mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.
Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:
`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)
```python
class BooleanOptionalAction(Action):
def __init__(...):
if option_string.startswith('--'):
option_string = '--no-' + option_string[2:]
_option_strings.append(option_string)
```
It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
168 lines
4.6 KiB
Python
168 lines
4.6 KiB
Python
import argparse
|
|
|
|
import torch
|
|
|
|
import benchmark_core
|
|
import benchmark_utils
|
|
|
|
"""Performance microbenchmarks's main binary.
|
|
|
|
This is the main function for running performance microbenchmark tests.
|
|
It also registers existing benchmark tests via Python module imports.
|
|
"""
|
|
parser = argparse.ArgumentParser(
|
|
description="Run microbenchmarks.",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
def parse_args():
|
|
parser.add_argument(
|
|
'--tag-filter',
|
|
'--tag_filter',
|
|
help='tag_filter can be used to run the shapes which matches the tag. (all is used to run all the shapes)',
|
|
default='short')
|
|
|
|
# This option is used to filter test cases to run.
|
|
parser.add_argument(
|
|
'--operators',
|
|
help='Filter tests based on comma-delimited list of operators to test',
|
|
default=None)
|
|
|
|
parser.add_argument(
|
|
'--operator-range',
|
|
'--operator_range',
|
|
help='Filter tests based on operator_range(e.g. a-c or b,c-d)',
|
|
default=None)
|
|
|
|
parser.add_argument(
|
|
'--test-name',
|
|
'--test_name',
|
|
help='Run tests that have the provided test_name',
|
|
default=None)
|
|
|
|
parser.add_argument(
|
|
'--list-ops',
|
|
'--list_ops',
|
|
help='List operators without running them',
|
|
action='store_true')
|
|
|
|
parser.add_argument(
|
|
'--list-tests',
|
|
'--list_tests',
|
|
help='List all test cases without running them',
|
|
action='store_true')
|
|
|
|
parser.add_argument(
|
|
"--iterations",
|
|
help="Repeat each operator for the number of iterations",
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-runs",
|
|
"--num_runs",
|
|
help="Run each test for num_runs. Each run executes an operator for number of <--iterations>",
|
|
type=int,
|
|
default=1,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--min-time-per-test",
|
|
"--min_time_per_test",
|
|
help="Set the minimum time (unit: seconds) to run each test",
|
|
type=int,
|
|
default=0,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--warmup-iterations",
|
|
"--warmup_iterations",
|
|
help="Number of iterations to ignore before measuring performance",
|
|
default=100,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--omp-num-threads",
|
|
"--omp_num_threads",
|
|
help="Number of OpenMP threads used in PyTorch/Caffe2 runtime",
|
|
default=None,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mkl-num-threads",
|
|
"--mkl_num_threads",
|
|
help="Number of MKL threads used in PyTorch/Caffe2 runtime",
|
|
default=None,
|
|
type=int
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--report-aibench",
|
|
"--report_aibench",
|
|
type=benchmark_utils.str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=False,
|
|
help="Print result when running on AIBench"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-jit",
|
|
"--use_jit",
|
|
type=benchmark_utils.str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=False,
|
|
help="Run operators with PyTorch JIT mode"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--forward-only",
|
|
"--forward_only",
|
|
type=benchmark_utils.str2bool,
|
|
nargs='?',
|
|
const=True,
|
|
default=False,
|
|
help="Only run the forward path of operators"
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--framework',
|
|
help='Comma-delimited list of frameworks to test (Caffe2, PyTorch)',
|
|
default="Caffe2,PyTorch")
|
|
|
|
parser.add_argument(
|
|
'--device',
|
|
help='Run tests on the provided architecture (cpu, cuda)',
|
|
default='None')
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
if args.omp_num_threads:
|
|
# benchmark_utils.set_omp_threads sets the env variable OMP_NUM_THREADS
|
|
# which doesn't have any impact as C2 init logic has already been called
|
|
# before setting the env var.
|
|
|
|
# In general, OMP_NUM_THREADS (and other OMP env variables) needs to be set
|
|
# before the program is started.
|
|
# From Chapter 4 in OMP standard: https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
|
|
# "Modifications to the environment variables after the program has started,
|
|
# even if modified by the program itself, are ignored by the OpenMP implementation"
|
|
benchmark_utils.set_omp_threads(args.omp_num_threads)
|
|
if benchmark_utils.is_pytorch_enabled(args.framework):
|
|
torch.set_num_threads(args.omp_num_threads)
|
|
if args.mkl_num_threads:
|
|
benchmark_utils.set_mkl_threads(args.mkl_num_threads)
|
|
|
|
return args
|
|
|
|
def main():
|
|
args = parse_args()
|
|
benchmark_core.BenchmarkRunner(args).run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|