Files
pytorch/test/functorch/test_control_flow.py
Yidi Wu da8f48d88f [associative_scan] support gen_schema for associative_scan (#158883)
In-place mutation may create inter-loop dependency that breaks the parallelism we have for associative_scan so we ban input mutations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158883
Approved by: https://github.com/zou3519
ghstack dependencies: #154193, #158965, #158863, #158864
2025-08-15 17:28:44 +00:00

8922 lines
339 KiB
Python

# Owner(s): ["module: functorch"]
import contextlib
import functools
import unittest
import torch
import torch.utils._pytree as pytree
from functorch.experimental import control_flow
from functorch.experimental.control_flow import cond
from torch._dynamo.testing import EagerAndRecordGraphs, normalize_gm
from torch._higher_order_ops.associative_scan import (
_fake_associative_scan,
associative_scan,
)
from torch._higher_order_ops.map import _fake_map
from torch._higher_order_ops.scan import _fake_scan, scan
from torch._higher_order_ops.schema import HopSchemaGenerator
from torch._higher_order_ops.while_loop import while_loop
from torch._subclasses.functional_tensor import (
CppFunctionalizeAPI,
FunctionalTensor,
FunctionalTensorMode,
PythonFunctionalizeAPI,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_cuda import SM70OrLater
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
from torch.testing._internal.common_utils import (
decorateIf,
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
requires_cuda,
run_tests,
skipIfCrossRef,
skipIfRocm,
skipIfTorchDynamo,
TEST_WITH_CROSSREF,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
# TODO: pull these helpers from AOTAutograd later
def to_fun(t):
if isinstance(t, torch.Tensor):
return FunctionalTensor.to_functional(t)
return t
def from_fun(t):
if not isinstance(t, FunctionalTensor):
# quick sanity assert
if isinstance(t, torch.Tensor):
assert not torch._is_functional_tensor(t)
return t
torch._sync(t)
return torch._from_functional_tensor(t.elem)
def to_fun_old(t):
if isinstance(t, torch.Tensor) and not torch._is_functional_tensor(t):
out = torch._to_functional_tensor(t)
torch._mirror_autograd_meta_to(t, out)
return out
return t
def from_fun_old(t):
# quick sanity assert
if isinstance(t, torch.Tensor):
assert torch._is_functional_tensor(t)
torch._sync(t)
return torch._from_functional_tensor(t)
return t
def _fake_while_loop(cond_fn, body_fn, operands):
while cond_fn(*operands):
operands = body_fn(*operands)
return operands
def compile_mode_helper(fct, compile_mode):
if compile_mode == "compile":
return torch.compile(fct, fullgraph=True, dynamic=False)
elif compile_mode == "compile_dynamic_shape":
return torch.compile(fct, fullgraph=True, dynamic=True)
elif compile_mode == "eager":
return torch.compile(fct, fullgraph=True, backend="eager")
else:
return fct
ALIAS_FN = [
lambda x: x,
lambda x: x.view(-1),
lambda x: x.reshape(-1),
lambda x: x.squeeze(0),
lambda x: x.unsqueeze(0),
lambda x: x.transpose(0, 1),
lambda x: x.flatten(),
lambda x: x.expand(1, *x.size()),
]
def get_scan_combine_fn(name, associative=True, parameters=None):
def add(x: torch.Tensor, y: torch.Tensor):
return x + y
def adds(x: torch.Tensor, y: torch.Tensor):
return x + x, y + y
def mul(x: torch.Tensor, y: torch.Tensor):
return x * y
def div(x: torch.Tensor, y: torch.Tensor):
return x / y
def s5_operator(x: torch.Tensor, y: torch.Tensor):
A_i, Bu_i = x
A_j, Bu_j = y
return A_j * A_i, A_j * Bu_i + Bu_j
def different_input_size_operator(x: torch.Tensor, y: torch.Tensor):
x_o, dA_o, dB_o, C_o, y_o = x
x_n, dA_n, dB_n, C_n, y_n = y
x_new = x_n + x_o
y_new = torch.einsum("bdn,bn->bd", x_new, C_n)
return x_new, dA_n + 0.0, dB_n + 0.0, C_n + 0.0, y_new
def tuple_fct(x, y):
return (x[0] + y[0], x[1] * y[1])
def complex_pointwise(x, y):
return {
"i": x["i"] * y["i"],
"j": (
[x["j"][0][0] * y["j"][0][0]],
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
),
}
def non_pointwise(x: torch.Tensor, y: torch.Tensor):
W = torch.diag(torch.ones(2, device=x.device))
return x @ W + y @ W
def RNN(x: torch.Tensor, y: torch.Tensor):
c_new = y @ parameters[0] + parameters[1]
h_new = torch.tanh(c_new + x @ parameters[2] + parameters[3])
return h_new, h_new.clone()
def fct_c1_no_grad(x: torch.Tensor, y: torch.Tensor):
h_new = torch.tanh(x[0] + x[1] + y)
c2 = x[1] + y
with torch.no_grad():
c1 = x[0] + y
return (c1, c2), h_new
if name == "add":
fct = add
elif name == "adds":
fct = adds
elif name == "mul":
fct = mul
elif name == "div":
fct = div
elif name == "s5_operator":
fct = s5_operator
elif name == "different_input_size_operator":
fct = different_input_size_operator
elif name == "tuple_fct":
fct = tuple_fct
elif name == "complex_pointwise":
fct = complex_pointwise
elif name == "non_pointwise":
fct = non_pointwise
elif name == "RNN":
fct = RNN
elif name == "fct_c1_no_grad":
fct = fct_c1_no_grad
else:
raise ValueError("Combine_fn name unknown!")
if not associative:
return lambda x, y: (fct(x, y), fct(x, y))
else:
return fct
def _while_loop_tests():
def simple(x):
def cond_fn(x):
return x.sum() < 10
def body_fn(x):
return (x + 1,)
return while_loop(cond_fn, body_fn, (x,))
def simple_with_mutation(x):
def cond_fn(x):
y = x.clone().add_(1).add_(-1)
return y.sum() < 10
def body_fn(x):
y = x.clone().add_(1).add_(-1)
return (y + 1,)
return while_loop(cond_fn, body_fn, (x,))
def nested(out_iter, it, y):
def cond_fn(out_iter, it, y):
return it.sum() < 10
def body_fn(out_iter, it, y):
return (out_iter.clone(), it + y, y + 1)
def outer_cond_fn(out_iter, it, y):
return out_iter.sum() < 2
def outer_body_fn(out_iter, it, y):
out_iter, it, y = while_loop(cond_fn, body_fn, (out_iter, it, y))
return (out_iter + 1, it, y)
return while_loop(outer_cond_fn, outer_body_fn, (out_iter, it, y))
class Nested(torch.nn.Module):
def forward(self, ci, cj, a, b):
def cond_fn(i1, j1, x1, y1):
return i1 > 0
def body_fn(i1, j1, x1, y1):
def cond_fn_nested(i2, j2, x2, y2):
return j2 > 0
def body_fn_nested(i2, j2, x2, y2):
return i2.clone(), j2 - 1, x2 + 3.14, y2 - 2.71
i1, j1, x1, y1 = while_loop(
cond_fn_nested, body_fn_nested, [i1, j1, x1, y1]
)
return i1 - 1, j1.clone(), x1 * 2, y1 / 2
return while_loop(cond_fn, body_fn, (ci, cj, a, b))
class SimpleWithLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
self.dec = torch.nn.Buffer(torch.tensor(1))
def forward(self, iter, x):
def cond_fn(it, x):
return it - self.dec > 0
def body_fn(it, x):
return it - 1, self.linear(x)
return while_loop(cond_fn, body_fn, (iter, x))
class SimpleWithPytreeCarry(torch.nn.Module):
def forward(self, it, pytree_input):
def cond_fn(it, pytree_input):
return it > 0
def body_fn(it, pytree_input):
x = pytree_input[0][0]
y = pytree_input[1]["x"]
z = pytree_input[1]["y"]
new_x = y.sin()
new_y = z.cos()
new_z = x + 1
return it - 1, ([new_x], {"x": new_y, "y": new_z})
return while_loop(cond_fn, body_fn, (it, pytree_input))
class NestedWithLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mod = SimpleWithLinear()
self.outer_linear = torch.nn.Linear(2, 2)
self.dec = torch.nn.Buffer(torch.tensor(1))
def forward(self, iter, x):
def cond_fn(it, x):
return it - self.dec > 0
def body_fn(it, x):
return it - 1, self.outer_linear(self.mod(it, x)[1])
return while_loop(cond_fn, body_fn, (iter, x))
class PytreeIntCarry(torch.nn.Module):
def forward(self, x):
a = x.shape[0]
b = x.shape[1]
def cond_fn(shapes, const_int_dict, x):
a, b = shapes
c1, c2, c3 = const_int_dict["int_carry"]
return c1 * c2 * c3 < a * b
def body_fn(shapes, const_int_dict, x):
a, b = shapes
c1, c2, c3 = const_int_dict["int_carry"]
return (
[a + 1, b + 1],
{"int_carry": (c1 + 1, c2 + 1, c3 + 1)},
x + 1,
)
carry = ([a, b], {"int_carry": (2, 2, 3)}, x.sin())
out_shapes, out_it, out_x = while_loop(cond_fn, body_fn, carry)
out_inc = pytree.tree_map(lambda x: x + 1, out_it)
out_add = pytree.tree_map(lambda x: x + out_x, out_it)
return (out_shapes, out_inc, out_add, out_x)
class IntCarry(torch.nn.Module):
def forward(self, x):
def cond_fn(it, x):
return it < x.shape[0]
def body_fn(it, x):
x_clone = x.clone()
# Need these checks to select from x
torch._check(it >= 0)
torch._check(it < x.shape[0])
x_clone.select(0, it).copy_(x_clone.select(0, it) + it)
return it + 1, x_clone
# We invoke the hop directly to avoid triggering dyanmo tracing
out_it, out_x = torch.ops.higher_order.while_loop(
cond_fn, body_fn, (0, x), tuple()
)
# We need torch._check to use it in torch.ones call
torch._check(out_it > 0)
return (
out_it + 1,
out_it + out_x,
out_it < x.shape[0],
torch.ones(out_it * 2),
)
class ConstAndSymIntOutput(torch.nn.Module):
def forward(self, t):
a = t.shape[0]
b = t.shape[1]
def cond_fn(a, b, c1, c2, c3, c0, u0, x):
return c1 * c2 * c3 < a * b
def body_fn(a, b, c1, c2, c3, c0, u0, x):
return b, c1, c2, c3, a, 0, u0 + 1, x + 1
carry = (a, b, 1, 1, 1, a + 1, t.sum().to(torch.int64).item(), t.sin())
out_it = torch.ops.higher_order.while_loop(cond_fn, body_fn, carry, tuple())
out_inc = pytree.tree_map(lambda x: x + 1, out_it)
out_add = pytree.tree_map(lambda x: x + t, out_it)
return out_inc, out_add
nested2 = Nested()
simple_with_linear = SimpleWithLinear()
simple_with_pytree_carry = SimpleWithPytreeCarry()
nested_with_linear = NestedWithLinear()
int_carry = IntCarry()
pytree_int_carry = PytreeIntCarry()
const_and_symint_output = ConstAndSymIntOutput()
x = torch.zeros(1)
y = torch.zeros(1)
z = torch.zeros(1)
return {
"simple": (simple, (x,)),
"nested": (nested, (x, y, z)),
"nested2": (
nested2,
(torch.tensor(2), torch.tensor(2), torch.ones(2, 2), torch.ones(2, 2)),
),
"simple_with_mutation": (simple_with_mutation, (x,)),
"simple_with_linear": (
simple_with_linear,
(torch.tensor(3), torch.randn(2, 2)),
),
"nested_with_linear": (
nested_with_linear,
(torch.tensor(3), torch.randn(2, 2)),
),
"simple_with_pytree_carry": (
simple_with_pytree_carry,
(
torch.tensor(3),
([torch.randn(3, 3)], {"x": torch.randn(3, 3), "y": torch.randn(3, 3)}),
),
),
"int_carry": (int_carry, (torch.randn(2, 3, requires_grad=True),)),
"pytree_int_carry": (
pytree_int_carry,
(torch.randn(2, 3, requires_grad=True),),
),
"const_and_symint_output": (
const_and_symint_output,
(torch.randn(2, 3, requires_grad=True),),
),
}
WHILE_LOOP_TESTS = _while_loop_tests()
def collect_meta_for_filtered_nodes(
gm: torch.fx.GraphModule, node_names, meta_field_name
):
ret = []
for mod in gm.modules():
for node in mod.graph.nodes:
if node.name in node_names:
for field_name in meta_field_name:
ret.append(node.meta.get(field_name))
return ret
def reduce_func(*operands):
acc = 0
for operand in operands:
acc += operand
return acc
class ReduceObj:
def __call__(self, *operands):
return reduce_func(*operands)
class ReduceMod(torch.nn.Module):
def _reduce(self, *operands):
return reduce_func(*operands)
def forward(self, *operands):
return self._reduce(*operands)
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
@skipIfNoDynamoSupport
class TestControlFlow(TestCase):
def setUp(self):
torch._dynamo.reset()
super().setUp()
def check_autograd(self, result, result_exp, params):
params_flatten = pytree.tree_leaves(params)
result_flatten = pytree.tree_leaves(result)
result_exp_flatten = pytree.tree_leaves(result_exp)
grad_exp_init = [torch.ones_like(el) for el in result_exp_flatten]
expected_grads = torch.autograd.grad(
result_exp_flatten, params_flatten, grad_exp_init
)
grad_init = [torch.ones_like(el) for el in result_flatten]
grads = torch.autograd.grad(result_flatten, params_flatten, grad_init)
self.assertEqual(grads, expected_grads, atol=6e-05, rtol=6e-06)
def test_cond_no_trace(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
x = torch.randn(4)
result = cond(False, true_fn, false_fn, [x])
self.assertEqual(result, torch.cos(x))
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
def test_cond_gpu(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
x = torch.randn(4, device="cuda")
pred = torch.tensor(False, device="cuda")
result = cond(pred, true_fn, false_fn, [x])
self.assertEqual(result, torch.cos(x))
def test_cond_autograd_simple(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
x = torch.randn(4, requires_grad=True)
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = ones_like = None
getitem_1 = cond_1[0]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
def test_cond_autograd_complex(self):
def true_fn(x):
return torch.abs((x**2).sin())
def false_fn(x):
return (x + 42).cos()
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
x = torch.randn(4, requires_grad=True)
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = ones_like = None
getitem_1 = cond_1[0]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_nested(self):
class Nested(torch.nn.Module):
def forward(self, p0, p1, p2, a, b, c):
def true_fn(x0, y0, z0):
def true_true_fn(x1, y1, z1):
return (x1 - y1 * z1) * 3.14
def true_false_fn(x1, y1, z1):
def true_false_true_fn(x2, y2, z2):
return (x2 * y2 * z2) / 2.71
def true_false_false_fn(x2, y2, z2):
return (x2 + y2 + z2) * 1.23
return torch.cond(
p2, true_false_true_fn, true_false_false_fn, [x1, y1, z1]
)
return torch.cond(p1, true_true_fn, true_false_fn, [x0, y0, z0])
def false_fn(x0, y0, z0):
def false_true_fn(x1, y1, z1):
def false_true_true_fn(x2, y2, z2):
return (x2 - y2 - z2) + 1.23
def false_true_false_fn(x2, y2, z2):
return (x2 / y2 / z2) - 3.14
return torch.cond(
p2, false_true_true_fn, false_true_false_fn, [x1, y1, z1]
)
def false_false_fn(x1, y1, z1):
return (x1 - y1 * z1) / 2.71
return torch.cond(p1, false_true_fn, false_false_fn, [x0, y0, z0])
return torch.cond(p0, true_fn, false_fn, [a, b, c])
nn_module = Nested()
def true_fn(x):
return nn_module(
torch.tensor(False), torch.tensor(True), torch.tensor(False), x, x, x
)
def false_fn(x):
return nn_module(
torch.tensor(True), torch.tensor(False), torch.tensor(True), x, x, x
)
x = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_mixed_require_grad(self):
def true_fn(x, y, z):
return x * y * z
def false_fn(x, y, z):
return x + y + z
x = torch.randn(4, requires_grad=True)
y = torch.randn(4, requires_grad=False)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, (x, y, x))
self.assertEqual(result, fn(x, y, x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x, y, x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x, y, z):
result = cond(pred, true_fn, false_fn, (x, y, z))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x, y, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1, y_1, z_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (z_1, y_1)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (z_1, y_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = z_1 = y_1 = ones_like = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]; cond_1 = getitem_2 = None
return (getitem_1,)""", # noqa: B950
)
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_grad_through_cond(self):
nn_module = torch.nn.Linear(4, 4)
def true_fn(x):
return nn_module(x)
def false_fn(X):
return x * nn_module(x)
x = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (nn_module.weight,), grad_out)
expected_grads = torch.autograd.grad(
fn(
x,
),
(nn_module.weight,),
grad_out,
)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (nn_module.weight,), grad_out)
# need to set _allow_non_fake_inputs = True because model parameters don't
# get fakified.
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
_param_constant0 = self._param_constant0
_param_constant1 = self._param_constant1
_tensor_constant0 = self._tensor_constant0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_param_constant0, _param_constant1, x_1, sym_size_int, _tensor_constant0)); true_graph_0 = false_graph_0 = _param_constant0 = _param_constant1 = _tensor_constant0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
_param_constant0_1 = self._param_constant0
_param_constant1_1 = self._param_constant1
_tensor_constant0_1 = self._tensor_constant0
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (_param_constant0_1, _param_constant1_1, x_1, sym_size_int, _tensor_constant0_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = _param_constant0_1 = _param_constant1_1 = x_1 = sym_size_int = _tensor_constant0_1 = ones_like = None
getitem_1 = cond_1[0]; getitem_1 = None
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; getitem_3 = None
getitem_4 = cond_1[3]; getitem_4 = None
getitem_5 = cond_1[4]; cond_1 = getitem_5 = None
return (getitem_2,)""", # noqa: B950
)
def test_cond_in_forloop(self):
def for_loop_fake(x):
for i in range(3):
x = x * x + 1
return x
def for_loop_test(x):
for i in range(3):
pred = i < 3
def true_fn(x):
return x * x + 1
def false_fn(x):
return x
x = cond(pred, true_fn, false_fn, (x,))
return x
x = torch.ones(4, requires_grad=True)
x_new = for_loop_test(x)
x_exp = for_loop_fake(x)
self.assertEqual(x_new, x_exp)
grad_out = torch.ones_like(x_new)
grads = torch.autograd.grad(x_new, (x,), grad_out)
expected_grads = torch.autograd.grad(x_exp, (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(x):
x_new = for_loop_test(x)
grad_out = torch.ones_like(x_new)
return torch.autograd.grad(x_new, (x,), grad_out)
gm = make_fx(f, tracing_mode="symbolic")(x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
mul = torch.ops.aten.mul.Tensor(x_1, x_1)
add = torch.ops.aten.add.Tensor(mul, 1); mul = None
mul_1 = torch.ops.aten.mul.Tensor(add, add)
add_1 = torch.ops.aten.add.Tensor(mul_1, 1); mul_1 = None
mul_2 = torch.ops.aten.mul.Tensor(add_1, add_1)
add_2 = torch.ops.aten.add.Tensor(mul_2, 1); mul_2 = None
ones_like = torch.ops.aten.ones_like.default(add_2, pin_memory = False); add_2 = None
mul_3 = torch.ops.aten.mul.Tensor(ones_like, add_1)
mul_4 = torch.ops.aten.mul.Tensor(ones_like, add_1); ones_like = add_1 = None
add_3 = torch.ops.aten.add.Tensor(mul_4, mul_3); mul_4 = mul_3 = None
mul_5 = torch.ops.aten.mul.Tensor(add_3, add)
mul_6 = torch.ops.aten.mul.Tensor(add_3, add); add_3 = add = None
add_4 = torch.ops.aten.add.Tensor(mul_6, mul_5); mul_6 = mul_5 = None
mul_7 = torch.ops.aten.mul.Tensor(add_4, x_1)
mul_8 = torch.ops.aten.mul.Tensor(add_4, x_1); add_4 = x_1 = None
add_5 = torch.ops.aten.add.Tensor(mul_8, mul_7); mul_8 = mul_7 = None
return (add_5,)""", # noqa: B950
)
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_pytree_not_all_inputs_used(self):
def true_fn(x):
return x["t"][0] + x["t"][1]["b"]
def false_fn(x):
return x["t"][0] * (x["t"][2][0] / x["t"][1]["b"])
a = torch.randn(4, requires_grad=True)
b = torch.randn(4, requires_grad=True)
c = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
self.assertEqual(result, fn({"t": [a, {"b": b}, (c,)]}))
grad_out = torch.ones_like(result)
if pred:
with self.assertRaisesRegex(Exception, r"."):
grads = torch.autograd.grad(result, (a, b, c), grad_out)
expected_grads = torch.autograd.grad(
fn({"t": [a, {"b": b}, (c,)]}), (a, b, c), grad_out
)
self.assertEqual(expected_grads, grads)
def f(pred, a, b, c):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (a, b), grad_out)
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(
pred, a, b, c
)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, a_1, b_1, c_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
sym_size_int_1 = torch.ops.aten.sym_size.int(b_1, 0)
sym_size_int_2 = torch.ops.aten.sym_size.int(c_1, 0)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (a_1, b_1, sym_size_int, sym_size_int_1, c_1, sym_size_int_2)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (a_1, b_1, sym_size_int, sym_size_int_1, c_1, sym_size_int_2, ones_like)); pred_1 = true_graph_1 = false_graph_1 = a_1 = b_1 = sym_size_int = sym_size_int_1 = c_1 = sym_size_int_2 = ones_like = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; getitem_3 = None
getitem_4 = cond_1[3]; getitem_4 = None
getitem_5 = cond_1[4]; getitem_5 = None
getitem_6 = cond_1[5]; cond_1 = getitem_6 = None
return (getitem_1, getitem_2)""", # noqa: B950
)
# Forward
self.assertExpectedInline(
gm.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1):
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return (add,)""",
)
# Backward
self.assertExpectedInline(
gm.true_graph_1.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1):
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = add = None
clone = torch.ops.aten.clone.default(arg6_1)
clone_1 = torch.ops.aten.clone.default(arg6_1); arg6_1 = None
zeros_like = torch.ops.aten.zeros_like.default(arg4_1, pin_memory = False); arg4_1 = None
return [clone, clone_1, None, None, zeros_like, None]""",
)
def test_cond_autograd_pytree_input(self):
def true_fn(x):
return x["t"][0] + x["t"][1]["b"] * x["t"][2][0]
def false_fn(x):
return x["t"][0] * (x["t"][2][0] / x["t"][1]["b"])
a = torch.randn(4, requires_grad=True)
b = torch.randn(4, requires_grad=True)
c = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
self.assertEqual(result, fn({"t": [a, {"b": b}, (c,)]}))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (a, b), grad_out)
expected_grads = torch.autograd.grad(
fn({"t": [a, {"b": b}, (c,)]}), (a, b), grad_out
)
self.assertEqual(expected_grads, grads)
def f(pred):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (a, b), grad_out)
