mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Default runtime type checking to raise by changing the default value to `GLOBALS.runtime_type_check_state` into ERRORS Pull Request resolved: https://github.com/pytorch/pytorch/pull/86555 Approved by: https://github.com/BowenBao
90 lines
3.1 KiB
Python
90 lines
3.1 KiB
Python
"""Globals used internally by the ONNX exporter.
|
|
|
|
Do not use this module outside of `torch.onnx` and its tests.
|
|
|
|
Be very judicious when adding any new global variables. Do not create new global
|
|
variables unless they are absolutely necessary.
|
|
"""
|
|
import os
|
|
|
|
import torch._C._onnx as _C_onnx
|
|
|
|
# This module should only depend on _constants and nothing else in torch.onnx to keep
|
|
# dependency direction clean.
|
|
from torch.onnx import _constants, _exporter_states
|
|
|
|
|
|
class _InternalGlobals:
|
|
"""Globals used internally by ONNX exporter.
|
|
|
|
NOTE: Be very judicious when adding any new variables. Do not create new
|
|
global variables unless they are absolutely necessary.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._export_onnx_opset_version = _constants.ONNX_DEFAULT_OPSET
|
|
self._training_mode: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
|
|
self._in_onnx_export: bool = False
|
|
# Whether the user's model is training during export
|
|
self.export_training: bool = False
|
|
self.operator_export_type: _C_onnx.OperatorExportTypes = (
|
|
_C_onnx.OperatorExportTypes.ONNX
|
|
)
|
|
self.onnx_shape_inference: bool = True
|
|
|
|
# Internal feature flags
|
|
if os.getenv("TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK") == "WARNINGS":
|
|
self.runtime_type_check_state = (
|
|
_exporter_states.RuntimeTypeCheckState.WARNINGS
|
|
)
|
|
elif os.getenv("TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK") == "DISABLED":
|
|
self.runtime_type_check_state = (
|
|
_exporter_states.RuntimeTypeCheckState.DISABLED
|
|
)
|
|
else:
|
|
self.runtime_type_check_state = (
|
|
_exporter_states.RuntimeTypeCheckState.ERRORS
|
|
)
|
|
|
|
@property
|
|
def training_mode(self):
|
|
"""The training mode for the exporter."""
|
|
return self._training_mode
|
|
|
|
@training_mode.setter
|
|
def training_mode(self, training_mode: _C_onnx.TrainingMode):
|
|
if not isinstance(training_mode, _C_onnx.TrainingMode):
|
|
raise TypeError(
|
|
"training_mode must be of type 'torch.onnx.TrainingMode'. This is "
|
|
"likely a bug in torch.onnx."
|
|
)
|
|
self._training_mode = training_mode
|
|
|
|
@property
|
|
def export_onnx_opset_version(self) -> int:
|
|
"""Opset version used during export."""
|
|
return self._export_onnx_opset_version
|
|
|
|
@export_onnx_opset_version.setter
|
|
def export_onnx_opset_version(self, value: int):
|
|
supported_versions = range(
|
|
_constants.ONNX_MIN_OPSET, _constants.ONNX_MAX_OPSET + 1
|
|
)
|
|
if value not in supported_versions:
|
|
raise ValueError(f"Unsupported ONNX opset version: {value}")
|
|
self._export_onnx_opset_version = value
|
|
|
|
@property
|
|
def in_onnx_export(self) -> bool:
|
|
"""Whether it is in the middle of ONNX export."""
|
|
return self._in_onnx_export
|
|
|
|
@in_onnx_export.setter
|
|
def in_onnx_export(self, value: bool):
|
|
if type(value) is not bool:
|
|
raise TypeError("in_onnx_export must be a boolean")
|
|
self._in_onnx_export = value
|
|
|
|
|
|
GLOBALS = _InternalGlobals()
|