_grid)
|
|
|
|
return out_backup
|
|
else:
|
|
bsr_dense_mm = None # type: ignore[assignment]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._inductor.utils import has_triton
|
|
|
|
if has_triton():
|
|
torch.manual_seed(13)
|
|
dtype = torch.float32
|
|
p = 0.5
|
|
mask_size = (8, 8)
|
|
block_size = (64, 64)
|
|
size = (mask_size[0] * block_size[0], mask_size[1] * block_size[1])
|
|
|
|
n_exp = 512
|
|
diff = torch.ones(n_exp, device="cuda", dtype=torch.float32)
|
|
for i in range(n_exp):
|
|
mask = torch.rand(*mask_size, device="cuda") < p
|
|
x = torch.rand(*mask_size, *block_size, dtype=dtype, device="cuda") / 10
|
|
x = (
|
|
(mask[:, :, None, None] * x)
|
|
.transpose(-3, -2)
|
|
.reshape(*size)
|
|
.to_sparse_bsr(*block_size)
|
|
)
|
|
y = torch.rand(5, *size, dtype=dtype, device="cuda") / 10
|
|
res_dense = x.to_dense() @ y
|
|
res = bsr_dense_mm(x, y)
|
|
diff[i] = (res - res_dense).abs().max()
|
|
print(f"mean: {diff.mean()}, std: {diff.std()}")
|
|
print(f"max diff: {diff.max()}")
|