# need to set _allow_non_fake_inputs = True because model parameters don't
# get fakified.
gm = make_fx(f, tracing_mode="symbolic", _allow_non_fake_inputs=True)(pred)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
_tensor_constant0 = self._tensor_constant0
_tensor_constant1 = self._tensor_constant1
_tensor_constant2 = self._tensor_constant2
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_tensor_constant0, _tensor_constant1, _tensor_constant2)); true_graph_0 = false_graph_0 = _tensor_constant0 = _tensor_constant1 = _tensor_constant2 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
_tensor_constant0_1 = self._tensor_constant0
_tensor_constant1_1 = self._tensor_constant1
_tensor_constant2_1 = self._tensor_constant2
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (_tensor_constant0_1, _tensor_constant1_1, _tensor_constant2_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = _tensor_constant0_1 = _tensor_constant1_1 = _tensor_constant2_1 = ones_like = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]
getitem_3 = cond_1[2]; cond_1 = getitem_3 = None
return (getitem_1, getitem_2)""", # noqa: B950
)
def test_cond_autograd_different_pytree_output(self):
def true_fn(x):
return x["t"][0], {"r": x["t"][2][0] / x["t"][1]["b"]}, [x["t"][2][0]]
def false_fn(x):
return {"res": [x["t"][0] * x["t"][1]["b"], x["t"][2][0]]}
a = torch.randn(4, requires_grad=True)
b = torch.randn(4, requires_grad=True)
c = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile",
):
cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_same_pytree_output(self):
def true_fn(x):
return {"res": [x["t"][0].clone(), (x["t"][2][0].clone(),)]}
def false_fn(x):
return {"res": [x["t"][1]["b"].clone(), (x["t"][2][0].clone(),)]}
a = torch.randn(4, requires_grad=True)
b = torch.randn(4, requires_grad=True)
c = torch.randn(4, requires_grad=True)
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
result_exp = fn({"t": [a, {"b": b}, (c,)]})
self.assertEqual(result, result_exp)
result_flat, _ = pytree.tree_flatten(result)
result_exp_flat, _ = pytree.tree_flatten(result_exp)
grad_out = [torch.ones_like(g) for g in result_flat]
expected_grads = torch.autograd.grad(result_exp_flat, (c,), grad_out)
grads = torch.autograd.grad(result_flat, (c,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred):
result = cond(pred, true_fn, false_fn, ({"t": [a, {"b": b}, (c,)]},))
return result
gm = make_fx(f, tracing_mode="real", _allow_non_fake_inputs=True)(pred)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
_tensor_constant0 = self._tensor_constant0
_tensor_constant1 = self._tensor_constant1
_tensor_constant2 = self._tensor_constant2
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (_tensor_constant0, _tensor_constant1, _tensor_constant2)); pred_1 = true_graph_0 = false_graph_0 = _tensor_constant0 = _tensor_constant1 = _tensor_constant2 = None
getitem = cond[0]
getitem_1 = cond[1]; cond = None
return {'res': [getitem, (getitem_1,)]}""", # noqa: B950
)
@skipIfTorchDynamo("Skip due to graph break when run with dynamo")
def test_cond_autograd_torch_nn_module(self):
nn_module_true = torch.nn.Linear(4, 4)
def true_fn(x):
return nn_module_true(torch.abs((x**2).sin()))
nn_module_false = torch.nn.GRUCell(4, 4)
def false_fn(x):
return nn_module_false((x + 42).cos())
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
x = torch.randn(4, requires_grad=True)
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
_param_constant0 = self._param_constant0
_param_constant1 = self._param_constant1
_param_constant2 = self._param_constant2
_param_constant3 = self._param_constant3
_param_constant4 = self._param_constant4
_param_constant5 = self._param_constant5
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1, _param_constant0, _param_constant1, _param_constant2, _param_constant3, _param_constant4, _param_constant5)); true_graph_0 = false_graph_0 = _param_constant0 = _param_constant1 = _param_constant2 = _param_constant3 = _param_constant4 = _param_constant5 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
_param_constant0_1 = self._param_constant0
_param_constant1_1 = self._param_constant1
_param_constant2_1 = self._param_constant2
_param_constant3_1 = self._param_constant3
_param_constant4_1 = self._param_constant4
_param_constant5_1 = self._param_constant5
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, _param_constant0_1, _param_constant1_1, _param_constant2_1, _param_constant3_1, _param_constant4_1, _param_constant5_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = _param_constant0_1 = _param_constant1_1 = _param_constant2_1 = _param_constant3_1 = _param_constant4_1 = _param_constant5_1 = ones_like = None
getitem_1 = cond_1[0]
getitem_2 = cond_1[1]; getitem_2 = None
getitem_3 = cond_1[2]; getitem_3 = None
getitem_4 = cond_1[3]; getitem_4 = None
getitem_5 = cond_1[4]; getitem_5 = None
getitem_6 = cond_1[5]; getitem_6 = None
getitem_7 = cond_1[6]; cond_1 = getitem_7 = None
return (getitem_1,)""", # noqa: B950
)
def test_cond_autograd_user_nn_module(self):
class User_nn_module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, input):
return input * input
nn_module_true = User_nn_module()
def true_fn(x):
return nn_module_true(torch.abs((x**2).sin()))
nn_module_false = torch.nn.ReLU(inplace=False)
def false_fn(x):
return nn_module_false((x + 42).cos())
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
x = torch.randn(4, requires_grad=True)
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = ones_like = None
getitem_1 = cond_1[0]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
def test_cond_autograd_inner_fn(self):
def true_fn(x):
return torch.abs((x**2).sin())
def false_fn(x):
def inner_fn(x):
return x**2
return torch.abs(inner_fn(x).sin())
x = torch.randn(4, requires_grad=True)
pred = torch.tensor(False)
fn = false_fn
result_false = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result_false, fn(x))
grad_out = torch.ones_like(result_false)
grads_false = torch.autograd.grad(result_false, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads_false)
pred = torch.tensor(True)
fn = true_fn
result_true = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result_true, fn(x))
self.assertEqual(result_false, result_true)
grad_out = torch.ones_like(result_true)
grads_true = torch.autograd.grad(result_true, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads_true)
self.assertEqual(grads_false, grads_true)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = ones_like = None
getitem_1 = cond_1[0]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
def test_cond_autograd_inner_tensor(self):
def true_fn(x):
return torch.abs((x**2).sin())
def false_fn(x):
y = torch.ones(4, requires_grad=False) * 42
return (x * y).cos()
for pred, fn in zip(
[torch.tensor(False), torch.tensor(True)], [false_fn, true_fn]
):
x = torch.randn(4, requires_grad=True)
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
gm = make_fx(f)(pred, x)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
ones_like = torch.ops.aten.ones_like.default(getitem, pin_memory = False); getitem = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred_1, true_graph_1, false_graph_1, (x_1, ones_like)); pred_1 = true_graph_1 = false_graph_1 = x_1 = ones_like = None
getitem_1 = cond_1[0]; cond_1 = None
return (getitem_1,)""", # noqa: B950
)
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
def test_cond_autograd_gpu(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
for pred, fn in zip(
[torch.tensor(False, device="cuda"), torch.tensor(True, device="cuda")],
[false_fn, true_fn],
):
x = torch.randn(4, requires_grad=True, device="cuda")
result = cond(pred, true_fn, false_fn, (x,))
self.assertEqual(result, fn(x))
grad_out = torch.ones_like(result)
grads = torch.autograd.grad(result, (x,), grad_out)
expected_grads = torch.autograd.grad(fn(x), (x,), grad_out)
self.assertEqual(expected_grads, grads)
def _test_cond_autograd(self, cond_fct, pred_fn, true_fn, false_fn, operands):
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
# This is a helper function that extracts the metadata from the tensor and
# sets the requries_grad flag to false. This is needed as we compare the
# metadata of the operands and the gradients
def _extract_tensor_metadata_except_requires_grad(arg):
metadata = _extract_tensor_metadata(arg)
metadata = TensorMetadata(
metadata.shape,
metadata.dtype,
False,
metadata.stride,
metadata.memory_format,
metadata.is_quantized,
metadata.qparams,
)
return metadata
# Comparison of FWD path
cond_outputs = cond_fct(pred_fn(*operands), true_fn, false_fn, operands)
operands_forced_grad = [o.clone().detach() for o in operands]
for o in operands_forced_grad:
o.requires_grad = True
cond_outputs_exp = (
true_fn(*operands_forced_grad)
if pred_fn(*operands_forced_grad)
else false_fn(*operands_forced_grad)
)
self.assertEqual(cond_outputs, cond_outputs_exp)
# Comparison of BWD path
cond_inputs = [o for o in operands if o.requires_grad]
cond_inputs_exp = [o for o in operands_forced_grad if o.requires_grad]
# Check if at least some operators require grads
if len(cond_inputs) > 0:
grad_inputs = torch.autograd.grad(
cond_outputs, cond_inputs, allow_unused=True, retain_graph=True
)
grad_inputs_exp = torch.autograd.grad(
cond_outputs_exp,
cond_inputs_exp,
allow_unused=True,
materialize_grads=True,
)
grad_exp_masked = [
g for g, o in zip(grad_inputs_exp, operands) if o.requires_grad
]
self.assertEqual(grad_exp_masked, grad_inputs)
# Extraction and comparison of Metadata of operands and gradients
operands_metadata = [
_extract_tensor_metadata_except_requires_grad(o) for o in cond_inputs
]
grad_metadata = [
_extract_tensor_metadata_except_requires_grad(o) for o in grad_inputs
]
self.assertTrue(
all(op == g for op, g in zip(operands_metadata, grad_metadata))
)
return cond_outputs, cond_inputs
# TODO: The compile_mode = `compile_dynamic_shape` raises the Error
# torch._inductor.exc.LoweringException: NotImplementedError: get_size() is not
# implemented by <class 'torch._inductor.ir.NoneAsConstantBuffer'>!
@skipIfTorchDynamo("don't test compile on compile")
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["compile_dynamic_shape"])
@parametrize("scalar", [False])
@unittest.expectedFailure
def test_cond_autograd_zeros_unused_branch_complex_compile_fail(
self, compile_mode, scalar
):
device = torch.device("cuda")
cond_fct = compile_mode_helper(torch.cond, compile_mode)
autograd = [False, True, True, True, True]
if scalar:
# These operands work
x = torch.randn((), device=device, requires_grad=bool(autograd[0]))
w1 = torch.randn((), device=device, requires_grad=bool(autograd[1]))
b1 = torch.randn((), device=device, requires_grad=bool(autograd[2]))
w2 = torch.randn((), device=device, requires_grad=bool(autograd[3]))
b2 = torch.randn((), device=device, requires_grad=bool(autograd[4]))
else:
# These operands do not work
x = torch.randn(4, 5, device=device, requires_grad=bool(autograd[0]))
w1 = torch.randn(2, 4, device=device, requires_grad=bool(autograd[1]))
b1 = torch.randn(2, 1, device=device, requires_grad=bool(autograd[2]))
w2 = torch.randn(2, 4, device=device, requires_grad=bool(autograd[3]))
b2 = torch.randn(1, 5, device=device, requires_grad=bool(autograd[4]))
operands = [x, w1, b1, w2, b2]
def true_fn(x, w1, b1, w2, b2):
if scalar:
# This works
return ((w1 * x + b1),)
else:
# This does not work
return ((w1 @ x + b1).sum(),)
def false_fn(x, w1, b1, w2, b2):
if scalar:
# This works
return ((w2 * x + b2),)
else:
# This does not work
return ((w2 @ x + b2).sum(),)
def pred_fn(x, w1, b1, w2, b2):
return x.mean() > 0
cond_outputs, cond_inputs = self._test_cond_autograd(
cond_fct, pred_fn, true_fn, false_fn, operands
)
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
def test_map_gpu(self):
def f(x, y):
return x + y
xs = torch.ones(3, 2, 2, device="cuda")
y = torch.ones(2, device="cuda")
res = control_flow.map(f, xs, y)
expected = _fake_map(f, xs, y)
self.assertEqual(expected, res)
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
def test_while_loop_gpu(self):
def cond_fn(x):
return x.sum() < 10
def body_fn(x):
return (x + 1,)
x = torch.zeros(1, device="cuda")
res = while_loop(cond_fn, body_fn, (x,))
expected = _fake_while_loop(cond_fn, body_fn, (x,))
self.assertEqual(expected, res)
def test_map_illegal_inputs(self):
def f(x, y):
return x[0] + x[1] + y
with self.assertRaisesRegex(
RuntimeError,
r"Mapped xs can only consist of tensors\. Got xs \[3, tensor\(\[1\., 1\.\]\)\]\.",
):
_ = control_flow.map(f, (3, torch.ones(2)), torch.ones(2))
with self.assertRaisesRegex(
RuntimeError, r"Leading dimensions of mapped xs cannot be 0\."
