Files
pytorch/caffe2/python/test_util.py
Adam Simpkins fa0a049d4e Add a make_tempdir() utility function to the TestCase base class (#51762)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51762

Update test_util.py to add a `make_tempdir()` function to the `TestCase`
class.  The main advantage of this function is that the temporary
directory will be automatically cleaned up when the test case finishes,
so that test case does not need to worry about manually cleaning up this
directory.

This also prefixes the directory name with `caffe2_test.` so that it is
more obvious where the temporary directories came from if they are ever
left behind after a crashed or killed test process.

This updates the tests in `operator_test/load_save_test.py` to use this
new function, so they no longer have to perform their own manual cleanup
in each test.

Test Plan: python caffe2/python/operator_test/load_save_test.py

Reviewed By: mraway

Differential Revision: D26271178

Pulled By: simpkins

fbshipit-source-id: 51175eefed39d65c03484482e84923e5f39a4768
2021-02-12 10:56:01 -08:00

116 lines
3.4 KiB
Python

## @package test_util
# Module caffe2.python.test_util
import numpy as np
from caffe2.python import core, workspace
import os
import pathlib
import shutil
import tempfile
import unittest
from typing import Any, Callable, Tuple, Type
from types import TracebackType
def rand_array(*dims):
# np.random.rand() returns float instead of 0-dim array, that's why need to
# do some tricks
return np.array(np.random.rand(*dims) - 0.5).astype(np.float32)
def randBlob(name, type, *dims, **kwargs):
offset = kwargs['offset'] if 'offset' in kwargs else 0.0
workspace.FeedBlob(name, np.random.rand(*dims).astype(type) + offset)
def randBlobFloat32(name, *dims, **kwargs):
randBlob(name, np.float32, *dims, **kwargs)
def randBlobsFloat32(names, *dims, **kwargs):
for name in names:
randBlobFloat32(name, *dims, **kwargs)
def numOps(net):
return len(net.Proto().op)
def str_compare(a, b, encoding="utf8"):
if isinstance(a, bytes):
a = a.decode(encoding)
if isinstance(b, bytes):
b = b.decode(encoding)
return a == b
def get_default_test_flags():
return [
'caffe2',
'--caffe2_log_level=0',
'--caffe2_cpu_allocator_do_zero_fill=0',
'--caffe2_cpu_allocator_do_junk_fill=1',
]
def caffe2_flaky(test_method):
# This decorator is used to mark a test method as flaky.
# This is used in conjunction with the environment variable
# CAFFE2_RUN_FLAKY_TESTS that specifies "flaky tests" mode
# If flaky tests mode are on, only flaky tests are run
# If flaky tests mode are off, only non-flaky tests are run
# NOTE: the decorator should be applied as the top-level decorator
# in a test method.
test_method.__caffe2_flaky__ = True
return test_method
def is_flaky_test_mode():
return os.getenv('CAFFE2_RUN_FLAKY_TESTS', '0') == '1'
class TestCase(unittest.TestCase):
@classmethod
def setUpClass(cls):
workspace.GlobalInit(get_default_test_flags())
# clear the default engines settings to separate out its
# affect from the ops tests
core.SetEnginePref({}, {})
def setUp(self):
# Skip tests based on whether we're in flaky test mode and
# the test is decorated as a flaky test.
test_method = getattr(self, self._testMethodName)
is_flaky_test = getattr(test_method, "__caffe2_flaky__", False)
if (is_flaky_test_mode() and not is_flaky_test):
raise unittest.SkipTest("Non-flaky tests are skipped in flaky test mode")
elif (not is_flaky_test_mode() and is_flaky_test):
raise unittest.SkipTest("Flaky tests are skipped in regular test mode")
self.ws = workspace.C.Workspace()
workspace.ResetWorkspace()
def tearDown(self):
workspace.ResetWorkspace()
def make_tempdir(self) -> pathlib.Path:
tmp_folder = pathlib.Path(tempfile.mkdtemp(prefix="caffe2_test."))
self.addCleanup(self._remove_tempdir, tmp_folder)
return tmp_folder
def _remove_tempdir(self, path: pathlib.Path) -> None:
def _onerror(
fn: Callable[..., Any],
path: str,
exc_info: Tuple[Type[BaseException], BaseException, TracebackType],
) -> None:
# Ignore FileNotFoundError, but re-raise anything else
if not isinstance(exc_info[1], FileNotFoundError):
raise exc_info[1].with_traceback(exc_info[2])
shutil.rmtree(str(path), onerror=_onerror)