mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
### Description Across PyTorch's docstrings, both `callable` and `Callable` for variable types. The Callable should be capitalized as we are referring to the `Callable` type, and not the Python `callable()` function. ### Testing There shouldn't be any testing required. Pull Request resolved: https://github.com/pytorch/pytorch/pull/82487 Approved by: https://github.com/albanD
143 lines
5.8 KiB
Python
143 lines
5.8 KiB
Python
import time
|
|
from collections import defaultdict
|
|
from functools import partial
|
|
from typing import DefaultDict
|
|
|
|
import torch
|
|
|
|
|
|
# Unfortunately it doesn't seem as if there was any way to get TensorBoard to do
|
|
# anything without having TF installed, and so this file has a hard dependency on it
|
|
# as well. It really is a debugging tool, so it doesn't matter.
|
|
try:
|
|
from tensorflow.core.util import event_pb2
|
|
from tensorflow.core.framework import graph_pb2
|
|
from tensorflow.python.summary.writer.writer import FileWriter
|
|
except ImportError:
|
|
raise ImportError("TensorBoard visualization of GraphExecutors requires having "
|
|
"TensorFlow installed") from None
|
|
|
|
|
|
def dump_tensorboard_summary(graph_executor, logdir):
|
|
with FileWriter(logdir) as w:
|
|
pb_graph = visualize(graph_executor)
|
|
evt = event_pb2.Event(wall_time=time.time(), graph_def=pb_graph.SerializeToString())
|
|
w.add_event(evt)
|
|
|
|
|
|
def visualize(graph, name_prefix='', pb_graph=None, executors_it=None):
|
|
"""Visualizes an independent graph, or a graph executor."""
|
|
value_map = {}
|
|
pb_graph = pb_graph or graph_pb2.GraphDef()
|
|
|
|
if isinstance(graph, torch._C.GraphExecutorState):
|
|
visualize_graph_executor(graph, name_prefix, pb_graph,
|
|
partial(visualize, pb_graph=pb_graph))
|
|
return pb_graph
|
|
|
|
# Set up an input node
|
|
input_node = pb_graph.node.add(op='input', name=name_prefix + 'input')
|
|
for i, value in enumerate(graph.param_node().outputs()):
|
|
value_map[value.unique()] = name_prefix + 'input:' + str(i)
|
|
|
|
visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it)
|
|
|
|
# Gather all outputs
|
|
return_node = pb_graph.node.add(op='output', name=name_prefix + 'output')
|
|
for value in graph.return_node().inputs():
|
|
return_node.input.append(value_map[value.unique()])
|
|
|
|
return pb_graph
|
|
|
|
|
|
def visualize_graph_executor(state, name_prefix, pb_graph, inline_graph):
|
|
"""Appends the state of a given GraphExecutor to the graph protobuf.
|
|
|
|
Args:
|
|
state (GraphExecutor or GraphExecutorState): GraphExecutor to display.
|
|
name_prefix (str): Name prefix of the containing subgraph.
|
|
pb_graph (GraphDef): graph to append to.
|
|
inline_graph (Callable): a function that handles setting up a value_map,
|
|
so that some graphs in here can be inlined. This is necessary, because
|
|
this will simply be `visualize` for the top-level GraphExecutor,
|
|
or `inline_graph` for all nested ones.
|
|
|
|
The signature should look like (Graph, name_prefix) -> ().
|
|
It will be called exactly once.
|
|
|
|
The strategy is to embed all different configurations as independent subgraphs,
|
|
while inlining the original graph as the one that actually produces the values.
|
|
"""
|
|
if state.autograd_fallback_graph is not None:
|
|
visualize(graph=state.autograd_fallback_graph,
|
|
name_prefix=name_prefix + 'autograd_fallback/',
|
|
pb_graph=pb_graph,
|
|
executors_it=iter(state.autograd_fallback.executors()))
|
|
|
|
for i, (arg_spec, plan) in enumerate(state.execution_plans.items()):
|
|
subgraph_name = name_prefix + 'plan{}/'.format(i)
|
|
|
|
# Create a disconnected node that will keep information regarding the input
|
|
# types of this trace. This is unfortunately a bit too verbose to be included
|
|
# in the subgraph name.
|
|
input_kinds = pb_graph.node.add(op='INPUT_KIND', name=subgraph_name)
|
|
input_kinds.attr['inputs'].s = repr(arg_spec).encode('ascii')
|
|
|
|
visualize(plan.graph, subgraph_name, pb_graph, iter(plan.code.executors()))
|
|
|
|
# Show gradient as an independent subgraph of this plan
|
|
if plan.grad_executor is not None:
|
|
grad_subgraph_name = subgraph_name + 'grad/'
|
|
visualize(plan.grad_executor, grad_subgraph_name, pb_graph)
|
|
|
|
return inline_graph(state.graph, name_prefix + 'original/')
|
|
|
|
|
|
def visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it=None):
|
|
"""Recursive part of visualize (basically skips setting up the input and output nodes)."""
|
|
def inline_graph(subgraph, name, node):
|
|
rec_value_map = {inp.unique(): value_map[val.unique()]
|
|
for inp, val in zip(subgraph.inputs(), node.inputs())}
|
|
visualize_rec(graph=subgraph,
|
|
value_map=rec_value_map,
|
|
name_prefix=name,
|
|
pb_graph=pb_graph)
|
|
for out, val in zip(subgraph.outputs(), node.outputs()):
|
|
value_map[val.unique()] = rec_value_map[out.unique()]
|
|
|
|
op_id_counter: DefaultDict[str, int] = defaultdict(int)
|
|
|
|
def name_for(node):
|
|
kind = node.kind()[node.kind().index('::') + 2:]
|
|
op_id_counter[kind] += 1
|
|
return kind, name_prefix + kind + '_' + str(op_id_counter[kind])
|
|
|
|
def add_fusion_group(node):
|
|
op, name = name_for(node)
|
|
inline_graph(node.g('Subgraph'), name + '/', node)
|
|
|
|
def add_graph_executor(node):
|
|
op, name = name_for(node)
|
|
if executors_it is None:
|
|
add_node(node)
|
|
else:
|
|
ge = next(executors_it)
|
|
visualize_graph_executor(ge, name + '/', pb_graph,
|
|
partial(inline_graph, node=node))
|
|
|
|
def add_node(node):
|
|
if node.kind() == 'prim::FusionGroup':
|
|
return add_fusion_group(node)
|
|
elif node.kind() == 'prim::GraphExecutor':
|
|
return add_graph_executor(node)
|
|
op, name = name_for(node)
|
|
pb_node = pb_graph.node.add(op=op, name=name)
|
|
for value in node.inputs():
|
|
pb_node.input.append(value_map[value.unique()])
|
|
# TODO: handle attrs
|
|
for i, value in enumerate(node.outputs()):
|
|
value_map[value.unique()] = name + ':' + str(i)
|
|
|
|
for node in graph.nodes():
|
|
add_node(node)
|