):
_ = control_flow.map(
f, (torch.ones(0, 1, 2), torch.ones(0, 1, 2)), torch.ones(2)
)
with self.assertRaisesRegex(
RuntimeError,
r"Leading dimensions of mapped xs must be consistent\. "
r"Got shapes \[torch\.Size\(\[3, 4, 5\]\), torch\.Size\(\[4, 4, 5\]\)\]\.",
):
_ = control_flow.map(
f, (torch.ones(3, 4, 5), torch.ones(4, 4, 5)), torch.ones(5)
)
def test_map_illegal_outputs(self):
def f(x, y):
return x.item()
def f1(x, y):
return y.size()
def f2(x, y):
return None
x = torch.ones([3])
y = torch.ones([1, 2, 3])
with self.assertRaisesRegex(
RuntimeError, "map doesn't work unless it is captured completely"
):
control_flow.map(f, x, y)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.UncapturedHigherOrderOpError,
# "Expected all leaves to be of torch.Tensor type.*",
torch._dynamo.exc.UncapturedHigherOrderOpError,
"map doesn't work unless it is captured completely with torch.compile.*",
):
control_flow.map(f1, x, y)
# return None is OK
control_flow.map(f2, x, y)
def test_map_list_in_out(self):
def f(x, y):
return [[x[0][0] + y]]
xs = [[torch.ones(3, 2, 2)]]
y = torch.ones(2)
res = control_flow.map(f, xs, y)
expected = _fake_map(f, xs, y)
self.assertEqual(len(res), 1)
self.assertEqual(len(res[0]), 1)
self.assertEqual(expected, res)
def test_map_dict_in_out(self):
def f(x, y):
return {"c": x["a"]["b"] + y}
xs = {"a": {"b": torch.ones(3, 2, 2)}}
y = torch.ones(2)
res = control_flow.map(f, xs, y)
expected = _fake_map(f, xs, y)
self.assertEqual(len(res), 1)
self.assertTrue("c" in res)
self.assertEqual(expected, res)
def test_map_autograd_simple(self):
def f(x, y):
return x.sin().cos() * y.cos().sin()
xs = torch.ones(3, 2, 2, requires_grad=True)
y = torch.ones(2, requires_grad=True)
res = control_flow.map(f, xs, y)
expected_res = _fake_map(f, xs, y)
grad_out = torch.ones_like(res)
grads = torch.autograd.grad(res, (xs, y), grad_out)
expected_grads = torch.autograd.grad(expected_res, (xs, y), grad_out)
self.assertEqual(expected_res, res)
self.assertEqual(expected_grads, grads)
def test_map_autograd_simple_partial_grad(self):
def f(x, y):
return x.sin().cos() * y.cos().sin()
xs = torch.ones(3, 2, 2, requires_grad=True)
# Disable the gradient computation for y
y = torch.ones(2, requires_grad=False)
res = control_flow.map(f, xs, y)
expected_res = _fake_map(f, xs, y)
grad_out = torch.ones_like(res)
grads = torch.autograd.grad(res, (xs,), grad_out)
expected_grads = torch.autograd.grad(expected_res, (xs,), grad_out)
self.assertEqual(expected_res, res)
self.assertEqual(expected_grads, grads)
def test_map_autograd_no_grad_output(self):
def f(x, y):
return x[0].sin().cos() + y, y.cos().sin()
xs = [torch.ones(3, 2, 2, requires_grad=True), torch.ones(3, 3)]
# Disable the gradient computation for y
y = torch.ones(2, requires_grad=False)
res = control_flow.map(f, xs, y)
expected_res = _fake_map(f, xs, y)
grad_out = torch.ones_like(res[0])
grads = torch.autograd.grad(res[0], (xs[0],), grad_out)
expected_grads = torch.autograd.grad(expected_res[0], (xs[0],), grad_out)
self.assertEqual(expected_res, res)
self.assertEqual(expected_grads, grads)
def test_map_autograd_nested_list(self):
import torch.utils._pytree as pytree
def f(x, y):
a, b = x
c, d = a
return [[b.sin() * c.cos()], d.sin() * y.cos()]
def fwbw(map_op, f, x, y):
z = map_op(f, x, y)
flat_x = pytree.tree_leaves(x)
flat_z = pytree.tree_leaves(z)
grads = torch.autograd.grad(
flat_z, flat_x, [torch.ones_like(z) for z in flat_z]
)
return z, grads
x = [
[
torch.randn(3, 2, 2, requires_grad=True),
torch.randn(3, 2, 1, requires_grad=True),
],
torch.ones(3, 1, 2, requires_grad=True),
]
y = torch.ones(1, requires_grad=True)
true_outs = fwbw(control_flow.map, f, x, y)
fake_outs = fwbw(_fake_map, f, x, y)
self.assertEqual(true_outs, fake_outs)
def test_map_autograd_higher_order(self):
from torch.autograd.functional import hessian as hes, jacobian as jac
def f(x, y):
return x.sin().cos() + y
def wrapper_jac(x, y):
return control_flow.map(f, x, y)
def wrapper_jac_fake(x, y):
return _fake_map(f, x, y)
def wrapper_hes(x, y):
return control_flow.map(f, x, y).sum()
def wrapper_hes_fake(x, y):
return _fake_map(f, x, y).sum()
for g_fct, (wrap, wrap_fake) in [
(jac, [wrapper_jac, wrapper_jac_fake]),
(hes, [wrapper_hes, wrapper_hes_fake]),
]:
xs = torch.ones(3, 2, 2, requires_grad=True)
# Disable the gradient computation for y
y = torch.ones(2, requires_grad=False)
res = control_flow.map(f, xs, y)
expected_res = _fake_map(f, xs, y)
self.assertEqual(expected_res, res)
expected_grads = g_fct(wrap_fake, (xs, y))
grads = g_fct(wrap, (xs, y))
self.assertEqual(expected_res, res)
self.assertEqual(expected_grads, grads)
def test_scan_y_less_ndim_then_dim(self):
def combine_fn(carry, x):
return carry @ x, (carry @ x).sum()
init = torch.randn(4, 3)
xs = torch.randn(3, 3, 2)
dim = 2
out = scan(combine_fn, init, xs, dim=dim)
exp_out = _fake_scan(combine_fn, init, xs, dim=dim)
self.assertEqual(out, exp_out)
# TODO: provide an implementation for all compile modes and re-enable all test
@skipIfTorchDynamo("don't test compile on compile")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_compile(self, reverse, compile_mode, device, autograd):
def add2(x: torch.Tensor, y: torch.Tensor):
return x * y, x + y
x = torch.randn(3, 10, 2, device=device, requires_grad=autograd)
scan_fct = compile_mode_helper(scan, compile_mode)
for op, op_pt, init in [
(
get_scan_combine_fn("add", False),
torch.cumsum,
torch.zeros(10, 2, device=device, requires_grad=autograd),
),
(
get_scan_combine_fn("mul", False),
torch.cumprod,
torch.ones(10, 2, device=device, requires_grad=autograd),
),
]:
result = scan_fct(op, init, x, dim=0, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
self.assertEqual(result, result_exp)
if not reverse:
result_exp_PT = op_pt(x, 0)
self.assertEqual(result[1], result_exp_PT)
if autograd:
self.check_autograd(result, result_exp, (init, x))
# Jax Examples
x = torch.arange(0, 4, device=device, dtype=torch.int64)
init = torch.zeros(1, device=device, dtype=torch.int64)
cumsum1 = scan_fct(
get_scan_combine_fn("add", False),
init,
x,
dim=0,
reverse=reverse,
)
cumsum_exp = _fake_scan(
get_scan_combine_fn("add", False),
init=init,
xs=x,
dim=0,
reverse=reverse,
)
if not reverse:
self.assertEqual(
cumsum1[1],
torch.tensor([[0.0], [1.0], [3.0], [6.0]], dtype=torch.int64),
)
self.assertEqual(cumsum1[0], torch.tensor([6.0], dtype=torch.int64))
else:
self.assertEqual(
cumsum1[1],
torch.tensor([[6.0], [6.0], [5.0], [3.0]], dtype=torch.int64),
)
self.assertEqual(cumsum1[0], torch.tensor([6.0], dtype=torch.int64))
self.assertEqual(cumsum1, cumsum_exp)
# Different carry computation as output computation
x = torch.arange(1, 5, device=device, dtype=torch.int64)
init = torch.ones(1, device=device, dtype=torch.int64)
result = scan_fct(add2, init, x, dim=0, reverse=reverse)
result_exp = _fake_scan(add2, init=init, xs=x, dim=0, reverse=reverse)
if not reverse:
self.assertEqual(
result[1],
torch.tensor([[2.0], [3.0], [5.0], [10.0]], dtype=torch.int64),
)
self.assertEqual(result[0], torch.tensor([24.0], dtype=torch.int64))
else:
self.assertEqual(
result[1],
torch.tensor([[25.0], [14.0], [7.0], [5.0]], dtype=torch.int64),
)
self.assertEqual(result[0], torch.tensor([24.0], dtype=torch.int64))
self.assertEqual(result, result_exp)
# Non associative operation
x = torch.arange(
0, 5, device=device, dtype=torch.float32, requires_grad=autograd
)
init = torch.ones(1, device=device, dtype=torch.float32, requires_grad=autograd)
result = scan_fct(
get_scan_combine_fn("div", False),
init,
x,
dim=0,
reverse=reverse,
)
result_exp = _fake_scan(
get_scan_combine_fn("div", False),
init=init,
xs=x,
dim=0,
reverse=reverse,
)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result, result_exp, (init, x))
# TODO: provide an implementation for all compile modes and re-enable all test
@skipIfTorchDynamo("don't test compile on compile")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize(
"dtype",
[
torch.float16,
torch.float32,
torch.int32,
torch.int64,
torch.complex64,
],
)
def test_scan_dtype(self, reverse, compile_mode, device, dtype):
scan_fct = compile_mode_helper(scan, compile_mode)
# Check all outputs and carries on the correct device and with torch.float32
x = torch.randn(3, 10, 2, device=device).to(dtype=dtype)
op, init = (
get_scan_combine_fn("adds"),
torch.zeros(10, 2, device=device, dtype=dtype),
)
result = scan_fct(op, init, x, dim=0, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
self.assertEqual(result, result_exp)
self.assertEqual(
[[r.device.type for r in res] for res in result],
[[device.type for _ in res] for res in result],
)
self.assertEqual(
[[r.dtype for r in res] for res in result],
[[dtype for _ in res] for res in result],
)
# Check all outputs and carries on the correct device and
# carry.dtype torch.float32 and output.dtype torch.float16
x = torch.randn(3, 10, 2, device=device).to(dtype=dtype)
op, init = (
get_scan_combine_fn("adds"),
torch.zeros(10, 2, device=device, dtype=torch.float32),
)
result = scan_fct(op, init, x, dim=0, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
self.assertEqual(result, result_exp)
self.assertEqual(
[[r.dtype for r in res] for res in result],
[
[torch.float32 for _ in range(len(result[0]))],
[dtype for _ in range(len(result[1]))],
],
)
# Check all outputs and carries on the correct device and
# carry.dtype torch.int64 and output.dtype torch.float32
x = torch.randn(3, 10, 2, device=device)
op, init = (
get_scan_combine_fn("adds"),
torch.zeros(10, 2, device=device, dtype=dtype),
)
result = scan_fct(op, init, x, dim=0, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=x, dim=0, reverse=reverse)
self.assertEqual(result, result_exp)
self.assertEqual(
[[r.dtype for r in res] for res in result],
[
[dtype for _ in range(len(result[0]))],
[torch.float32 for _ in range(len(result[1]))],
],
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_dim(self, reverse, compile_mode, device, autograd):
import random
scan_fct = compile_mode_helper(scan, compile_mode)
num_dims = [random.randint(2, 5) for _ in range(5)]
for num_dim in num_dims:
shapes = [random.randint(1, 10) for _ in range(num_dim)]
rnd_scan_dim = random.randint(0, num_dim - 1)
x = torch.randn(*shapes, device=device, requires_grad=autograd)
init_shapes = shapes[:rnd_scan_dim] + shapes[rnd_scan_dim + 1 :]
for op, op_pt, init in [
(
get_scan_combine_fn("add", False),
torch.cumsum,
torch.zeros(*init_shapes, device=device, requires_grad=autograd),
),
(
get_scan_combine_fn("mul", False),
torch.cumprod,
torch.ones(*init_shapes, device=device, requires_grad=autograd),
),
]:
result = scan_fct(op, init, x, dim=rnd_scan_dim, reverse=reverse)
result_exp = _fake_scan(
op, init=init, xs=x, dim=rnd_scan_dim, reverse=reverse
)
self.assertEqual(result, result_exp)
if not reverse:
result_exp_PT = op_pt(x, rnd_scan_dim)
res_list = list(result)
res_list[1] = res_list[1].movedim(0, rnd_scan_dim)
self.assertEqual(res_list[1], result_exp_PT)
if autograd:
self.check_autograd(result, result_exp, (init, x))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_binary_operator(self, reverse, compile_mode, device, autograd):
state_dim = 20
timesteps = 10
scan_fct = compile_mode_helper(scan, compile_mode)
projected_inputs = torch.randn(
timesteps, state_dim, requires_grad=autograd, device=device
)
A = torch.randn(state_dim, requires_grad=autograd, device=device)
elements = (A.repeat((timesteps, 1)), projected_inputs)
init = tuple(
[
torch.ones_like(
torch._ops.ops.aten.slice(elements[0], 0, 0, 1, 1),
requires_grad=autograd,
)
]
+ [
torch.zeros_like(
torch._ops.ops.aten.slice(projected_inputs, 0, 0, 1, 1),
requires_grad=autograd,
)
]
)
result = scan_fct(
get_scan_combine_fn("s5_operator", False),
init,
elements,
dim=0,
reverse=reverse,
)
expected_result = _fake_scan(
get_scan_combine_fn("s5_operator", False),
init=init,
xs=elements,
dim=0,
reverse=reverse,
)
self.assertEqual(result, expected_result)
if autograd:
init_flatten, _ = pytree.tree_flatten(init)
elements_flatten, _ = pytree.tree_flatten(elements)
result_flatten, _ = pytree.tree_flatten(result)
result_exp_flatten, _ = pytree.tree_flatten(expected_result)
grad_out = [torch.ones_like(el) for el in result_exp_flatten]
expected_grads = torch.autograd.grad(
result_exp_flatten, (*init_flatten, *elements_flatten), grad_out
)
grads = torch.autograd.grad(
result_flatten, (*init_flatten, *elements_flatten), grad_out
)
self.assertEqual(grads, expected_grads)
@skipIfRocm(msg="Unsupported on ROCM yet")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_tuple(self, reverse, compile_mode, device, autograd):
x = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
y = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
inp = (x, y)
init = tuple(torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp)
scan_fct = compile_mode_helper(scan, compile_mode)
result_same = scan_fct(
get_scan_combine_fn("tuple_fct", False),
init,
inp,
dim=0,
reverse=reverse,
)
expected_result = _fake_scan(
get_scan_combine_fn("tuple_fct", False),
init=init,
xs=inp,
dim=0,
reverse=reverse,
)
self.assertEqual(result_same, expected_result)
if autograd:
self.check_autograd(result_same, expected_result, (init, inp))
def fct_different_output_tuple(x, y):
return ((x[0] + y[0], x[1] * y[1]), (x[1] * y[1]))
inp = (x, y)
init = tuple(torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp)
result_diff = scan(
fct_different_output_tuple, init, inp, dim=0, reverse=reverse
)
expected_result = _fake_scan(
fct_different_output_tuple, init=init, xs=inp, dim=0, reverse=reverse
)
self.assertEqual(result_diff, expected_result)
self.assertEqual(result_diff[1], result_same[1][1])
if autograd:
self.check_autograd(result_diff, expected_result, (init, inp))
def test_scan_wrong_pytree(self):
# Init and input have same pytree
def fct_wrong_pytree(x, y):
return (
{
"i": x["i"] * y["j"][0][0],
"k": torch.tensor(0.0),
"j": (
[x["j"][1][0]["o"].clone()],
[{"o": torch.sin(x["i"])}],
),
},
{
"i": x["i"] * y["j"][0][0],
"k": torch.tensor(0.0),
"j": ([x["j"][1][0]["o"].clone()], [{"o": torch.sin(x["i"])}]),
},
)
x = torch.randn(3, 2, 2)
y = torch.randn(3, 2, 2)
z = torch.randn(3, 2, 2)
inp = {"i": x, "j": ([y], [{"o": z}])}
inp_flat, inp_spec = pytree.tree_flatten(inp)
init_flat = [torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp_flat]
init = pytree.tree_unflatten(init_flat, inp_spec)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.UncapturedHigherOrderOpError,
# r"The tree structure of the inits and the carries are not identical.*",
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected init and carry to have same number of outputs but got lhs.*",
):
scan(fct_wrong_pytree, init, inp, dim=0)
def test_scan_float_output(self):
# Init and input have same pytree
def fct_float_output(x, y):
return 0.0, x + y
x = torch.randn(3, 2, 2)
init = torch._ops.ops.aten.slice(x, 0, 0, 1, 1)
with self.assertRaisesRegex(
# Should be:
# torch._dynamo.exc.Unsupported,
# "HigherOrderOperator body's output must consist of tensors or ints only"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely.*",
):
scan(fct_float_output, init, x, dim=0)
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_complex_pytree(self, reverse, compile_mode, device, autograd):
# Init and input have same pytree
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
y = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
z = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
inp = {"i": x, "j": ([y], [{"o": z}])}
inp_flat, inp_spec = pytree.tree_flatten(inp)
init_flat = [torch._ops.ops.aten.slice(e, 0, 0, 1, 1) for e in inp_flat]
init = pytree.tree_unflatten(init_flat, inp_spec)
result = scan_fct(
get_scan_combine_fn("complex_pointwise", False),
init,
inp,
dim=0,
reverse=reverse,
)
expected_result = _fake_scan(
get_scan_combine_fn("complex_pointwise", False),
init=init,
xs=inp,
dim=0,
reverse=reverse,
)
self.assertEqual(result, expected_result)
if autograd:
self.check_autograd(result, expected_result, (init, inp))
# TODO: Does not work because of the usage of vmap within associative_scan
# The paT206899919 rameterization is commented out for the moment and the test is marked with expected fail
# Fails with: AssertionError: scan is not an OpOverload
@skipIfRocm(msg="Unsupported on ROCM yet")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@unittest.expectedFailure
def test_scan_associative_scan(self):
combine_mode = "generic"
compile_mode_scan = "compile"
compile_mode_associative_scan = "none"
reverse = True
reverse_associative_scan = True
device = torch.device("cuda")
scan_fct = compile_mode_helper(scan, compile_mode_scan)
associative_scan_fct = compile_mode_helper(
associative_scan, compile_mode_associative_scan
)
init = torch.randn(10, 5, device=device)
inp = torch.randn(3, 10, 5, device=device)
def body(x, y):
val = associative_scan_fct(
get_scan_combine_fn("add", True),
y,
0,
reverse=reverse_associative_scan,
combine_mode=combine_mode,
)
return x + y, x + val
result = scan_fct(body, init, inp, dim=0, reverse=reverse)
expected_result = _fake_scan(
body,
init,
inp,
0,
reverse=reverse,
)
self.assertEqual(result, expected_result)
# TODO: provide an implementation for all compile modes and re-enable all test
@skipIfTorchDynamo("don't test compile on compile")
@requires_cuda
@parametrize("compile_mode", ["none", "eager"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_downstream_scan_matmul(self, compile_mode, reverse, device, autograd):
inp = torch.randn(3, 10, 2, device=device, requires_grad=autograd)
init = torch.randn(3, 2, device=device, requires_grad=autograd)
for ind in range(2):
# Chain with matmul
def chain_fct(inp):
W = torch.ones(2, 5, device=device)
o = scan(
get_scan_combine_fn("add", False),
init,
inp,
dim=1,
reverse=reverse,
)
return o[ind] @ W
fct_cmp = compile_mode_helper(chain_fct, compile_mode)
expected_result = _fake_scan(
get_scan_combine_fn("add", False),
init=init,
xs=inp,
dim=1,
reverse=reverse,
)[ind] @ torch.ones(2, 5, device=device)
result = fct_cmp(inp)
self.assertEqual(result, expected_result)
if autograd:
self.check_autograd(result, expected_result, (init, inp))
# TODO: provide an implementation for all compile modes and re-enable all test
@skipIfTorchDynamo("don't test compile on compile")
@requires_cuda
@parametrize("compile_mode", ["none", "eager"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_downstream_scan_scan_dim(
self, compile_mode, reverse, device, autograd
):
inp = torch.randn(3, 10, 2, device=device, requires_grad=autograd)
init = torch.randn(3, 2, device=device, requires_grad=autograd)
# Chain with scan on different dim
init2 = torch.randn(1, 10, 2, device=device, requires_grad=autograd)
def chain_fct_different_dim(inp):
o1 = scan(
get_scan_combine_fn("add", False),
init,
inp,
dim=1,
reverse=reverse,
)
o1 = pytree.tree_map(lambda t: t.movedim(0, 1), o1)
o2 = scan(
get_scan_combine_fn("add", False),
init2,
o1[1],
dim=0,
reverse=reverse,
)
return o2
fct_cmp = compile_mode_helper(chain_fct_different_dim, compile_mode)
xs = _fake_scan(
get_scan_combine_fn("add", False),
init=init,
xs=inp,
dim=1,
reverse=reverse,
)[1]
xs = pytree.tree_map(lambda t: t.movedim(0, 1), xs)
expected_result = _fake_scan(
get_scan_combine_fn("add", False),
init=init2,
xs=xs,
dim=0,
reverse=reverse,
)
result = fct_cmp(inp)
self.assertEqual(result, expected_result)
if autograd:
self.check_autograd(result, expected_result, (init, init2, inp))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_non_pointwise(self, reverse, compile_mode, device, autograd):
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 2, device=device, requires_grad=autograd)
init = torch.randn(10, 2, device=device, requires_grad=autograd)
expected_result = _fake_scan(
get_scan_combine_fn("non_pointwise", False),
init=init,
xs=x,
dim=0,
reverse=reverse,
)
result = scan_fct(
get_scan_combine_fn("non_pointwise", False),
init,
x,
dim=0,
reverse=reverse,
)
self.assertEqual(result, expected_result)
if autograd:
self.check_autograd(result, expected_result, (init, x))
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_scan_compile_cnt(self, reverse, device):
dim = 1
from torch._dynamo.testing import CompileCounter
# Tests rely on automatic_dynamic = True
with torch._dynamo.config.patch(automatic_dynamic_shapes=True):
cnt = CompileCounter()
x = torch.randn(3, 2, 5, device=device)
init = torch.randn(3, 5, device=device)
# First compilation step
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=dim,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 1)
x = torch.randn(3, 20, 5, device=device)
init = torch.randn(3, 5, device=device)
# Recompilation due to first different size
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=dim,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 2)
x = torch.randn(3, 40, 5, device=device)
init = torch.randn(3, 5, device=device)
# No recompilation, because of dynamic shape
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=dim,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 2)
x = torch.randn(3, 40, 5, device=device)
init = torch.randn(3, 40, device=device)
# Recompilation because of dim change
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=2,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 3)
x = torch.randn(3, 40, 20, device=device)
init = torch.randn(3, 40, device=device)
# Recompilation due to first different size on new dim
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=2,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 4)
x = torch.randn(3, 40, 40, device=device)
init = torch.randn(3, 40, device=device)
# No recompilation, because of dynamic shape on new dim
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=2,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 4)
x = torch.randn(3, 60, 40, device=device)
init = torch.randn(3, 40, device=device)
# Recompilation because of dim change
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=1,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 5)
x = torch.randn(3, 60, 40, device=device)
init = torch.randn(3, 40, device=device)
# Recompilation because of reverse change
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=1,
reverse=not reverse,
)
self.assertEqual(cnt.frame_count, 6)
x = torch.randn(3, 60, 40, device=device)
init = torch.randn(3, 40, device=device)
# No recompilation, as nothing changed
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=1,
reverse=not reverse,
)
self.assertEqual(cnt.frame_count, 6)
x = torch.randn(3, 120, 80, device=device)
init = torch.randn(3, 80, device=device)
# No recompilation, final test
torch.compile(scan, backend=cnt)(
get_scan_combine_fn("add", False),
init,
x,
dim=1,
reverse=reverse,
)
self.assertEqual(cnt.frame_count, 6)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_scanned_0(self):
# Only init and no input
x = torch.randn(3, 1, 2, device=torch.device("cpu"))
init = torch.randn(3, 2, device=torch.device("cpu"))
dim = 1
# Scan dimension is 0
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
with self.assertRaisesRegex(
RuntimeError,
"All xs leaves must at least have.*",
):
scan(
get_scan_combine_fn("add", False),
init,
inp,
dim=dim,
)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_non_tensor(self):
x = torch.randn(3, 1, 2, device=torch.device("cpu"))
dim = 1
# Init is a float and not a tensor
init = 1.0
with self.assertRaisesRegex(RuntimeError, "All init leaves must be a Tensor.*"):
scan(get_scan_combine_fn("add", False), init, x, dim=dim, reverse=False)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_wrong_shape(self):
scan_fct = compile_mode_helper(scan, "none")
# Only init and no input
x = torch.randn(3, 1, 2)
dim = 1
# Init wrong shape (Other dim different)
init = torch.randn(1, 2)
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected init and carry to have same metadata.*",
):
scan_fct(
get_scan_combine_fn("add", False),
init,
x,
dim=dim,
)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_wrong_pytree_init_longer_carry(self):
def init_longer_carry(x: torch.Tensor, y: torch.Tensor):
return x[0] + 1.0, y + 1.0
scan_fct = compile_mode_helper(scan, "none")
# Only init and no input
x = torch.randn(3, 1, 2)
dim = 1
# Init wrong pytree
init = (
torch._ops.ops.aten.slice(x, dim, 0, 1, 1),
torch._ops.ops.aten.slice(x, dim, 0, 1, 1),
)
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected init and carry to have same number of outputs but got lhs.*",
):
scan_fct(init_longer_carry, init, x, dim=dim)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_wrong_pytree_init_shorter_carry(self):
def init_shorter_carry(x: torch.Tensor, y: torch.Tensor):
return (x + 1, x + 2), x + 3
scan_fct = compile_mode_helper(scan, "none")
# Only init and no input
x = torch.randn(3, 1, 2)
dim = 1
# Init wrong pytree
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# The tree structure of the inits and the carries are not identical!
