Files
pytorch/torch/cuda/nccl.py
Carlos Mocholí 491ee70e6e Avoid collections deprecation warning (#72239)
Summary:
Avoids the following deprecation warning:

```python
    loss.backward(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/torch/tensor.py:245: in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
/usr/local/lib/python3.7/dist-packages/torch/autograd/__init__.py:147: in backward
    allow_unreachable=True, accumulate_grad=True)  # allow_unreachable flag
/usr/local/lib/python3.7/dist-packages/torch/autograd/function.py:89: in apply
    return self._forward_cls.backward(self, *args)  # type: ignore
/usr/local/lib/python3.7/dist-packages/torch/nn/parallel/_functions.py:34: in backward
    return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs)
/usr/local/lib/python3.7/dist-packages/torch/nn/parallel/_functions.py:45: in forward
    return comm.reduce_add_coalesced(grads_, destination)
/usr/local/lib/python3.7/dist-packages/torch/nn/parallel/comm.py:143: in reduce_add_coalesced
    flat_result = reduce_add(flat_tensors, destination)
/usr/local/lib/python3.7/dist-packages/torch/nn/parallel/comm.py:96: in reduce_add
    nccl.reduce(inputs, output=result, root=root_index)
/usr/local/lib/python3.7/dist-packages/torch/cuda/nccl.py:69: in reduce
    _check_sequence_type(inputs)
/usr/local/lib/python3.7/dist-packages/torch/cuda/nccl.py:48: in _check_sequence_type
    if not isinstance(inputs, collections.Container) or isinstance(inputs, torch.Tensor):
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

name = 'Container'

    def __getattr__(name):
        # For backwards compatibility, continue to make the collections ABCs
        # through Python 3.6 available through the collections module.
        # Note, no new collections ABCs were added in Python 3.7
        if name in _collections_abc.__all__:
            obj = getattr(_collections_abc, name)
            import warnings
            warnings.warn("Using or importing the ABCs from 'collections' instead "
                          "of from 'collections.abc' is deprecated since Python 3.3,"
                          "and in 3.9 it will stop working",
>                         DeprecationWarning, stacklevel=2)
E           DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3,and in 3.9 it will stop working

/usr/lib/python3.7/collections/__init__.py:52: DeprecationWarning
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72239

Reviewed By: ngimel

Differential Revision: D34387815

Pulled By: mruberry

fbshipit-source-id: 30c9b4fe518351bc9a6f211269e27ee3ab73a13c
(cherry picked from commit 1f68cdfac5875b56893b6b7ab3e8db96897f128b)
2022-02-23 02:31:42 +00:00

114 lines
3.9 KiB
Python

import collections
import warnings
import torch.cuda
from typing import Optional, Sequence, Union
__all__ = ['all_reduce', 'reduce', 'broadcast', 'all_gather', 'reduce_scatter']
SUM = 0 # ncclRedOp_t
def is_available(tensors):
if not hasattr(torch._C, '_nccl_all_reduce'):
warnings.warn('PyTorch is not compiled with NCCL support')
return False
devices = set()
for tensor in tensors:
if tensor.is_sparse:
return False
if not tensor.is_contiguous():
return False
if not tensor.is_cuda:
return False
device = tensor.get_device()
if device in devices:
return False
devices.add(device)
return True
def version():
ver = torch._C._nccl_version()
major = ver >> 32
minor = (ver >> 16) & 65535
patch = ver & 65535
return (major, minor, patch)
def unique_id():
return torch._C._nccl_unique_id()
def init_rank(num_ranks, uid, rank):
return torch._C._nccl_init_rank(num_ranks, uid, rank)
def _check_sequence_type(inputs: Union[torch.Tensor, Sequence[torch.Tensor]]) -> None:
if not isinstance(inputs, collections.abc.Container) or isinstance(inputs, torch.Tensor):
raise TypeError("Inputs should be a collection of tensors")
def all_reduce(inputs, outputs=None, op=SUM, streams=None, comms=None):
_check_sequence_type(inputs)
if outputs is None:
outputs = inputs
_check_sequence_type(outputs)
torch._C._nccl_all_reduce(inputs, outputs, op, streams, comms)
# `output` used to be `outputs`, taking in a list of tensors. So we have two
# arguments for BC reasons.
def reduce(inputs: Sequence[torch.Tensor],
output: Optional[Union[torch.Tensor, Sequence[torch.Tensor]]] = None,
root: int = 0,
op: int = SUM,
streams: Optional[Sequence[torch.cuda.Stream]] = None,
comms=None, *,
outputs: Optional[Sequence[torch.Tensor]] = None) -> None:
_check_sequence_type(inputs)
_output: torch.Tensor
if outputs is not None:
if output is not None:
raise ValueError(
"'output' and 'outputs' can not be both specified. 'outputs' is deprecated in "
"favor of 'output', taking in a single output tensor. The signature of reduce is: "
"reduce(inputs, output=None, root=0, op=SUM, streams=None, comms=None).")
else:
warnings.warn(
"nccl.reduce with an output tensor list is deprecated. "
"Please specify a single output tensor with argument 'output' instead instead.")
_output = outputs[root]
elif not isinstance(output, torch.Tensor) and isinstance(output, collections.abc.Sequence):
# User called old API with positional arguments of list of output tensors.
warnings.warn(
"nccl.reduce with an output tensor list is deprecated. "
"Please specify a single output tensor.")
_output = output[root]
else:
_output = inputs[root] if output is None else output
torch._C._nccl_reduce(inputs, _output, root, op, streams, comms)
def broadcast(inputs: Sequence[torch.Tensor], root: int = 0, streams=None, comms=None) -> None:
_check_sequence_type(inputs)
torch._C._nccl_broadcast(inputs, root, streams, comms)
def all_gather(inputs: Sequence[torch.Tensor], outputs: Sequence[torch.Tensor], streams=None, comms=None) -> None:
_check_sequence_type(inputs)
_check_sequence_type(outputs)
torch._C._nccl_all_gather(inputs, outputs, streams, comms)
def reduce_scatter(inputs: Sequence[torch.Tensor],
outputs: Sequence[torch.Tensor],
op: int = SUM,
streams=None, comms=None) -> None:
_check_sequence_type(inputs)
_check_sequence_type(outputs)
torch._C._nccl_reduce_scatter(inputs, outputs, op, streams, comms)