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected init and carry to have same number of outputs but got lhs.*",
):
scan_fct(init_shorter_carry, init, x, dim=dim)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_init_wrong_pytree_carry_shape(self):
def wrong_carry_shape(x: torch.Tensor, y: torch.Tensor):
return x[0, :], x + 3
scan_fct = compile_mode_helper(scan, "none")
# Only init and no input
x = torch.randn(3, 1, 2)
dim = 1
# Init wrong pytree
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan_fct(wrong_carry_shape, init, x, dim=dim)
@skipIfTorchDynamo("don't test compile on compile")
def test_scan_one_return(self):
def no_carry(x: torch.Tensor, y: torch.Tensor):
return x + 3
scan_fct = compile_mode_helper(scan, "none")
# Only init and no input
x = torch.randn(3, 1, 2)
dim = 1
# Init wrong pytree
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# combine_fn needs to produce two pytrees, one for the carries and one for the outputs.
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with.*",
):
scan_fct(no_carry, init, x, dim=dim)
@skipIfTorchDynamo("don't test compile on compile")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_init(self, reverse, compile_mode, device, autograd):
scan_fct = compile_mode_helper(scan, compile_mode)
# Only init and no input
x = torch.randn(3, 1, 2, device=device, requires_grad=autograd)
dim = 1
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
# Only init given
init = torch._ops.ops.aten.slice(x, dim, 0, 1, 1)
result = scan_fct(op, init, [], dim=dim, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=[], dim=dim, reverse=reverse)
result_init = scan_fct(op, init, [], dim=dim, reverse=reverse)
self.assertEqual(result, result_exp)
self.assertEqual(result_init, result_exp)
self.assertEqual(result_init[0], init)
if autograd:
self.check_autograd(result, result_exp, (init,))
x = torch.randn(3, 5, 2, device=device, requires_grad=autograd)
dim = 0
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
inp = torch._ops.ops.aten.slice(x, dim, 1, None, 1)
# Init tensor scalar
init = torch.ones(1, device=device, requires_grad=autograd)
def add_scalar_carry(x: torch.Tensor, y: torch.Tensor):
return x + 1.0, x + y
result_init = scan_fct(add_scalar_carry, init, inp, dim=dim, reverse=reverse)
result_exp = _fake_scan(
add_scalar_carry, init=init, xs=inp, dim=dim, reverse=reverse
)
self.assertEqual(result_init, result_exp)
self.assertEqual(result_init[0], torch.tensor([3.0], device=device))
if autograd:
self.check_autograd(result_init, result_exp, (init, inp))
# Init tensor entirely different shape than inp
init = torch.randn(7, 8, device=device, requires_grad=autograd)
def add_scalar_carry2(x: torch.Tensor, y: torch.Tensor):
return x + 1.0, x[: y.shape[0], : y.shape[1]] + y
result_init = scan_fct(add_scalar_carry2, init, inp, dim=dim, reverse=reverse)
result_exp = _fake_scan(
add_scalar_carry2, init=init, xs=inp, dim=dim, reverse=reverse
)
self.assertEqual(result_init, result_exp)
# Init with two timestep on dim axis. Should work as y has always 1 on dim axis and
# hence automatic broadcasting should work
# I.e., the input shape is 2x5x2, but the carry at each iteration is 2x5x2,
# thus the output of each iteration is 2x5x2, which results in the total output
# to be 4x5x2
init = torch._ops.ops.aten.slice(x, dim, 0, 2, 1)
result_init = scan_fct(op, init, inp, dim=dim, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=inp, dim=dim, reverse=reverse)
self.assertEqual(result_init, result_exp)
self.assertEqual(result_init[0].shape, torch.Size([2, 5, 2]))
if autograd:
self.check_autograd(result_init, result_exp, (init, inp))
init = torch.tile(init, (1, 2, 1))
def add_scalar_carry_sliced_out(x: torch.Tensor, y: torch.Tensor):
return x + 1.0, x[:, :1, :] + y
result_init = scan_fct(
add_scalar_carry_sliced_out, init, inp, dim=dim, reverse=reverse
)
result_exp = _fake_scan(
add_scalar_carry_sliced_out, init=init, xs=inp, dim=dim, reverse=reverse
)
self.assertEqual(result_init, result_exp)
self.assertEqual(result_init[0].shape, torch.Size([2, 10, 2]))
self.assertEqual(result_init[1].shape, torch.Size([2, 2, 5, 2]))
if autograd:
self.check_autograd(result_init, result_exp, (init, inp))
# Correct case
op, op_pt = (get_scan_combine_fn("add", False), torch.cumsum)
x = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
init = torch.zeros(3, 2, device=device, requires_grad=autograd)
dim = 2
result = scan_fct(op, init, x, dim=dim, reverse=reverse)
result_exp = _fake_scan(op, init=init, xs=x, dim=dim, reverse=reverse)
self.assertEqual(result, result_exp)
if not reverse:
result_exp_PT = op_pt(x, dim)
result = list(result)
result[1] = pytree.tree_map(lambda t: torch.movedim(t, 0, dim), result[1])
self.assertEqual(result[1], result_exp_PT)
if autograd:
self.check_autograd(result, result_exp, (init, x))
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_scan_init_wrong_pytree_complex(self, reverse, device):
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
z = torch.randn(3, 2, 2, device=device)
# Wrong pytree fed to the function
init = {
"i": torch._ops.ops.aten.slice(x, 0, 0, 1, 1),
"j": (
{"a": torch._ops.ops.aten.slice(x, 0, 0, 1, 1)},
[torch._ops.ops.aten.slice(y, 0, 0, 1, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, 0, 1, 1)}],
),
}
inp = {
"i": torch._ops.ops.aten.slice(x, 0, 0, None, 1),
"j": (
[torch._ops.ops.aten.slice(y, 0, 0, None, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, 0, None, 1)}],
),
}
with self.assertRaisesRegex(
Exception,
".*",
):
scan(
get_scan_combine_fn("complex_pointwise", False),
init,
inp,
dim=0,
reverse=reverse,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_init_pytree_complex(self, reverse, compile_mode, device, autograd):
def fct_pointwise_different_output(x, y):
return (
{
"i": x["i"] * y["i"],
"j": (
[x["j"][0][0] * y["j"][0][0]],
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
),
},
(
y["i"] * 2,
{
"o": x["i"] * y["i"],
"j": (
[x["j"][0][0] * y["j"][0][0]],
[{"o": x["j"][1][0]["o"] + y["j"][1][0]["o"]}],
),
},
),
)
def fct_pointwise_different_carry(x, y):
return (
{
"i": x["i"] * y["i"],
"j": (
x["i"] * 2,
[x["j"][1][0] * y["j"][0][0]],
[{"o": x["j"][2][0]["o"] + y["j"][1][0]["o"]}],
),
},
(
y["i"] * 2,
{
"o": x["i"] * y["i"] + x["j"][0][0],
"j": (
[x["j"][1][0] * y["j"][0][0]],
[{"o": x["j"][2][0]["o"] + y["j"][1][0]["o"]}],
),
},
),
)
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
y = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
z = torch.randn(3, 2, 2, device=device, requires_grad=autograd)
if reverse:
init_start, init_end = -1, None
inp_start, inp_end = 0, -1
else:
init_start, init_end = 0, 1
inp_start, inp_end = 1, None
# Regular case
init = {
"i": torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
"j": (
[torch._ops.ops.aten.slice(y, 0, init_start, init_end, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, init_start, init_end, 1)}],
),
}
inp = {
"i": torch._ops.ops.aten.slice(x, 0, inp_start, inp_end, 1),
"j": (
[torch._ops.ops.aten.slice(y, 0, inp_start, inp_end, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, inp_start, inp_end, 1)}],
),
}
result = scan_fct(
get_scan_combine_fn("complex_pointwise", False),
init,
inp,
dim=0,
reverse=reverse,
)
expected_result = _fake_scan(
get_scan_combine_fn("complex_pointwise", False),
init,
inp,
dim=0,
reverse=reverse,
)
self.assertEqual(result, expected_result)
if autograd:
init_flat = pytree.tree_leaves(init)
inp_flat = pytree.tree_leaves(inp)
self.check_autograd(result, expected_result, (*init_flat, *inp_flat))
# Pytree of output is different
result = scan_fct(
fct_pointwise_different_output, init, inp, dim=0, reverse=reverse
)
expected_result = _fake_scan(
fct_pointwise_different_output, init=init, xs=inp, dim=0, reverse=reverse
)
self.assertEqual(result, expected_result)
# Pytree of carry is different
init = {
"i": torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
"j": (
torch._ops.ops.aten.slice(x, 0, init_start, init_end, 1),
[torch._ops.ops.aten.slice(y, 0, init_start, init_end, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, init_start, init_end, 1)}],
),
}
inp = {
"i": torch._ops.ops.aten.slice(x, 0, inp_start, inp_end, 1),
"j": (
[torch._ops.ops.aten.slice(y, 0, inp_start, inp_end, 1)],
[{"o": torch._ops.ops.aten.slice(z, 0, inp_start, inp_end, 1)}],
),
}
result = scan_fct(
fct_pointwise_different_carry, init, inp, dim=0, reverse=reverse
)
expected_result = _fake_scan(
fct_pointwise_different_carry, init=init, xs=inp, dim=0, reverse=reverse
)
self.assertEqual(result, expected_result)
if autograd:
init_flat = pytree.tree_leaves(init)
inp_flat = pytree.tree_leaves(inp)
self.check_autograd(result, expected_result, (*init_flat, *inp_flat))
@skipIfTorchDynamo("don't test compile on compile")
@skipIfNoDynamoSupport
@skipIfCrossRef # Arg order changes with crossref
def test_scan_pytree_output(self):
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
def f(fct, init, xs):
return scan(fct, init, xs, dim=0, reverse=True)
def combine_fn(init, x):
a, b = (init[0] + x, init[1] - x)
return (a, b), a - b
# Check graph
backend = EagerAndRecordGraphs()
torch.compile(f, backend=backend)(combine_fn, (init, init.clone()), x)
gm = backend.graphs[0]
self.assertExpectedInline(
normalize_gm(gm.print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_init_0_: "f32[1, 10, 2]", L_init_1_: "f32[1, 10, 2]", L_xs_: "f32[3, 10, 2]"):
l_init_0_ = L_init_0_
l_init_1_ = L_init_1_
l_xs_ = L_xs_
elem: "f32[3, 10, 2]" = torch.movedim(l_xs_, 0, 0); l_xs_ = None
flip: "f32[3, 10, 2]" = torch.flip(elem, [0]); elem = None
scan_combine_fn_0 = self.scan_combine_fn_0
scan = torch.ops.higher_order.scan(scan_combine_fn_0, [l_init_0_, l_init_1_], [flip], []); scan_combine_fn_0 = l_init_0_ = l_init_1_ = flip = None
getitem: "f32[1, 10, 2]" = scan[0]
getitem_1: "f32[1, 10, 2]" = scan[1]
out: "f32[3, 1, 10, 2]" = scan[2]; scan = None
out_1: "f32[3, 1, 10, 2]" = out.flip([0]); out = None
return (getitem, getitem_1, out_1)
class scan_combine_fn_0(torch.nn.Module):
def forward(self, child: "f32[1, 10, 2]", child_1: "f32[1, 10, 2]", child_2: "f32[10, 2]"):
a: "f32[1, 10, 2]" = child + child_2; child = None
b: "f32[1, 10, 2]" = child_1 - child_2; child_1 = child_2 = None
child_3: "f32[1, 10, 2]" = a - b
return [a, b, child_3]
""", # noqa: B950
)
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager"])
@parametrize("autograd", [False, True])
def test_scan_closure_RNN(self, compile_mode, autograd):
dim = 1
device = torch.device("cpu")
scan_fct = compile_mode_helper(scan, compile_mode)
rnn = torch.nn.RNN(
input_size=5,
hidden_size=7,
batch_first=True,
)
rnn = rnn.to(device=device)
x = torch.randn(3, 10, 5, device=device, requires_grad=autograd)
h = torch.randn(3, 7, device=device, requires_grad=autograd)
W_ih = rnn.weight_ih_l0.T.clone()
b_ih = rnn.bias_ih_l0.clone()
W_hh = rnn.weight_hh_l0.T.clone()
b_hh = rnn.bias_hh_l0.clone()
if not autograd:
W_ih = W_ih.detach()
b_ih = b_ih.detach()
W_hh = W_hh.detach()
b_hh = b_hh.detach()
expected_result = rnn(x, torch.unsqueeze(h, 0))
expected_result_out = expected_result[0]
expected_result_state = expected_result[1][0, :]
result = scan_fct(
get_scan_combine_fn("RNN", True, parameters=[W_ih, b_ih, W_hh, b_hh]),
h,
x,
dim=dim,
reverse=False,
)
result_cmp = [result[0], torch.movedim(result[1], 0, dim)]
self.assertEqual(result_cmp[0], expected_result_state)
self.assertEqual(result_cmp[1], expected_result_out)
if autograd:
result_flat = pytree.tree_leaves(result)
result_exp_flat = [expected_result_state, expected_result_out]
grad_out_expected = [torch.ones_like(r) for r in result_exp_flat]
expected_grads = torch.autograd.grad(
result_exp_flat,
(
h,
x,
rnn.weight_ih_l0,
rnn.bias_ih_l0,
rnn.weight_hh_l0,
rnn.bias_hh_l0,
),
grad_out_expected,
)
expected_add_input_grads = list(expected_grads[2:])
expected_grads = expected_grads[:2]
grad_out = [torch.ones_like(r) for r in result]
grads = torch.autograd.grad(
result_flat, (h, x, W_ih, b_ih, W_hh, b_hh), grad_out
)
add_input_grads = list(grads[2:])
add_input_grads[0] = add_input_grads[0].T
add_input_grads[2] = add_input_grads[2].T
grads = grads[:2]
self.assertEqual(grads, expected_grads)
self.assertEqual(add_input_grads, expected_add_input_grads)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize(
"partial_grad", ["xs", "init", "additional_inputs", "complex", "random"]
)
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_scan_closure_RNN_partial_autograd(
self, reverse, compile_mode, partial_grad, device
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
# The first two booleans are the xs
# The second two are the inits
# The last four are the additional_inputs
autograds = []
if partial_grad == "xs":
# xs tests
autograds.append([True, False, True, True, True, True, True, True])
autograds.append([False, False, True, True, True, True, True, True])
elif partial_grad == "init":
# init tests
autograds.append([True, True, False, True, True, True, True, True])
autograds.append([True, True, False, False, True, True, True, True])
elif partial_grad == "additional_inputs":
# additional input tests
autograds.append([True, True, True, True, False, True, False, True])
autograds.append([True, True, True, True, False, False, False, False])
elif partial_grad == "complex":
# complex cases
autograds.append([True, False, False, False, False, False, False, True])
autograds.append([False, False, True, True, False, False, False, True])
elif partial_grad == "random":
# random tests
import random
for _ in range(5):
autograds.append([bool(random.randint(0, 1)) for _ in range(8)])
for autograd in autograds:
x = torch.randn(3, 10, 5, device=device, requires_grad=autograd[0])
x1 = torch.randn(3, 10, 5, device=device, requires_grad=autograd[1])
h = torch.randn(3, 7, device=device, requires_grad=autograd[2])
h_1 = torch.randn(3, 7, device=device, requires_grad=autograd[3])
W_ih = torch.randn(5, 7, device=device, requires_grad=autograd[4])
b_ih = torch.randn(7, device=device, requires_grad=autograd[5])
W_hh = torch.randn(7, 7, device=device, requires_grad=autograd[6])
b_hh = torch.randn(7, device=device, requires_grad=autograd[7])
params = [
p
for p, a in zip([x, x1, h, h_1, W_ih, b_ih, W_hh, b_hh], autograd)
if a
]
def RNN(x: torch.Tensor, y: torch.Tensor):
c_new_0 = x[0] + 1
c_new_1 = x[1] + 1
h_new = (
torch.tanh(c_new_1 + x[0] @ W_hh + b_hh)
+ y[0] @ W_ih
+ y[1] @ W_ih
+ b_ih
+ x[1]
)
return (c_new_0, c_new_1), h_new
inits = (h, h_1)
result = scan_fct(RNN, inits, (x, x1), dim=dim, reverse=reverse)
result_exp = _fake_scan(RNN, (h, h_1), (x, x1), dim=dim, reverse=reverse)
self.assertEqual(result, result_exp)
if autograd:
result_flat = pytree.tree_leaves(result)
result_exp_flat = pytree.tree_leaves(result_exp)
exp_grad_mask = [
True if r.requires_grad else False for r in result_exp_flat
]
self.check_autograd(
[r for r, m in zip(result_flat, exp_grad_mask) if m],
[r for r, m in zip(result_exp_flat, exp_grad_mask) if m],
params,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_with_no_grad_init_carries_unequal_grad(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h1 = torch.randn(3, 7, device=device, requires_grad=autograd)
h2 = torch.randn(3, 7, device=device, requires_grad=autograd)
result = scan_fct(
get_scan_combine_fn("fct_c1_no_grad", True),
(h1, h2),
x,
dim=dim,
reverse=reverse,
)
result_exp = _fake_scan(
get_scan_combine_fn("fct_c1_no_grad", True),
(h1, h2),
x,
dim=dim,
reverse=reverse,
)
self.assertEqual(result, result_exp)
if autograd:
# TODO: Ideally we should be able to select the results that require gradients like this
# [leaf for leaf in pytree.tree_leaves(result) if leaf.requires_grad == True]
# However, for the scan operator this does not work, as all outputs always have
# grad_fn=<ScanAutogradOpBackward>
res_req_grad_flat = pytree.tree_leaves(result)[1:]
res_exp_req_grad_flat = pytree.tree_leaves(result_exp)[1:]
self.check_autograd(res_req_grad_flat, res_exp_req_grad_flat, (x, h2))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_with_no_grad_init_carries_equal_grad(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h1 = torch.randn(3, 7, device=device, requires_grad=False)
h2 = torch.randn(3, 7, device=device, requires_grad=autograd)
result = scan_fct(
get_scan_combine_fn("fct_c1_no_grad", True),
(h1, h2),
x,
dim=dim,
reverse=reverse,
)
result_exp = _fake_scan(
get_scan_combine_fn("fct_c1_no_grad", True),
(h1, h2),
x,
dim=dim,
reverse=reverse,
)
self.assertEqual(result, result_exp)
if autograd:
# TODO: Ideally we should be able to select the results that require gradients like this
# [leaf for leaf in pytree.tree_leaves(result) if leaf.requires_grad == True]
# However, for the scan operator this does not work, as all outputs always have
# grad_fn=<ScanAutogradOpBackward>
res_req_grad_flat = pytree.tree_leaves(result)[1:]
res_exp_req_grad_flat = pytree.tree_leaves(result_exp)[1:]
self.check_autograd(res_req_grad_flat, res_exp_req_grad_flat, (x, h2))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_with_no_grad_for_out(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h1 = torch.randn(3, 7, device=device, requires_grad=autograd)
h2 = torch.randn(3, 7, device=device, requires_grad=autograd)
def fct_ys_no_grad(x: torch.Tensor, y: torch.Tensor):
c1 = x[0] + y
c2 = x[1] + y
with torch.no_grad():
h_new = torch.tanh(x[0] + x[1] + y)
return (c1, c2), h_new
result = scan_fct(fct_ys_no_grad, (h1, h2), x, dim=dim, reverse=reverse)
result_exp = _fake_scan(fct_ys_no_grad, (h1, h2), x, dim=dim, reverse=reverse)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result[0], result_exp[0], (x, h1, h2))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_with_no_grad_additional_inputs_partial(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h = torch.randn(3, 7, device=device, requires_grad=autograd)
W_ih = torch.randn(7, 7, device=device, requires_grad=autograd)
b_ih = torch.randn(7, device=device, requires_grad=autograd)
W_hh = torch.randn(7, 7, device=device, requires_grad=autograd)
b_hh = torch.randn(7, device=device, requires_grad=autograd)
def fct_no_grad_bhh_Whh(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W_ih + b_ih + x
h_new = c_new + 1
with torch.no_grad():
h_new_no_grad = torch.tanh(x @ W_hh + b_hh)
h_new2 = h_new + h_new_no_grad
return c_new, h_new2
result = scan_fct(fct_no_grad_bhh_Whh, h, x, dim=dim, reverse=reverse)
result_exp = _fake_scan(fct_no_grad_bhh_Whh, h, x, dim=dim, reverse=reverse)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result[1], result_exp[1], (h, x, W_ih, b_ih))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_with_no_grad_additional_inputs_all(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h = torch.randn(3, 7, device=device, requires_grad=autograd)
W_ih = torch.randn(7, 7, device=device, requires_grad=autograd)
b_ih = torch.randn(7, device=device, requires_grad=autograd)
W_hh = torch.randn(7, 7, device=device, requires_grad=autograd)
b_hh = torch.randn(7, device=device, requires_grad=autograd)
def fct_no_grad_bih_Wih_bhh_Whh(x: torch.Tensor, y: torch.Tensor):
c_new = x + y
h_new = c_new + x
with torch.no_grad():
c_new_no_grad = y @ W_ih + b_ih
h_new_no_grad = torch.tanh(x @ W_hh + b_hh)
c_new2 = c_new + c_new_no_grad
h_new2 = h_new + h_new_no_grad
return c_new2, h_new2
result = scan_fct(fct_no_grad_bih_Wih_bhh_Whh, h, x, dim=dim, reverse=reverse)
result_exp = _fake_scan(
fct_no_grad_bih_Wih_bhh_Whh, h, x, dim=dim, reverse=reverse
)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result[1], result_exp[1], (h, x))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_combine_fn_carries_ys_same_grad(
self, reverse, compile_mode, device, autograd
):
dim = 1
scan_fct = compile_mode_helper(scan, compile_mode)
x = torch.randn(3, 10, 7, device=device, requires_grad=autograd)
h = torch.randn(3, 7, device=device, requires_grad=autograd)
W_ih = torch.randn(7, 7, device=device, requires_grad=autograd)
b_ih = torch.randn(7, device=device, requires_grad=autograd)
W_hh = torch.randn(7, 7, device=device, requires_grad=autograd)
b_hh = torch.randn(7, device=device, requires_grad=autograd)
def fct_no_grad_bih_Wih_bhh_Whh(x: torch.Tensor, y: torch.Tensor):
c_new = x + y
h_new = c_new + 1
with torch.no_grad():
c_new_no_grad = y @ W_ih + b_ih
h_new_no_grad = torch.tanh(x @ W_hh + b_hh)
c_new2 = c_new + c_new_no_grad
h_new2 = h_new + h_new_no_grad
return c_new2, h_new2
result = scan_fct(fct_no_grad_bih_Wih_bhh_Whh, h, x, dim=dim, reverse=reverse)
result_exp = _fake_scan(
fct_no_grad_bih_Wih_bhh_Whh, h, x, dim=dim, reverse=reverse
)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result[1], result_exp[1], (h, x))
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("autograd", [False, True])
def test_scan_closure_nested(self, reverse, compile_mode, device, autograd):
scan_fct = compile_mode_helper(scan, compile_mode)
# Simple non-nested case
x = torch.randn(3, 20, 5, device=device, requires_grad=autograd)
h = torch.randn(3, 7, device=device, requires_grad=autograd)
W = torch.randn(5, 7, device=device, requires_grad=autograd)
b = torch.randn(7, device=device, requires_grad=autograd)
def f1(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W + b
h_new = torch.tanh(c_new + x)
return c_new, h_new
result = scan_fct(f1, h, x, dim=1, reverse=reverse)
result_exp = _fake_scan(f1, h, x, dim=1, reverse=reverse)
self.assertEqual(result, result_exp)
if autograd:
self.check_autograd(result, result_exp, (h, x, W, b))
# Nested case
def chain_fct(fct, f_1, f_2, xs, h_1, h_2):
o1 = fct(
f_1,
h_1,
xs,
dim=1,
reverse=reverse,
)
o2 = fct(
f_2,
h_2,
o1[1],
dim=0,
reverse=reverse,
)
return o2
x1 = torch.ones(3, 20, 5, device=device, requires_grad=autograd)
h1 = torch.zeros(3, 7, device=device, requires_grad=autograd)
h2 = torch.zeros(3, 3, device=device, requires_grad=autograd)
W_1 = torch.randn(5, 7, device=device, requires_grad=autograd)
b_1 = torch.randn(7, device=device, requires_grad=autograd)
W_2 = torch.randn(7, 3, device=device, requires_grad=autograd)
b_2 = torch.randn(3, device=device, requires_grad=autograd)
def f1(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W_1 + b_1
h_new = torch.tanh(c_new + x)
return c_new, h_new
def f2(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W_2 + b_2
h_new = torch.tanh(c_new + x)
return c_new, h_new
result1 = chain_fct(scan_fct, f1, f2, x1, h1, h2)
expected_result = chain_fct(_fake_scan, f1, f2, x1, h1, h2)
self.assertEqual(result1, expected_result)
if autograd:
self.check_autograd(result1, expected_result, (h1, h2, x1, W_1, b_1))
# Complex case
x1 = torch.randn(3, 20, 3, device=device, requires_grad=autograd)
h1 = torch.randn(3, 3, device=device, requires_grad=autograd)
h2 = torch.randn(3, 3, device=device, requires_grad=autograd)
W_1 = torch.randn(3, 3, device=device, requires_grad=autograd)
b_1 = torch.randn(3, device=device, requires_grad=autograd)
W_2 = torch.randn(3, 3, device=device, requires_grad=autograd)
b_2 = torch.randn(3, device=device, requires_grad=autograd)
def f1(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W_1 + b_1
h_new = torch.tanh(c_new + x)
return c_new, h_new
def f2(x: torch.Tensor, y: torch.Tensor):
c_new = y @ W_2 + b_2 * b_1 + y @ W_1
h_new = torch.tanh(c_new + x)
return c_new, h_new
result1 = chain_fct(scan_fct, f1, f2, x1, h1, h2)
expected_result = chain_fct(_fake_scan, f1, f2, x1, h1, h2)
self.assertEqual(result1, expected_result)
if autograd:
self.check_autograd(
result1, expected_result, (h1, h2, x1, W_1, b_1, W_2, b_2)
)
@skipIfNoDynamoSupport
def test_scan_simple_graph_wrong_dtype(self):
def add_wrong_dtype(x: torch.Tensor, y: torch.Tensor):
return torch.ones_like(x + y, dtype=torch.int64), x + y
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
def f(fct, init, xs):
return scan(fct, init, xs, dim=0, reverse=True)
# Wrong dtype
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected init and carry to have same metadata.*",
):
f(add_wrong_dtype, init, x)
@skipIfNoDynamoSupport
@skipIfCrossRef # Arg order changes with crossref
def test_scan_simple_graph(self):
x = torch.randn(3, 10, 2, device=torch.device("cpu"))
init = torch.randn(1, 10, 2, device=torch.device("cpu"))
def f(fct, init, xs):
return scan(fct, init, xs, dim=0, reverse=True)
# Correct case
gm = make_fx(f, tracing_mode="symbolic")(
get_scan_combine_fn("add", False), init, x
)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, fct_1, init_1, xs_1):
permute = torch.ops.aten.permute.default(xs_1, [0, 1, 2])
flip = torch.ops.aten.flip.default(permute, [0]); permute = None
sym_size_int_1 = torch.ops.aten.sym_size.int(init_1, 1)
sym_size_int_2 = torch.ops.aten.sym_size.int(init_1, 2)
sym_size_int_3 = torch.ops.aten.sym_size.int(xs_1, 1)
sym_size_int_4 = torch.ops.aten.sym_size.int(xs_1, 2); xs_1 = None
scan_combine_graph_0 = self.scan_combine_graph_0
scan = torch.ops.higher_order.scan(scan_combine_graph_0, [init_1], [flip], (sym_size_int_1, sym_size_int_2, sym_size_int_3, sym_size_int_4)); scan_combine_graph_0 = init_1 = flip = sym_size_int_1 = sym_size_int_2 = sym_size_int_3 = sym_size_int_4 = None
getitem = scan[0]
getitem_1 = scan[1]; scan = None
flip_1 = torch.ops.aten.flip.default(getitem_1, [0]); getitem_1 = None
return (getitem, flip_1)""", # noqa: B950
)
# Check graph
backend = EagerAndRecordGraphs()
torch.compile(f, backend=backend)(get_scan_combine_fn("add", False), init, x)
gm = backend.graphs[0]
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, L_init_ : torch.Tensor, L_xs_ : torch.Tensor):
l_init_ = L_init_
l_xs_ = L_xs_
elem = torch.movedim(l_xs_, 0, 0); l_xs_ = None
flip = torch.flip(elem, [0]); elem = None
scan_combine_fn_0 = self.scan_combine_fn_0
scan = torch.ops.higher_order.scan(scan_combine_fn_0, [l_init_], [flip], []); scan_combine_fn_0 = l_init_ = flip = None
carry = scan[0]
out = scan[1]; scan = None
out_1 = out.flip([0]); out = None
return (carry, out_1)""", # noqa: B950
)
@requires_cuda
def test_scan_input_mutation(self):
device = torch.device("cuda")
def fct_input_mutation(x, y):
x.add_(1)
return x + y, x + y + 2
x = torch.randn(3, 2, 2, device=device)
init = torch.randn(2, 2, device=device)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan(fct_input_mutation, init, x, dim=0)
@requires_cuda
def test_scan_input_carry_alias(self):
device = torch.device("cuda")
def fct_input_output_alias(x, y):
return (x[0], x[1] + y[1]), (x[1] + y[1] + 1, x[1] + y[1] + 2)
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
init = (torch.randn(2, 2, device=device), torch.randn(2, 2, device=device))
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan(fct_input_output_alias, init, inp, dim=0)
@requires_cuda
def test_scan_input_output_alias(self):
device = torch.device("cuda")
def fct_input_output_alias(x, y):
return (x[0] + 1, x[1] + y[1]), (x[1], x[1] + y[1] + 2)
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
init = (torch.randn(2, 2, device=device), torch.randn(2, 2, device=device))
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan(fct_input_output_alias, init, inp, dim=0)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_scan_carry_carry_alias(self):
device = torch.device("cuda")
def fct_carry_carry_alias(x, y):
c = x[0] + y[1]
return (c, c), (x[0] + y[1], x[0] + y[1] + 1)
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
init = (torch.randn(2, 2, device=device), torch.randn(2, 2, device=device))
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan(fct_carry_carry_alias, init, inp, dim=0)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_scan_carry_output_alias(self):
device = torch.device("cuda")
def fct_carry_output_alias(x, y):
c = x[0] + y[1]
return (x[0] + y[1], c), (c, x[0] + y[1] + 1)
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
init = (torch.randn(2, 2, device=device), torch.randn(2, 2, device=device))
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"scan must be captured completely with torch.compile.*",
):
scan(fct_carry_output_alias, init, inp, dim=0)
class AssociativeScanModels:
@staticmethod
def get_scan_fct(compile_mode, combine_mode):
# Compile the associative_scan according to the provided compile_mode
if compile_mode != "fake":
assoc_scan_comp = compile_mode_helper(associative_scan, compile_mode)
def scan_fct(combine_fn, xs, dim, reverse):
return assoc_scan_comp(combine_fn, xs, dim, reverse, combine_mode)
else:
scan_fct = _fake_associative_scan
return scan_fct
class CombineFn(torch.nn.Module):
def __init__(self, combine_fn, dim, reverse, combine_mode, compile_mode):
super().__init__()
self.scan_fct = AssociativeScanModels.get_scan_fct(
compile_mode, combine_mode
)
self.combine_fn = combine_fn
self.dim = dim
self.reverse = reverse
def forward(self, inputs):
results = self.scan_fct(self.combine_fn, inputs, self.dim, self.reverse)
return results
class Simple(torch.nn.Module):
def __init__(self, dim, reverse, combine_mode, compile_mode):
super().__init__()
kwargs = {
"dim": dim,
"reverse": reverse,
"combine_mode": combine_mode,
"compile_mode": compile_mode,
}
self.combine_fns = [
AssociativeScanModels.CombineFn(
get_scan_combine_fn("add", True), **kwargs
),
AssociativeScanModels.CombineFn(
get_scan_combine_fn("mul", True), **kwargs
),
]
def forward(self, inputs):
results = []
for combine_fn in self.combine_fns:
results.append(combine_fn(inputs))
return results
class ChainFn(torch.nn.Module):
def __init__(self, combine_fn, dim, reverse, combine_mode, compile_mode):
super().__init__()
chain_len = len(combine_fn)
kwargs = {
"combine_fn": combine_fn,
"dim": dim,
"reverse": reverse,
"combine_mode": combine_mode,
}
# Prepare the kwargs as a list.
self.nested_tuple = []
for ind in range(chain_len):
kwargs_el = {}
for key, val in kwargs.items():
# Check if val is a list and if it has the same length as combine_fn
# If so, then use the individual elements.
# If not, duplicate the first element.
if type(val) == list and len(val) == chain_len:
kwargs_el[key] = val[ind]
else:
kwargs_el[key] = val
scan_fct = AssociativeScanModels.get_scan_fct(
compile_mode, kwargs_el["combine_mode"]
)
combine_fn = kwargs_el["combine_fn"]
del kwargs_el["combine_fn"]
del kwargs_el["combine_mode"]
self.nested_tuple.append((combine_fn, scan_fct, kwargs_el))
def forward(self, inputs):
results = inputs
for combine_fn, scan_fct, kwargs in self.nested_tuple:
results = combine_fn(scan_fct, results, **kwargs)
return results
class NestedFn(torch.nn.Module):
def forward(self, scan_fct, inputs, **kwargs):
combine_fn = kwargs["combine_fn"]
# Remove combine_fn from kwargs
del kwargs["combine_fn"]
results = scan_fct(combine_fn, inputs, **kwargs)
return results
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
@skipIfNoDynamoSupport
class AssociativeScanTests(TestCase):
def setUp(self):
torch._dynamo.reset()
super().setUp()
def _run_test(self, model, model_fake, inputs):
result = model(inputs)
result_exp = model_fake(inputs)
self.assertEqual(result, result_exp)
# Return the result of the functions under test for further investigations
return result
def _prepare_fake_kwargs(self, original_kwargs):
kwargs_fake = original_kwargs.copy()
kwargs_fake["compile_mode"] = "fake"
return kwargs_fake
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_compile(
self, combine_mode, reverse, compile_mode, device
):
x = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
results = self._run_test(
model=AssociativeScanModels.Simple(**kwargs),
model_fake=AssociativeScanModels.Simple(**kwargs_fake),
inputs=x,
)
if not reverse:
results_torch = []
for op_pt in [torch.cumsum, torch.cumprod]:
results_torch.append(op_pt(x, 0))
self.assertEqual(results, results_torch)
# Jax Examples
x = torch.arange(0, 4, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("add", True),
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
result = self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=x,
)
if not reverse:
results_torch = torch.tensor([0.0, 1.0, 3.0, 6.0], dtype=torch.int64)
else:
results_torch = torch.tensor([6.0, 6.0, 5.0, 3.0], dtype=torch.int64)
self.assertEqual(result, results_torch)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_dim(self, combine_mode, compile_mode, reverse, device):
import random
random.seed(1234)
num_dims = [random.randint(2, 5) for _ in range(4)]
for num_dim in num_dims:
# To avoid triggering automatic dynamic shape
torch._dynamo.reset()
shapes = [random.randint(1, 9) for _ in range(num_dim)]
rnd_scan_dim = random.randint(0, num_dim - 1)
x = torch.randn(*shapes, device=device)
kwargs = {
"dim": rnd_scan_dim,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
results = self._run_test(
model=AssociativeScanModels.Simple(**kwargs),
model_fake=AssociativeScanModels.Simple(**kwargs_fake),
inputs=x,
)
if not reverse:
results_torch = []
for op_pt in [torch.cumsum, torch.cumprod]:
results_torch.append(op_pt(x, 0))
self.assertEqual(results, results_torch)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@unittest.expectedFailure
def test_associative_scan_dim_shape_failure(self, compile_mode, combine_mode):
num_dims = [2]
for num_dim in num_dims:
shapes = [9 for _ in range(num_dim)]
rnd_scan_dim = 0
x = torch.randn(*shapes, device=torch.device("cuda"))
kwargs = {
"dim": rnd_scan_dim,
"reverse": True,
"compile_mode": "compile",
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.Simple(**kwargs),
model_fake=AssociativeScanModels.Simple(**kwargs_fake),
inputs=x,
)
@skipIfRocm(msg="Unsupported on ROCM yet")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_tuple(self, compile_mode, combine_mode, reverse, device):
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("tuple_fct", True),
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_expand_in_combine_fn(
self, compile_mode, combine_mode, reverse, device
):
x = torch.randn(3, 2, 2, device=device)
def combine_fn(x, y):
return x * torch.sum(y, -1).expand(x.shape)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=x,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_non_contiguous_tensor(
self, compile_mode, reverse, device
):
x = torch.arange(30, device=device).view(10, 3).t()
assert not x.is_contiguous()
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("add", True),
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=x,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_complex_pytree(
self, compile_mode, combine_mode, reverse, device
):
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
z = torch.randn(3, 2, 2, device=device)
inp = {"i": x, "j": ([y], [{"o": z}])}
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("complex_pointwise", True),
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@skipIfTorchDynamo("don't test compile on compile")
@skipIfNoDynamoSupport
@skipIfCrossRef # Arg order changes with crossref
def test_associative_scan_pytree_output(self):
x = (
(
torch.randn(3, 10, 2, device=torch.device("cpu")),
(torch.randn(3, 10, 2, device=torch.device("cpu")),),
),
torch.randn(3, 10, 2, device=torch.device("cpu")),
)
def f(fct, xs):
return associative_scan(
fct, xs, dim=0, reverse=True, combine_mode="generic"
)
def combine_fn(x: torch.Tensor, y: torch.Tensor):
a, b = (x[0][0] + y[1], x[0][1][0] - y[1])
return (a, (b,)), a - b
# Check graph
backend = EagerAndRecordGraphs()
torch.compile(f, backend=backend)(combine_fn, x)
gm = backend.graphs[0]
self.assertExpectedInline(
normalize_gm(gm.print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_xs_0_0_: "f32[3, 10, 2]", L_xs_0_1_0_: "f32[3, 10, 2]", L_xs_1_: "f32[3, 10, 2]"):
l_xs_0_0_ = L_xs_0_0_
l_xs_0_1_0_ = L_xs_0_1_0_
l_xs_1_ = L_xs_1_
elem: "f32[3, 10, 2]" = torch.movedim(l_xs_0_0_, 0, 0); l_xs_0_0_ = None
elem_1: "f32[3, 10, 2]" = torch.movedim(l_xs_0_1_0_, 0, 0); l_xs_0_1_0_ = None
elem_2: "f32[3, 10, 2]" = torch.movedim(l_xs_1_, 0, 0); l_xs_1_ = None
elem_3: "f32[3, 10, 2]" = torch.flip(elem, [0]); elem = None
elem_4: "f32[3, 10, 2]" = torch.flip(elem_1, [0]); elem_1 = None
elem_5: "f32[3, 10, 2]" = torch.flip(elem_2, [0]); elem_2 = None
child: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 0, -1, 2)
child_1: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 0, -1, 2)
child_2: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 0, -1, 2)
child_3: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 1, None, 2)
child_4: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 1, None, 2)
child_5: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 1, None, 2)
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
_add_batch_dim_1: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_1, 0, 1); child_1 = None
_add_batch_dim_2: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_2, 0, 1); child_2 = _add_batch_dim_2 = None
_add_batch_dim_3: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_3, 0, 1); child_3 = _add_batch_dim_3 = None
_add_batch_dim_4: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_4, 0, 1); child_4 = _add_batch_dim_4 = None
_add_batch_dim_5: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_5, 0, 1); child_5 = None
a: "f32[10, 2]" = _add_batch_dim + _add_batch_dim_5; _add_batch_dim = None
b: "f32[10, 2]" = _add_batch_dim_1 - _add_batch_dim_5; _add_batch_dim_1 = _add_batch_dim_5 = None
child_6: "f32[10, 2]" = a - b
child_7: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(a, 1, 1, 0); a = None
child_8: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(b, 1, 1, 0); b = None
child_9: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(child_6, 1, 1, 0); child_6 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
child_10: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 2, None, 2)
child_11: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 2, None, 2)
child_12: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 2, None, 2)
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_6: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_7, 0, 1)
_add_batch_dim_7: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_8, 0, 1)
_add_batch_dim_8: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_9, 0, 1); _add_batch_dim_8 = None
_add_batch_dim_9: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_10, 0, 1); child_10 = _add_batch_dim_9 = None
_add_batch_dim_10: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_11, 0, 1); child_11 = _add_batch_dim_10 = None
_add_batch_dim_11: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_12, 0, 1); child_12 = None
a_1: "f32[10, 2]" = _add_batch_dim_6 + _add_batch_dim_11; _add_batch_dim_6 = None
b_1: "f32[10, 2]" = _add_batch_dim_7 - _add_batch_dim_11; _add_batch_dim_7 = _add_batch_dim_11 = None
child_13: "f32[10, 2]" = a_1 - b_1
child_14: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(a_1, 1, 1, 0); a_1 = None
child_15: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(b_1, 1, 1, 0); b_1 = None
child_16: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(child_13, 1, 1, 0); child_13 = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
slice_10: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 0, 1); elem_3 = None
cat: "f32[2, 10, 2]" = torch.cat([slice_10, child_14], dim = 0); slice_10 = child_14 = None
slice_11: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 0, 1); elem_4 = None
cat_1: "f32[2, 10, 2]" = torch.cat([slice_11, child_15], dim = 0); slice_11 = child_15 = None
slice_12: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 0, 1); elem_5 = None
cat_2: "f32[2, 10, 2]" = torch.cat([slice_12, child_16], dim = 0); slice_12 = child_16 = None
b_2: "f32[2, 10, 2]" = torch._C._nn.pad(child_7, [0, 0, 0, 0, 0, 1], 'constant', None); child_7 = None
stacked: "f32[2, 2, 10, 2]" = torch.stack([cat, b_2], dim = 1); cat = b_2 = None
interleaved: "f32[4, 10, 2]" = torch.flatten(stacked, start_dim = 0, end_dim = 1); stacked = None
interleaved_1: "f32[3, 10, 2]" = torch.ops.aten.slice(interleaved, 0, 0, 3); interleaved = None
b_3: "f32[2, 10, 2]" = torch._C._nn.pad(child_8, [0, 0, 0, 0, 0, 1], 'constant', None); child_8 = None
stacked_1: "f32[2, 2, 10, 2]" = torch.stack([cat_1, b_3], dim = 1); cat_1 = b_3 = None
interleaved_2: "f32[4, 10, 2]" = torch.flatten(stacked_1, start_dim = 0, end_dim = 1); stacked_1 = None
interleaved_3: "f32[3, 10, 2]" = torch.ops.aten.slice(interleaved_2, 0, 0, 3); interleaved_2 = None
b_4: "f32[2, 10, 2]" = torch._C._nn.pad(child_9, [0, 0, 0, 0, 0, 1], 'constant', None); child_9 = None
stacked_2: "f32[2, 2, 10, 2]" = torch.stack([cat_2, b_4], dim = 1); cat_2 = b_4 = None
interleaved_4: "f32[4, 10, 2]" = torch.flatten(stacked_2, start_dim = 0, end_dim = 1); stacked_2 = None
interleaved_5: "f32[3, 10, 2]" = torch.ops.aten.slice(interleaved_4, 0, 0, 3); interleaved_4 = None
child_17: "f32[3, 10, 2]" = interleaved_1.flip([0]); interleaved_1 = None
child_18: "f32[3, 10, 2]" = interleaved_3.flip([0]); interleaved_3 = None
child_19: "f32[3, 10, 2]" = interleaved_5.flip([0]); interleaved_5 = None
movedim_3: "f32[3, 10, 2]" = torch.movedim(child_17, 0, 0); child_17 = None
movedim_4: "f32[3, 10, 2]" = torch.movedim(child_18, 0, 0); child_18 = None
movedim_5: "f32[3, 10, 2]" = torch.movedim(child_19, 0, 0); child_19 = None
return (movedim_3, movedim_4, movedim_5)
""", # noqa: B950
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_downstream_scan_matmul(
self, combine_mode, compile_mode, reverse, device
):
def first_chain_fct(scan_fct, inp, **kwargs):
o = scan_fct(get_scan_combine_fn("add", True), inp, **kwargs)
return o
def second_chain_fct(scan_fct, inp, **kwargs):
W = torch.ones(2, 5, device=device)
return inp @ W
inp = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 1,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": [first_chain_fct, second_chain_fct],
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.ChainFn(**kwargs),
model_fake=AssociativeScanModels.ChainFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_downstream_scan_scan(
self, combine_mode, compile_mode, reverse, device
):
def first_chain_fct(scan_fct, inp, **kwargs):
o1 = scan_fct(get_scan_combine_fn("add", True), inp, **kwargs)
return o1
def second_chain_fct(scan_fct, inp, **kwargs):
o2 = scan_fct(get_scan_combine_fn("add", True), inp, **kwargs)
return o2
inp = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 1,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": [first_chain_fct, second_chain_fct],
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.ChainFn(**kwargs),
model_fake=AssociativeScanModels.ChainFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse_first", [False, True])
@parametrize("same_direction", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_downstream_scan_scan_different_dim(
self, combine_mode, compile_mode, reverse_first, same_direction, device
):
reverse_second = reverse_first if same_direction else not reverse_first
def first_chain_fct(scan_fct, inp, **kwargs):
o1 = scan_fct(get_scan_combine_fn("add", True), inp, **kwargs)
return o1
def second_chain_fct(scan_fct, inp, **kwargs):
o2 = scan_fct(get_scan_combine_fn("add", True), inp, **kwargs)
return o2
inp = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": [1, 0],
"reverse": [reverse_first, reverse_second],
"compile_mode": compile_mode,
"combine_fn": [first_chain_fct, second_chain_fct],
"combine_mode": [combine_mode, combine_mode],
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.ChainFn(**kwargs),
model_fake=AssociativeScanModels.ChainFn(**kwargs_fake),
inputs=inp,
)
# TODO: Does not work because of the usage of vmap within associative_scan
# TODO: Re-enable additional parameters again once this issues has been resolved
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@unittest.expectedFailure
def test_associative_scan_nested(self):
combine_mode = "pointwise"
compile_mode = "eager"
reverse_first = False
same_direction = False
device = torch.device("cuda")
reverse_second = reverse_first if same_direction else not reverse_first
def first_nested_fct(x, y):
y_new = associative_scan(
second_nested_fct,
y,
0,
reverse=reverse_second,
combine_mode=combine_mode,
)
return x + y_new
def first_nested_fct_fake(x, y):
y_new = _fake_associative_scan(
second_nested_fct, y, 0, reverse=reverse_second
)
return x + y_new
def second_nested_fct(x, y):
return x * y
inp = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 0,
"reverse": reverse_first,
"compile_mode": compile_mode,
"combine_fn": first_nested_fct,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
kwargs_fake["combine_fn"] = first_nested_fct_fake
self._run_test(
model=AssociativeScanModels.NestedFn(**kwargs),
model_fake=AssociativeScanModels.NestedFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("loop_type", ["for"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_loop_in_combine_fn(
self, compile_mode, loop_type, reverse, device
):
def combine_fn(x, y):
cnt = torch.zeros_like(y[0, :])
if loop_type == "while":
def cond_fn(ind, loop_val):
return (loop_val < 5)[0]
def body_fn(ind, loop_val):
return ind + 1, loop_val + torch.abs(ind)
new_ind, cnt = torch.while_loop(
cond_fn=cond_fn,
body_fn=body_fn,
carried_inputs=(
torch.zeros(1, dtype=torch.int32, device=cnt.device),
cnt,
),
)
else:
for ind in range(10):
cnt += torch.abs(y[ind])
return x * cnt
inp = torch.randn(3, 10, 1, device=device) * 2
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
# TODO: Does not work because of the usage of vmap within associative_scan
# TODO: Re-enable additional parameters again once this issues has been resolved
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@unittest.expectedFailure
def test_associative_scan_loop_in_combine_fn_failure(self):
compile_mode = "none"
loop_type = "while"
reverse = False
device = torch.device("cuda")
def combine_fn(x, y):
_cnt = torch.zeros_like(y[0, :])
if loop_type == "while":
def cond_fn(ind, loop_val):
return (loop_val < 5)[0]
def body_fn(ind, loop_val):
return ind + 1, loop_val + torch.abs(ind)
inp = torch.randn(3, 10, 1, device=device) * 2
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
),
)
def test_associative_scan_cond_in_combine_fn(self, compile_mode, reverse, device):
def combine_fn(x, y):
val = cond(torch.sum(y) > 0.0, lambda y: y.clone(), lambda y: 1.0 - y, (y,))
return x * val
inp = torch.randn(3, 10, 1, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
# TODO: Does not work because of the usage of vmap within associative_scan
# TODO: Re-enable additional parameters again once this issues has been resolved
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@unittest.expectedFailure
def test_associative_scan_map_in_combine_fn(self):
compile_mode = "none"
reverse = False
device = torch.device("cuda")
def combine_fn(x, y):
def body(x, y):
return x + y
y_init = y[0]
y_new = control_flow.map(body, y, y_init)
return x * y_new
inp = torch.randn(3, 10, 1, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_vmap_in_combine_fn(self, compile_mode, reverse, device):
def combine_fn(x, y):
def body(x):
return x**2
mapped_body = torch.vmap(body, 0, 0)
y_new = mapped_body(y)
return x + y_new
inp = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": combine_fn,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("reverse", [False, True])
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of associative_scan and device=cpu
# as the current implementation of pointwise does only support CUDA device
@decorateIf(
unittest.skip,
lambda params: (params["device"] == torch.device("cpu")),
)
def test_associative_scan_non_pointwise_generic(
self, reverse, compile_mode, device
):
x = torch.randn(3, 10, 2, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("non_pointwise", True),
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=x,
)
@skipIfRocm(msg="Unsupported on ROCM yet")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combination of combine_mode=pointwise and device=cpu
# as the current implementation of pointwise does only support CUDA device
# Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape
# as the current implementation does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (
params["combine_mode"] == "pointwise"
and (
params["device"] == torch.device("cpu")
or params["compile_mode"] == "compile_dynamic_shape"
or torch.version.hip
)
),
)
def test_associative_scan_binary_operator(
self, compile_mode, combine_mode, reverse, device
):
state_dim = 20
timesteps = 10
projected_inputs = torch.randn(
timesteps, state_dim, requires_grad=True, device=device
)
A = torch.randn(state_dim, requires_grad=True, device=device)
elements = (A.repeat((timesteps, 1)), projected_inputs)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("s5_operator", True),
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=elements,
)
@skipIfRocm(msg="Unsupported on ROCM yet")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_different_input_size(self, compile_mode, reverse, device):
batch = 5
hidden_dim = 3
length = 10
dstate = 7
deltaA = torch.randn(
(batch, hidden_dim, length, dstate), requires_grad=True, device=device
)
deltaB_u = torch.randn(
(batch, hidden_dim, length, dstate), requires_grad=True, device=device
)
C = torch.randn((batch, dstate, length), requires_grad=True, device=device)
x = torch.randn(
(batch, hidden_dim, length, dstate), requires_grad=True, device=device
)
y = torch.randn((batch, hidden_dim, length), requires_grad=True, device=device)
elements = (x, deltaA, deltaB_u, C, y)
kwargs = {
"dim": 2,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": get_scan_combine_fn("different_input_size_operator", True),
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=elements,
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_associative_scan_different_input_size_wrong_dim(self):
batch = 5
hidden_dim = 3
length = 10
dstate = 7
deltaA = torch.randn(
(batch, hidden_dim, length, dstate), device=torch.device("cuda")
)
deltaB_u = torch.randn(
(batch, hidden_dim, length, dstate), device=torch.device("cuda")
)
C = torch.randn((batch, dstate, length), device=torch.device("cuda"))
x = torch.randn(
(batch, hidden_dim, length, dstate), device=torch.device("cuda")
)
y = torch.randn(
(batch, hidden_dim, length, dstate), device=torch.device("cuda")
)
elements = (x, deltaA, deltaB_u, C, y)
with self.assertRaisesRegex(
ValueError,
"All xs leaves must at least have.*",
):
associative_scan(
get_scan_combine_fn("different_input_size_operator", True),
elements,
3,
combine_mode="pointwise",
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combine_mode=pointwise
# as the current implementation of associative_scan lowering
# does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (params["combine_mode"] == "pointwise"),
)
def test_associative_scan_freevars_simple(
self, compile_mode, combine_mode, reverse, device
):
H = torch.rand(2, device=device)
def fct_freevars1(x: torch.Tensor, y: torch.Tensor):
return x * H + y * 2
def fct_freevars2(x: torch.Tensor, y: torch.Tensor):
return x * H + y * H
H1 = torch.rand(1, device=device)
H2 = torch.rand(1, device=device)
def fct_freevars3(x: torch.Tensor, y: torch.Tensor):
return x * H1 + y * H2
inp = torch.randn(3, 2, 2, device=device)
for fct, param in [
(fct_freevars1, (H,)),
(fct_freevars2, (H,)),
(fct_freevars3, (H1, H2)),
]:
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combine_mode=pointwise
# as the current implementation of associative_scan lowering
# does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (params["combine_mode"] == "pointwise"),
)
def test_associative_scan_freevars_nested(
self, compile_mode, combine_mode, reverse, device
):
H1 = torch.rand(4, 5, device=device)
H2 = torch.rand(4, 1, device=device)
def fct_nested_outside(x: torch.Tensor, y: torch.Tensor):
def inner(xi):
return xi * H2
ret = inner(y)
return x + ret * H1
def fct_nested_outside_fake(x: torch.Tensor, y: torch.Tensor):
def inner(xi):
return xi * H2
ret = inner(y)
return x + ret * H1
H1_i = torch.rand(4, 5, device=device)
# TODO: Using random tensors in the `combine_fn` triggers the vmap randomness error:
# RuntimeError: vmap: called random operation while in randomness error mode.
# Please either use the 'same' or 'different' randomness flags on vmap or perform the randomness operation out of vmap
def fct_nested_inside(x: torch.Tensor, y: torch.Tensor):
# H2_i = torch.rand(4, 1, device=device)
H2_i = torch.ones(4, 1, device=device) * 42
def inner(xi):
return xi * H2_i
ret = inner(y)
return x + ret * H1
def fct_nested_inside_fake(x: torch.Tensor, y: torch.Tensor):
# H2_i = torch.rand(4, 1, device=device)
H2_i = torch.ones(4, 1, device=device) * 42
def inner(xi):
return xi * H2_i
ret = inner(y)
return x + ret * H1
inp = torch.randn(3, 4, 5, device=device)
for fct, fct_fake, param in [
(fct_nested_outside, fct_nested_outside_fake, (H1, H2)),
(fct_nested_inside, fct_nested_inside_fake, (H1_i,)),
]:
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
kwargs_fake["combine_fn"] = fct_fake
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combine_mode=pointwise
# as the current implementation of associative_scan lowering
# does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (params["combine_mode"] == "pointwise"),
)
def test_associative_scan_freevars_fct(
self, compile_mode, combine_mode, reverse, device
):
def additional_fct_no_add_inp(x, y):
return x * y
def fct_nested_outside(x: torch.Tensor, y: torch.Tensor):
ret = additional_fct_no_add_inp(y, y)
return x + ret
inp = torch.randn(3, 4, 5, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct_nested_outside,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
def test_associative_scan_freevars_fct_generic(self, compile_mode, reverse, device):
def additional_fct_no_add_inp(x, y):
return x * y
def fct_nested_outside(x: torch.Tensor, y: torch.Tensor):
ret = associative_scan(
additional_fct_no_add_inp, y, 1, combine_mode="generic"
)
return x + ret
def fct_nested_outside_fake(x: torch.Tensor, y: torch.Tensor):
ret = _fake_associative_scan(additional_fct_no_add_inp, y, 1)
return x + ret
inp = torch.randn(3, 4, 5, device=device)
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct_nested_outside,
"combine_mode": "generic",
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
kwargs_fake["combine_fn"] = fct_nested_outside_fake
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("combine_mode", ["pointwise", "generic"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
# Skipping the combine_mode=pointwise
# as the current implementation of associative_scan lowering
# does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (params["combine_mode"] == "pointwise"),
)
def test_associative_scan_freevars_shape_check(
self, compile_mode, combine_mode, reverse, device
):
H = torch.eye(2, device=device, requires_grad=True)
def fct_freevars(x: torch.Tensor, y: torch.Tensor):
return x @ H + y
inp = torch.randn(2, 2, 3, device=device, requires_grad=True)
kwargs = {
"dim": 2,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct_freevars,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.")
@parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"])
@parametrize("reverse", [False, True])
@parametrize("device", [torch.device("cpu"), torch.device("cuda")])
@parametrize("combine_mode", ["pointwise", "generic"])
# Skipping the combine_mode=pointwise
# as the current implementation of associative_scan lowering
# does not support lifted arguments
@decorateIf(
unittest.skip,
lambda params: (params["combine_mode"] == "pointwise"),
)
def test_associative_scan_freevars_pytree(
self, compile_mode, combine_mode, reverse, device
):
xf = torch.randn(2, 2, device=device, requires_grad=True)
yf = torch.randn(2, 2, device=device, requires_grad=True)
zf = torch.randn(2, 2, device=device, requires_grad=True)
inpf = {"i": xf, "j": ([yf], [{"o": zf}])}
def fct_pointwise(x, y):
return {
"i": (x["i"] * y["i"]) + inpf["i"],
"j": (
[(x["j"][0][0] * y["j"][0][0]) + inpf["j"][0][0]],
[
{
"o": (x["j"][1][0]["o"] + y["j"][1][0]["o"])
+ inpf["j"][1][0]["o"]
}
],
),
}
x = torch.randn(3, 2, 2, device=device, requires_grad=True)
y = torch.randn(3, 2, 2, device=device, requires_grad=True)
z = torch.randn(3, 2, 2, device=device, requires_grad=True)
inp = {"i": x, "j": ([y], [{"o": z}])}
kwargs = {
"dim": 0,
"reverse": reverse,
"compile_mode": compile_mode,
"combine_fn": fct_pointwise,
"combine_mode": combine_mode,
}
kwargs_fake = self._prepare_fake_kwargs(kwargs)
self._run_test(
model=AssociativeScanModels.CombineFn(**kwargs),
model_fake=AssociativeScanModels.CombineFn(**kwargs_fake),
inputs=inp,
)
@unittest.skipIf(not SM70OrLater, "triton")
def test_associative_scan_sparse_tensor(self):
x = torch.tensor(
[[[0.0, 0], [1.0, 2.0]], [[0.0, 0], [3.0, 4.0]], [[0.0, 0], [5.0, 6.0]]]
).to_sparse()
with self.assertRaisesRegex(
ValueError,
"xs leaves must dense Tensors.*",
):
associative_scan(
get_scan_combine_fn("add", True), x, 0, combine_mode="generic"
)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_associative_scan_combine_fn_wrong_meta_in_combine_fn(self):
device = torch.device("cuda")
B, N, C, H, W = 3, 3, 2, 3, 3
x = torch.randn(B, N, C, H, W, device=device)
def fct_wrong_dtype(x, y):
return (x + y).to(torch.int64)
def fct_wrong_device(x, y):
return (x + y).to(
torch.device("cpu") if device.type == "cuda" else torch.device("cuda")
)
def fct_wrong_stride(x, y):
return (x + y).to(memory_format=torch.channels_last)
for fct in [fct_wrong_dtype, fct_wrong_device, fct_wrong_stride]:
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected initial_xs and combine_fn_output to have same metadata.*",
):
associative_scan(fct, x, 0)
@unittest.skipIf(not SM70OrLater, "triton")
def test_associative_scan_wrong_pytree(self):
def fct_wrong_pytree(x, y):
return {
"i": x["i"] * y["j"][0][0],
"k": torch.tensor(0.0),
"j": ([x["j"][1][0]["o"]], [{"o": torch.sin(x["i"])}]),
}
x = torch.randn(3, 2, 2)
y = torch.randn(3, 2, 2)
z = torch.randn(3, 2, 2)
inp = {"i": x, "j": ([y], [{"o": z}])}
with self.assertRaisesRegex(
AssertionError,
"Combin_fn received wrong number of arguments.*",
):
associative_scan(fct_wrong_pytree, inp, 0, combine_mode="generic")
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_associative_scan_non_pointwise(self):
device = torch.device("cuda")
x = torch.randn(3, 10, 2, device=device)
with self.assertRaisesRegex(
# Should be:
RuntimeError,
r"For combine_mode='pointwise', the combine_fn needs to be pointwise",
):
associative_scan(
get_scan_combine_fn("non_pointwise", True),
x,
0,
combine_mode="pointwise",
)
@requires_cuda
def test_associative_scan_input_mutation(self):
device = torch.device("cuda")
def fct_input_mutation(x, y):
x.add_(1)
return x + y
x = torch.randn(3, 2, 2, device=device)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"associative_scan must be captured completely with torch.compile.*",
):
associative_scan(fct_input_mutation, x, 0)
@requires_cuda
def test_associative_scan_input_output_alias(self):
device = torch.device("cuda")
def fct_input_output_alias(x, y):
return x[0], x[1] + y[1]
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"associative_scan must be captured completely with torch.compile.*",
):
associative_scan(fct_input_output_alias, inp, 0)
@unittest.skipIf(not SM70OrLater, "triton")
@requires_cuda
def test_associative_scan_output_output_alias(self):
device = torch.device("cuda")
def fct_output_output_alias(x, y):
c = x[0] + y[1]
return c, c
x = torch.randn(3, 2, 2, device=device)
y = torch.randn(3, 2, 2, device=device)
inp = (x, y)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"associative_scan must be captured completely with torch.compile.*",
):
associative_scan(fct_output_output_alias, inp, 0)
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
@skipIfNoDynamoSupport
class TestControlFlowTraced(TestCase):
def setUp(self):
torch._dynamo.reset()
super().setUp()
def _check_tracing(self, fn, args, allow_non_fake_inputs=False):
graphs = {}
eager_res = fn(*args)
for tracing_mode in ["symbolic", "real", "fake"]:
graph = make_fx(
fn,
tracing_mode=tracing_mode,
_allow_non_fake_inputs=allow_non_fake_inputs,
)(*args)
graphs[tracing_mode] = graph
self.assertEqual(graph(*args), eager_res)
return graphs
def _check_compile(self, fn, args, *, dynamic=False, backend="eager"):
eager_res = fn(*args)
compiled_fn = torch.compile(fn, backend=backend, dynamic=dynamic)
self.assertEqual(compiled_fn(*args), eager_res)
def _check_export(self, fn, args, *, strict=False, dynamic_shapes=None):
eg_out = fn(*args)
ep = torch.export.export(fn, args, strict=strict, dynamic_shapes=dynamic_shapes)
ep_out = ep.module()(*args)
self.assertEqual(eg_out, ep_out)
return ep
def test_cond_traced_not_nested(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False))
result_true = graph.forward(x, torch.tensor(True))
result_false = graph.forward(x, torch.tensor(False))
self.assertFalse(torch.allclose(result_true, result_false))
self.assertEqual(result_true, torch.sin(x))
self.assertEqual(result_false, torch.cos(x))
graph = make_fx(f, tracing_mode="symbolic")(x, torch.tensor(False))
self.assertEqual(graph(x, torch.tensor(True)), f(x, torch.tensor(True)))
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
@skipIfCrossRef # Arg order changes with crossref
def test_cond_simple_with_linear_compile_check_graph(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
x = torch.randn(4, requires_grad=True)
def f(pred, x):
result = cond(pred, true_fn, false_fn, (x,))
grad_out = torch.ones_like(result)
return torch.autograd.grad(result, (x,), grad_out)
backend = EagerAndRecordGraphs()
torch.compile(f, backend=backend)(torch.tensor(False), x)
self.assertEqual(len(backend.graphs), 2)
gm = backend.graphs[0]
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, L_pred_ : torch.Tensor, L_x_ : torch.Tensor):
l_pred_ = L_pred_
l_x_ = L_x_
cond_true_0 = self.cond_true_0
cond_false_0 = self.cond_false_0
cond = torch.ops.higher_order.cond(l_pred_, cond_true_0, cond_false_0, (l_x_,)); l_pred_ = cond_true_0 = cond_false_0 = l_x_ = None
result = cond[0]; cond = None
grad_out = torch.ones_like(result)
return (result, grad_out)""", # noqa: B950
)
self.assertExpectedInline(
normalize_gm(backend.graphs[1].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_ctx_saved_tensors_0_: "f32[4]", L_ctx_pred: "b8[]", L_args_1_: "f32[4]"):
l_ctx_saved_tensors_0_ = L_ctx_saved_tensors_0_
l_ctx_pred = L_ctx_pred
l_args_1_ = L_args_1_
cond_true_0 = self.cond_true_0
cond_false_0 = self.cond_false_0
cond = torch.ops.higher_order.cond(l_ctx_pred, cond_true_0, cond_false_0, (l_args_1_, l_ctx_saved_tensors_0_)); l_ctx_pred = cond_true_0 = cond_false_0 = l_args_1_ = l_ctx_saved_tensors_0_ = None
getitem: "f32[4]" = cond[0]; cond = None
return (getitem,)
class cond_true_0(torch.nn.Module):
def forward(self, l_args_1_: "f32[4]", l_ctx_saved_tensors_0_: "f32[4]"):
l_args_1__1 = l_args_1_
l_ctx_saved_tensors_0__1 = l_ctx_saved_tensors_0_
sin: "f32[4]" = torch.ops.aten.sin.default(l_ctx_saved_tensors_0__1); sin = None
cos: "f32[4]" = torch.ops.aten.cos.default(l_ctx_saved_tensors_0__1); l_ctx_saved_tensors_0__1 = None
mul: "f32[4]" = torch.ops.aten.mul.Tensor(l_args_1__1, cos); l_args_1__1 = cos = None
return (mul,)
class cond_false_0(torch.nn.Module):
def forward(self, l_args_1_: "f32[4]", l_ctx_saved_tensors_0_: "f32[4]"):
l_args_1__1 = l_args_1_
l_ctx_saved_tensors_0__1 = l_ctx_saved_tensors_0_
cos: "f32[4]" = torch.ops.aten.cos.default(l_ctx_saved_tensors_0__1); cos = None
sin: "f32[4]" = torch.ops.aten.sin.default(l_ctx_saved_tensors_0__1); l_ctx_saved_tensors_0__1 = None
neg: "f32[4]" = torch.ops.aten.neg.default(sin); sin = None
mul: "f32[4]" = torch.ops.aten.mul.Tensor(l_args_1__1, neg); l_args_1__1 = neg = None
return (mul,)
""", # noqa: B950
)
def test_while_loop_op_mismatch_in_meta(self):
class Mod(torch.nn.Module):
def forward(self, c, a, b):
def cond_fn(c, a, b):
return c > 0
def body_fn(c, a, b):
return c - 1, a.nonzero(), b.nonzero()
return torch.ops.higher_order.while_loop(
cond_fn,
body_fn,
(c, a, b),
tuple(),
)
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Expected carried_inputs and body_output to have same metadata but found",
):
make_fx(Mod(), tracing_mode="fake")(
torch.tensor(
0,
),
torch.randn(2, 3),
torch.randn(2, 3),
)
def test_while_loop_nested_traced(self):
fn, inp = WHILE_LOOP_TESTS["nested"]
graphs = self._check_tracing(fn, inp)
self.assertExpectedInline(
graphs["symbolic"].code.strip("\n"),
"""\
def forward(self, out_iter_1, it_1, y_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (out_iter_1, it_1, y_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = out_iter_1 = it_1 = y_1 = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
getitem_2 = while_loop[2]; while_loop = None
return (getitem, getitem_1, getitem_2)
""", # noqa: B950
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
sum_1 = torch.ops.aten.sum.default(arg0_1); arg0_1 = None
lt = torch.ops.aten.lt.Scalar(sum_1, 2); sum_1 = None
return lt
""",
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
getitem_2 = while_loop[2]; while_loop = None
add = torch.ops.aten.add.Tensor(getitem, 1); getitem = None
return (add, getitem_1, getitem_2)
""", # noqa: B950
)
def test_while_loop_pytree_carry(self):
fn, inp = WHILE_LOOP_TESTS["simple_with_pytree_carry"]
backend = EagerAndRecordGraphs()
expected_res = fn(*inp)
compiled_res = torch.compile(fn, backend=backend)(*inp)
self.assertEqual(expected_res, compiled_res)
# When test with torch dynamo, the graph is not captured because
# it's traced together with the code before torch.compile
if not TEST_WITH_TORCHDYNAMO:
self.assertEqual(len(backend.graphs), 1)
self.assertExpectedInline(
backend.graphs[0].code.strip(),
"""\
def forward(self, L_it_ : torch.Tensor, L_pytree_input_0_0_ : torch.Tensor, L_pytree_input_1_x_ : torch.Tensor, L_pytree_input_1_y_ : torch.Tensor):
l_it_ = L_it_
l_pytree_input_0_0_ = L_pytree_input_0_0_
l_pytree_input_1_x_ = L_pytree_input_1_x_
l_pytree_input_1_y_ = L_pytree_input_1_y_
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_it_, l_pytree_input_0_0_, l_pytree_input_1_x_, l_pytree_input_1_y_), ()); cond_fn_0 = body_fn_0 = l_it_ = l_pytree_input_0_0_ = l_pytree_input_1_x_ = l_pytree_input_1_y_ = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
value = while_loop[2]
value_1 = while_loop[3]; while_loop = None
return (getitem, getitem_1, value, value_1)""", # noqa: B950
)
def _wrap_with_functionalize(self, fn, func_type):
mode = None
if func_type == "cpp":
fn = CppFunctionalizeAPI().functionalize(fn)
elif func_type == "python":
fn = PythonFunctionalizeAPI().functionalize(fn)
mode = FunctionalTensorMode()
elif func_type == "functorch":
fn = torch.func.functionalize(fn)
else:
assert func_type == "no"
return fn, mode
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
def test_while_loop_simple_functionalize_check_graph(self, func_type):
fn, inp = WHILE_LOOP_TESTS["simple_with_mutation"]
fn, mode = self._wrap_with_functionalize(fn, func_type)
mode = mode if mode is not None else contextlib.nullcontext()
with mode:
graphs = self._check_tracing(fn, inp)
if func_type == "no":
self.assertExpectedInline(
graphs["symbolic"].code.strip("\n"),
"""\
def forward(self, x_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
getitem = while_loop[0]; while_loop = None
return (getitem,)
""", # noqa: B950
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
sum_1 = torch.ops.aten.sum.default(add__1); add__1 = None
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
return lt
""",
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add_ = torch.ops.aten.add_.Tensor(clone, 1); clone = None
add__1 = torch.ops.aten.add_.Tensor(add_, -1); add_ = None
add = torch.ops.aten.add.Tensor(add__1, 1); add__1 = None
return (add,)
""",
)
elif func_type == "python":
self.assertExpectedInline(
graphs["symbolic"].code.strip("\n"),
"""\
def forward(self, arg0_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = None
getitem = while_loop[0]; while_loop = None
return (getitem,)
""", # noqa: B950
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
return lt
""",
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
return (add_2,)
""",
)
else:
self.assertExpectedInline(
graphs["symbolic"].code.strip("\n"),
"""\
def forward(self, x_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (x_1,), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x_1 = None
getitem = while_loop[0]; while_loop = None
return (getitem,)
""", # noqa: B950
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_cond_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
sum_1 = torch.ops.aten.sum.default(add_1); add_1 = None
lt = torch.ops.aten.lt.Scalar(sum_1, 10); sum_1 = None
return lt
""",
)
self.assertExpectedInline(
graphs["symbolic"].while_loop_body_graph_0.code.strip("\n"),
"""\
def forward(self, arg0_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
add = torch.ops.aten.add.Tensor(clone, 1); clone = None
add_1 = torch.ops.aten.add.Tensor(add, -1); add = None
add_2 = torch.ops.aten.add.Tensor(add_1, 1); add_1 = None
return (add_2,)
""",
)
@parametrize("func_type", ["no", "cpp", "python", "functorch"])
# - "simple_with_linear" and "nested_with_linear" doesn't work because parameters and buffers
# are not inputs so they're not wrapped by functionalization and tracing.
#
# - make_fx tracing mode "real" fails for "int_carry", "pytree_int_carry" and "const_and_symint_output"
# because tensors are real but we unspecialize the ints with unbacked symints causing
# data dependent errors.
# Since this is not the common use path, we skip them for now.
@parametrize(
"while_loop_test",
set(WHILE_LOOP_TESTS.keys())
- {
"simple_with_linear",
"nested_with_linear",
"int_carry",
"pytree_int_carry",
"const_and_symint_output",
},
)
def test_while_loop_functionalize(self, func_type, while_loop_test):
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
fn, mode = self._wrap_with_functionalize(fn, func_type)
mode = mode if mode is not None else contextlib.nullcontext()
with mode:
self._check_tracing(fn, inp)
# - make_fx tracing mode "real" fails for "int_carry", "pytree_int_carry" and "const_and_symint_output"
# because tensors are real but we unspecialize the ints with unbacked symints causing
# data dependent errors.
# Since this is not the common use path, we skip them for now.
@parametrize(
"while_loop_test",
set(WHILE_LOOP_TESTS.keys())
- {"int_carry", "pytree_int_carry", "const_and_symint_output"},
)
def test_while_loop_tracing(self, while_loop_test):
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
allow_non_fake_inputs = (
False
if while_loop_test not in ("simple_with_linear", "nested_with_linear")
else True
)
self._check_tracing(fn, inp, allow_non_fake_inputs)
@parametrize("backend", ["eager", "aot_eager"])
@parametrize("while_loop_test", list(WHILE_LOOP_TESTS.keys()))
def test_while_loop_compile(self, backend, while_loop_test):
fn, inp = WHILE_LOOP_TESTS[while_loop_test]
self._check_compile(fn, inp, backend=backend)
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
@skipIfCrossRef # Arg order changes with cross ref
def test_while_loop_simple_with_linear_compile_check_graph(self):
fn, inp = WHILE_LOOP_TESTS["simple_with_linear"]
backend = EagerAndRecordGraphs()
torch.compile(fn, backend=backend)(*inp)
self.assertEqual(len(backend.graphs), 1)
gm = backend.graphs[0]
if torch._dynamo.config.inline_inbuilt_nn_modules:
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, L_iter_ : torch.Tensor, L_x_ : torch.Tensor, L_self_buffers_dec_ : torch.Tensor, L_self_modules_linear_parameters_weight_ : torch.nn.parameter.Parameter, L_self_modules_linear_parameters_bias_ : torch.nn.parameter.Parameter):
l_iter_ = L_iter_
l_x_ = L_x_
l_self_buffers_dec_ = L_self_buffers_dec_
l_self_modules_linear_parameters_weight_ = L_self_modules_linear_parameters_weight_
l_self_modules_linear_parameters_bias_ = L_self_modules_linear_parameters_bias_
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_iter_, l_x_), (l_self_buffers_dec_, l_self_modules_linear_parameters_bias_, l_self_modules_linear_parameters_weight_)); cond_fn_0 = body_fn_0 = l_iter_ = l_x_ = l_self_buffers_dec_ = l_self_modules_linear_parameters_bias_ = l_self_modules_linear_parameters_weight_ = None
getitem = while_loop[0]
getitem_1 = while_loop[1]; while_loop = None
return (getitem, getitem_1)""", # noqa: B950
)
self.assertExpectedInline(
gm.cond_fn_0.code.strip(),
"""\
def forward(self, child : torch.Tensor, child_1 : torch.Tensor, l_self_buffers_dec__cond_fn, l_self_modules_linear_parameters_bias__body_fn, l_self_modules_linear_parameters_weight__body_fn):
sub = child - l_self_buffers_dec__cond_fn; child = l_self_buffers_dec__cond_fn = None
gt = sub > 0; sub = None
return gt""", # noqa: B950
)
self.assertExpectedInline(
gm.body_fn_0.code.strip(),
"""\
def forward(self, child_2 : torch.Tensor, child_3 : torch.Tensor, l_self_buffers_dec__cond_fn, l_self_modules_linear_parameters_bias__body_fn, l_self_modules_linear_parameters_weight__body_fn):
child = child_2 - 1; child_2 = None
child_4 = torch._C._nn.linear(child_3, l_self_modules_linear_parameters_weight__body_fn, l_self_modules_linear_parameters_bias__body_fn); child_3 = l_self_modules_linear_parameters_weight__body_fn = l_self_modules_linear_parameters_bias__body_fn = None
return (child, child_4)""", # noqa: B950
)
else:
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, L_iter_ : torch.Tensor, L_x_ : torch.Tensor):
l_iter_ = L_iter_
l_x_ = L_x_
l__self___dec = self.L__self___dec
l__self___linear_weight = self.L__self___linear_weight
l__self___linear_bias = self.L__self___linear_bias
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (l_iter_, l_x_), (l__self___dec, l__self___linear_bias, l__self___linear_weight)); cond_fn_0 = body_fn_0 = l_iter_ = l_x_ = l__self___dec = l__self___linear_bias = l__self___linear_weight = None
getitem = while_loop[0]
getitem_1 = while_loop[1]; while_loop = None
return (getitem, getitem_1)""", # noqa: B950
)
self.assertExpectedInline(
gm.cond_fn_0.code.strip(),
"""\
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
sub = l_iter_ - l__self___dec_cond_fn; l_iter_ = l__self___dec_cond_fn = None
gt = sub > 0; sub = None
return gt""", # noqa: B950
)
self.assertExpectedInline(
gm.body_fn_0.code.strip(),
"""\
def forward(self, l_iter_, l_x_, l__self___dec_cond_fn, l__self___linear_bias_body_fn, l__self___linear_weight_body_fn):
child = l_iter_ - 1; l_iter_ = None
child_1 = torch._C._nn.linear(l_x_, l__self___linear_weight_body_fn, l__self___linear_bias_body_fn); l_x_ = l__self___linear_weight_body_fn = l__self___linear_bias_body_fn = None
return (child, child_1)""", # noqa: B950
)
def test_while_loop_nested2_traced(self):
fn, inp = WHILE_LOOP_TESTS["nested2"]
graphs = self._check_tracing(fn, inp)
gm = graphs["symbolic"]
outer_body = gm.while_loop_body_graph_0
inner_body = outer_body.while_loop_body_graph_0
inner_cond = outer_body.while_loop_cond_graph_0
self.assertExpectedInline(
gm.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
sym_size_int = torch.ops.aten.sym_size.int(arg3_1, 1)
sym_size_int_1 = torch.ops.aten.sym_size.int(arg2_1, 1)
sym_size_int_2 = torch.ops.aten.sym_size.int(arg2_1, 0)
sym_size_int_3 = torch.ops.aten.sym_size.int(arg3_1, 0)
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), (sym_size_int, sym_size_int_1, sym_size_int_2, sym_size_int_3)); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = sym_size_int = sym_size_int_1 = sym_size_int_2 = sym_size_int_3 = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
getitem_2 = while_loop[2]
getitem_3 = while_loop[3]; while_loop = None
return (getitem, getitem_1, getitem_2, getitem_3)
""", # noqa: B950
)
self.assertExpectedInline(
outer_body.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), (arg7_1, arg7_1, arg7_1, arg7_1)); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = arg7_1 = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
getitem_2 = while_loop[2]
getitem_3 = while_loop[3]; while_loop = None
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
return (sub, clone, mul, div)
""", # noqa: B950
)
self.assertExpectedInline(
outer_body.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1):
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (arg0_1, arg1_1, arg2_1, arg3_1), (arg7_1, arg7_1, arg7_1, arg7_1)); while_loop_cond_graph_0 = while_loop_body_graph_0 = arg0_1 = arg1_1 = arg2_1 = arg3_1 = arg7_1 = None
getitem = while_loop[0]
getitem_1 = while_loop[1]
getitem_2 = while_loop[2]
getitem_3 = while_loop[3]; while_loop = None
sub = torch.ops.aten.sub.Tensor(getitem, 1); getitem = None
clone = torch.ops.aten.clone.default(getitem_1); getitem_1 = None
mul = torch.ops.aten.mul.Tensor(getitem_2, 2); getitem_2 = None
div = torch.ops.aten.div.Tensor(getitem_3, 2); getitem_3 = None
return (sub, clone, mul, div)
""", # noqa: B950
)
self.assertExpectedInline(
inner_body.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1):
clone = torch.ops.aten.clone.default(arg0_1); arg0_1 = None
sub = torch.ops.aten.sub.Tensor(arg1_1, 1); arg1_1 = None
add = torch.ops.aten.add.Tensor(arg2_1, 3.14); arg2_1 = None
sub_1 = torch.ops.aten.sub.Tensor(arg3_1, 2.71); arg3_1 = None
return (clone, sub, add, sub_1)
""",
)
self.assertExpectedInline(
inner_cond.code.strip("\n"),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1):
gt = torch.ops.aten.gt.Scalar(arg1_1, 0); arg1_1 = None
return gt
""",
)
def test_cond_nested_traced(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(x, pred2):
z = cond(pred2, true_nested, false_nested, [x])
return x + z
def false_fn(x, _):
return x.cos()
def f(x, pred, pred2):
return cond(pred, true_fn, false_fn, [x, pred2])
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
result_true_true = graph.forward(
x, torch.tensor(True), torch.tensor(True)
) # True + True -> x * x
result_true_false = graph.forward(
x, torch.tensor(True), torch.tensor(False)
) # True + True -> x + x
result_false_true = graph.forward(
x, torch.tensor(False), torch.tensor(True)
) # False + either -> cos
result_false_false = graph.forward(
x, torch.tensor(False), torch.tensor(False)
) # False + either -> cos
self.assertNotEqual(result_true_true, result_true_false)
self.assertFalse(torch.allclose(result_false_true, result_true_true))
self.assertEqual(result_false_true, result_false_false)
self.assertEqual(result_true_true, (x * x) + x)
self.assertEqual(result_true_false, x + x + x)
self.assertEqual(result_false_true, torch.cos(x))
graph = make_fx(f, tracing_mode="symbolic")(
x, torch.tensor(False), torch.tensor(False)
)
self.assertEqual(
graph(x, torch.tensor(True), torch.tensor(True)),
f(x, torch.tensor(True), torch.tensor(True)),
)
def test_cond_functionalized(self):
def true_fn(x):
y = x.sin()
y.add_(4)
return x.sin().max() + y.sum()
def false_fn(x):
return x.cos().min()
def f(x):
pred = x.shape[0] == 1
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(4, 5),)
functional_f = torch.func.functionalize(f)
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
all_ops_in_true_branch = []
for node in graph_module.true_graph_0.graph.nodes:
if node.op == "call_function":
all_ops_in_true_branch.append(node.target)
self.assertFalse(any(op._schema.is_mutable for op in all_ops_in_true_branch))
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
def test_cond_accepts_torch_function_as_inputs(self):
a = torch.randn(3, 4)
b = torch.randn(3, 4)
def f(a, b):
return cond(a.sum() > 0, torch.add, torch.mul, (a, b))
gm = self._check_tracing(f, (a, b))["symbolic"]
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, a_1, b_1):
sum_1 = torch.ops.aten.sum.default(a_1)
gt = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
sym_size_int = torch.ops.aten.sym_size.int(a_1, 1)
sym_size_int_1 = torch.ops.aten.sym_size.int(b_1, 0)
sym_size_int_2 = torch.ops.aten.sym_size.int(b_1, 1)
sym_size_int_3 = torch.ops.aten.sym_size.int(a_1, 0)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (a_1, b_1, sym_size_int, sym_size_int_1, sym_size_int_2, sym_size_int_3)); gt = true_graph_0 = false_graph_0 = a_1 = b_1 = sym_size_int = sym_size_int_1 = sym_size_int_2 = sym_size_int_3 = None
getitem = cond[0]; cond = None
return getitem""", # noqa: B950
)
self.assertExpectedInline(
gm.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1):
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return (add,)""",
)
self.assertExpectedInline(
gm.false_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1):
mul = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return (mul,)""",
)
def test_cond_retrace_functionalized(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
def f(x):
return cond(x.all(), true_fn, false_fn, (x,))
inp = torch.ones(1, 2)
gm_non_functional = make_fx(f, tracing_mode="real")(inp)
gm_functional = make_fx(
torch.func.functionalize(gm_non_functional), tracing_mode="real"
)(inp)
self.assertEqual(gm_functional(torch.zeros(1, 2)), f(torch.zeros(1, 2)))
def test_cond_subgraph_same_shape_env_as_parent(self):
def true_fn(x):
return x.sin() + 10
def false_fn(x):
return x.cos() - 20
def f(x, pred):
y = cond(pred, true_fn, false_fn, [x])
z = torch.add(y, y)
return z
symbolic_traced_graph = self._check_tracing(
f, (torch.ones(4), torch.Tensor([True]))
)["symbolic"]
graph_shape_env = symbolic_traced_graph.shape_env
def _node_shape_env_iter(gm):
for node in symbolic_traced_graph.graph.nodes:
if node.op == "call_function":
val = node.meta.get("val")
if isinstance(val, tuple):
for v in val:
yield v.fake_mode.shape_env
elif isinstance(val, torch.SymInt):
yield val.node.shape_env
else:
yield val.fake_mode.shape_env
for shape_env in _node_shape_env_iter(symbolic_traced_graph):
self.assertTrue(shape_env is graph_shape_env)
for shape_env in _node_shape_env_iter(symbolic_traced_graph.true_graph_0):
self.assertTrue(shape_env is graph_shape_env)
for shape_env in _node_shape_env_iter(symbolic_traced_graph.false_graph_0):
self.assertTrue(shape_env is graph_shape_env)
def test_cond_functionalized_nested(self):
def true_true_fn(x):
y = x.cos()
y.add_(4)
return x.sin().max() + y.sin().max()
def true_false_fn(x):
return x.cos().min()
def true_fn(x):
pred = x.shape[0] == 1
return cond(pred, true_true_fn, true_false_fn, [x])
def false_fn(x):
return x.sum()
def f(x):
pred = x.shape[0] == 1
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(4, 5),)
functional_f = torch.func.functionalize(f)
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
gm_true_true_branch = graph_module.true_graph_0.true_graph_0
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
all_ops = []
for node in gm_true_true_branch.graph.nodes:
if node.op == "call_function":
all_ops.append(node.target)
self.assertFalse(any(op._schema.is_mutable for op in all_ops))
def test_cond_functionalized_data_dependent_pred(self):
def true_fn(x):
return x.sin().sum()
def false_fn(x):
return x.cos().sum()
def f(x):
pred = x.nonzero().shape[0] == 1
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(4, 5),)
functional_f = torch.func.functionalize(f)
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
graph_module = make_fx(torch.func.functionalize(f))(*example_inputs)
self.assertEqual(graph_module(*example_inputs), f(*example_inputs))
def test_cond_functionalized_input_mutation_on_true_branch(self):
def true_fn(x):
view_x = x.view(x.shape)
view_x.add_(1)
return view_x.sin().sum()
def false_fn(x):
return x.cos().sum()
def f(x):
pred = x.shape[0] == 4
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(4, 5),)
# torch.cond inlines into one of the branches because the predicate
# is a constant.
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
view = torch.ops.aten.view.default(x_1, [4, 5])
add = torch.ops.aten.add.Tensor(view, 1); view = None
view_1 = torch.ops.aten.view.default(add, [4, 5]); add = None
view_2 = torch.ops.aten.view.default(view_1, [4, 5])
sin = torch.ops.aten.sin.default(view_2); view_2 = None
sum_1 = torch.ops.aten.sum.default(sin); sin = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
return sum_1""",
)
# torch.cond triggers the check of the branches because the predicate
# is a SymBool.
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"cond_true might be modifying the input!",
):
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
def test_cond_functionalized_input_mutation_on_false_branch(self):
def true_fn(x):
return x.sin().sum()
def false_fn(x):
view_x = x.view(x.shape)
view_x.add_(1)
return view_x.cos().sum()
def f(x):
pred = x.shape[0] == 4
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(5, 5),)
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
# torch.cond inlines into one of the branches because the predicate
# is a constant.
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
view = torch.ops.aten.view.default(x_1, [5, 5])
add = torch.ops.aten.add.Tensor(view, 1); view = None
view_1 = torch.ops.aten.view.default(add, [5, 5]); add = None
view_2 = torch.ops.aten.view.default(view_1, [5, 5])
cos = torch.ops.aten.cos.default(view_2); view_2 = None
sum_1 = torch.ops.aten.sum.default(cos); cos = None
copy_ = torch.ops.aten.copy_.default(x_1, view_1); x_1 = view_1 = copy_ = None
return sum_1""",
)
# torch.cond triggers the check of the branches because the predicate
# is a SymBool.
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"cond_false might be modifying the input!",
):
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
def test_cond_functionalized_output_alias_input(self):
def true_fn(x):
return x.clone()
def false_fn(x):
view_x = x.view(x.shape)
return view_x
def f(x):
pred = x.shape[0] == 4
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(5, 5),)
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
# torch.cond inlines into one of the branches because the predicate
# is a constant.
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
view = torch.ops.aten.view.default(x_1, [5, 5]); x_1 = None
return view""",
)
# torch.cond triggers the check of the branches because the predicate
# is a SymBool.
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
def test_cond_functionalized_nested_input_mutation(self):
def true_true_fn(x):
x.add_(4)
return x.sin().max()
def true_false_fn(x):
return x.cos().min()
def true_fn(x):
pred = x.shape[0] == 1
return cond(pred, true_true_fn, true_false_fn, [x])
def false_fn(x):
return x.sum()
def f(x):
pred = x.shape[0] == 1
return cond(pred, true_fn, false_fn, [x])
example_inputs = (torch.ones(4, 5),)
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"cond_true might be modifying the input!",
):
make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
def test_cond_functionalized_nested_input_mutation_with_aot_func(self):
def true_true_fn(x):
x.add_(4)
return x.sin().max()
def true_false_fn(x):
return x.cos().min()
def true_fn(x):
pred = x.shape[0] == 1
return cond(pred, true_true_fn, true_false_fn, [x])
def false_fn(x):
return x.sum()
def f(x):
pred = x.shape[0] == 1
return cond(pred, true_fn, false_fn, [x])
example_input = torch.ones(4, 5)
try:
example_input_func = to_fun_old(example_input)
torch._enable_functionalization(reapply_views=False)
f(example_input_func)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(f, tracing_mode="symbolic")(example_input_func)
finally:
torch._disable_functionalization()
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
return func(*args, **kwargs)
finally:
torch._disable_functionalization()
return wrapper
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input_func)
def test_cond_functionalized_input_aliasing_with_aot_func(self):
def true_fn(x):
return x
def false_fn(x):
view_x = x.view(x.shape)
return view_x
def f(x):
pred = x.sum() > 0
return cond(pred, true_fn, false_fn, [x])
example_input = torch.ones(5, 5)
try:
example_input_func = to_fun_old(example_input)
torch._enable_functionalization(reapply_views=False)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
f(example_input_func)
finally:
torch._disable_functionalization()
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(
lambda x: torch._to_functional_tensor(x)
if isinstance(x, torch.Tensor)
else x,
args,
)
func_kwargs = pytree.tree_map(
lambda x: torch._to_functional_tensor(x)
if isinstance(x, torch.Tensor)
else x,
kwargs,
)
return func(*func_args, **func_kwargs)
finally:
torch._disable_functionalization()
return wrapper
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input)
def test_cond_functionalized_aot_func_check_functional(self):
def true_fn(x):
return x.cos()
def false_fn(x):
y = x.sin()
y.add_(5)
return y
def f(x):
pred = x.shape[0] == 4
return cond(pred, true_fn, false_fn, [x])
example_input = torch.ones(5, 5)
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
args,
)
func_kwargs = pytree.tree_map(
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
kwargs,
)
return pytree.tree_map(
from_fun_old, func(*func_args, **func_kwargs)
)
finally:
torch._disable_functionalization()
return wrapper
result_gm = make_fx(f_wrapper(f), tracing_mode="symbolic")(example_input)
for node in result_gm.true_graph_0.graph.nodes:
if node.op == "call_function":
self.assertTrue(not node.target._schema.is_mutable)
for node in result_gm.false_graph_0.graph.nodes:
if node.op == "call_function":
self.assertTrue(not node.target._schema.is_mutable)
self.assertEqual(result_gm(torch.ones(5, 5)), f(torch.ones(5, 5)))
def test_cond_nested_traced_other_inputs(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(k, pred2):
z = cond(pred2, true_nested, false_nested, [k])
return torch.add(torch.tensor([0.25, 0.25]), z)
def false_fn(k, _):
return k.cos()
def f(k, pred, pred2):
return cond(pred, true_fn, false_fn, [k, pred2])
x = torch.tensor([0.5, 0.5])
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
a = torch.tensor([1.0, 1.0])
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
b = torch.tensor([2.0, 2.0])
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
def test_cond_nested_traced_multi(self):
def true_a(y):
return y * y
def false_a(y):
return y + y
def true_b(y, z):
return y + z
def false_b(y, z):
return y * z
def f(x, pred, pred2):
a_out = cond(pred, true_a, false_a, [x])
b_out = cond(pred2, true_b, false_b, [x, x])
return a_out + b_out
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
self.assertExpectedInline(
graph.code.strip(),
"""\
def forward(self, x_1, pred_1, pred2_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); pred_1 = true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, (x_1,)); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
getitem_1 = cond_1[0]; cond_1 = None
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
return add""", # noqa: B950
)
self.assertExpectedInline(
graph.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1):
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return (mul,)""",
)
def test_raise_error_on_mismatch_type_size(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return (x, x)
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(f)(x, torch.tensor(False))
def test_raise_error_on_mismatch_tensor_size(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return torch.zeros([10, 10])
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"When merging two branches' output in torch.cond",
):
make_fx(f)(x, torch.tensor(False))
def test_cond_traced_not_nested_fake_tensor(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
result_true = graph.forward(x, torch.tensor(True))
result_false = graph.forward(x, torch.tensor(False))
self.assertFalse(torch.allclose(result_true, result_false))
self.assertEqual(result_true, torch.sin(x))
self.assertEqual(result_false, torch.cos(x))
def test_cond_nested_traced_fake_tensor(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(x, pred2):
z = cond(pred2, true_nested, false_nested, [x])
return x + z
def false_fn(x, _):
return x.cos()
def f(x, pred, pred2):
return cond(pred, true_fn, false_fn, [x, pred2])
x = torch.randn(4)
graph = make_fx(f, tracing_mode="fake")(
x, torch.tensor(False), torch.tensor(False)
)
result_true_true = graph.forward(
x, torch.tensor(True), torch.tensor(True)
) # True + True -> x * x
result_true_false = graph.forward(
x, torch.tensor(True), torch.tensor(False)
) # True + True -> x + x
result_false_true = graph.forward(
x, torch.tensor(False), torch.tensor(True)
) # False + either -> cos
result_false_false = graph.forward(
x, torch.tensor(False), torch.tensor(False)
) # False + either -> cos
self.assertNotEqual(result_true_true, result_true_false)
self.assertFalse(torch.allclose(result_false_true, result_true_true))
self.assertEqual(result_false_true, result_false_false)
self.assertEqual(result_true_true, (x * x) + x)
self.assertEqual(result_true_false, x + x + x)
self.assertEqual(result_false_true, torch.cos(x))
def test_cond_nested_traced_other_inputs_fake_tensor(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(k, pred2):
z = cond(pred2, true_nested, false_nested, [k])
return torch.add(torch.tensor([0.25, 0.25]), z)
def false_fn(k, _):
return k.cos()
def f(k, pred, pred2):
return cond(pred, true_fn, false_fn, [k, pred2])
x = torch.tensor([0.5, 0.5])
graph = make_fx(f, tracing_mode="fake")(
x, torch.tensor(False), torch.tensor(False)
)
a = torch.tensor([1.0, 1.0])
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
b = torch.tensor([2.0, 2.0])
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
def test_cond_nested_traced_multi_fake_tensor(self):
def true_a(y):
return y * y
def false_a(y):
return y + y
def true_b(y, z):
return y + z
def false_b(y, z):
return y * z
def f(x, pred, pred2):
a_out = cond(pred, true_a, false_a, [x])
b_out = cond(pred2, true_b, false_b, [x, x])
return a_out + b_out
x = torch.randn(4)
graph = make_fx(f, tracing_mode="fake")(
x, torch.tensor(False), torch.tensor(False)
)
self.assertExpectedInline(
graph.code.strip(),
"""\
def forward(self, x_1, pred_1, pred2_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, (x_1,)); pred_1 = true_graph_0 = false_graph_0 = None
getitem = cond[0]; cond = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
cond_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, (x_1,)); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
getitem_1 = cond_1[0]; cond_1 = None
add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
return add""", # noqa: B950
)
self.assertExpectedInline(
graph.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1):
mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None
return (mul,)""",
)
def test_raise_error_on_mismatch_type_size_fake_tensor(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return (x, x)
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
def test_raise_error_on_mismatch_tensor_size_fake_tensor(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return torch.zeros([10, 10])
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"When merging two branches' output in torch.cond",
):
make_fx(f, tracing_mode="fake")(x, torch.tensor(False))
def check_map_count(self, gm, op_count):
i = 0
for m in gm.modules():
for node in m.graph.nodes:
if (
node.op == "call_function"
and node.target == torch.ops.higher_order.map_impl
):
i += 1
self.assertEqual(i, op_count)
def test_tracing_map_real(self):
def f(x, y):
return x + y
def g(xs, y):
return control_flow.map(f, xs, y)
gm = make_fx(g, tracing_mode="real")(torch.ones(3, 2, 2), torch.ones(2))
x = torch.randn(3, 2, 2)
y = torch.randn(2)
res = gm(x, y)
self.assertEqual(res, g(x, y))
self.check_map_count(gm, 1)
def test_tracing_map_symbolic_simple(self):
def f(x, y):
return x + y
def g(xs, y):
return control_flow.map(f, xs, y)
gm = make_fx(g, tracing_mode="symbolic")(torch.ones(3, 2, 4), torch.ones(4))
x = torch.randn(3, 2, 2)
y = torch.randn(2)
res = gm(x, y)
self.assertEqual(res, g(x, y))
self.check_map_count(gm, 1)
def test_tracing_map_symbolic_list(self):
def f(x, y):
return [x[0][0] + y, x[1] * y]
def g(xs, y, z):
out = control_flow.map(f, xs, y)
return out[0] + z, out[1] * z
example_x = [[torch.ones(3, 4, 5)], torch.ones(3, 4, 5)]
gm = make_fx(g, tracing_mode="symbolic")(
example_x, torch.ones(5), torch.ones(5)
)
x = [[torch.randn(4, 5, 6)], torch.ones(4, 5, 6)]
y = torch.randn(6)
z = torch.ones(6)
res = gm(x, y, z)
self.assertEqual(res, g(x, y, z))
self.check_map_count(gm, 1)
def test_tracing_map_symbolic_dict(self):
def f(x, y):
return {"d": x["b"]["a"] + y, "e": x["c"] * y}
def g(xs, y, z):
out = control_flow.map(f, xs, y)
return {"f": out["d"] + z, "g": out["e"] * z}
example_x = {"b": {"a": torch.ones(3, 4, 5)}, "c": torch.ones(3, 4, 5)}
gm = make_fx(g, tracing_mode="symbolic")(
example_x, torch.ones(5), torch.ones(5)
)
x = {"b": {"a": torch.randn(4, 5, 6)}, "c": torch.ones(4, 5, 6)}
y = torch.randn(6)
z = torch.ones(6)
res = gm(x, y, z)
self.assertEqual(res, g(x, y, z))
self.check_map_count(gm, 1)
def test_tracing_map_autograd_symbolic_simple(self):
def f(x, y):
return x + y
def g(xs, y):
out = control_flow.map(f, xs, y)
return torch.autograd.grad(out, (xs, y), torch.ones_like(out))
gm = make_fx(g, tracing_mode="symbolic")(
torch.ones(3, 4, 5, requires_grad=True), torch.ones(5, requires_grad=True)
)
x = torch.randn(4, 5, 6, requires_grad=True)
y = torch.randn(6, requires_grad=True)
res = gm(x, y)
self.assertEqual(res, g(x, y))
self.check_map_count(gm, 2)
def test_tracing_map_autograd_symbolic_list(self):
import torch.utils._pytree as pytree
def f(x, y):
return [x[0].cos() + y.sin(), x[1].sin() * y.cos()]
def g(xs, y):
out = control_flow.map(f, xs, y)
flat_out = pytree.tree_leaves(out)
flat_inp = pytree.tree_leaves((xs, y))
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
return torch.autograd.grad(
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
)
gm = make_fx(g, tracing_mode="symbolic")(
[torch.ones(3, 4, 5), torch.ones(3, 4, 5, requires_grad=True)],
torch.ones(5, requires_grad=True),
)
x = [torch.randn(4, 5, 6), torch.ones(4, 5, 6, requires_grad=True)]
y = torch.randn(6, requires_grad=True)
res = gm(x, y)
self.assertEqual(res, g(x, y))
self.check_map_count(gm, 2)
def test_tracing_map_autograd_symbolic_dict(self):
def f(x, y):
return [x["a"] + y, x["b"] * y]
def g(xs, y):
out = control_flow.map(f, xs, y)
flat_out = pytree.tree_leaves(out)
flat_inp = pytree.tree_leaves((xs, y))
requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad]
return torch.autograd.grad(
flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]
)
traced_x = {
"a": torch.ones(3, 4, 5, requires_grad=True),
"b": torch.ones(3, 4, 5, requires_grad=True),
}
gm = make_fx(g, tracing_mode="symbolic")(
traced_x, torch.ones(5, requires_grad=True)
)
x = {
"a": torch.randn(4, 5, 6, requires_grad=True),
"b": torch.ones(4, 5, 6, requires_grad=True),
}
y = torch.randn(6, requires_grad=True)
res = gm(x, y)
self.assertEqual(res, g(x, y))
self.check_map_count(gm, 2)
def test_tracing_map_autograd_aot_functionalized(self):
def inner(x, y):
z = x - 1
z.add_(1)
return z * y
def f(xs, y):
res = control_flow.map(inner, xs, y)
grads = torch.autograd.grad(res, (xs, y), torch.ones_like(res))
return grads
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
finally:
torch._disable_functionalization()
return wrapper
example_inputs = (
torch.ones(3, 2, 4, requires_grad=True),
torch.ones(2, 4, requires_grad=True),
)
gm = make_fx(f, tracing_mode="symbolic")(*example_inputs)
fgm = make_fx(f_wrapper(f), tracing_mode="symbolic")(*example_inputs)
xs = torch.ones(3, 4, 5, requires_grad=True)
y = torch.ones(4, 5, requires_grad=True)
self.assertEqual(gm(xs, y), f(xs, y))
def count_mutable(gm):
c = 0
for node in gm.graph.nodes:
if node.op == "call_function":
if node.target == torch.ops.higher_order.map_impl:
c += count_mutable(getattr(gm, str(node.args[0])))
elif schema := getattr(node.target, "_schema", None):
c += int(schema.is_mutable)
return c
self.assertEqual(count_mutable(fgm), 0)
# One for forward, one for recomputation logic in backward
self.assertEqual(count_mutable(gm), 2)
def test_map_functionalized(self):
def map_fn(x, y):
z = x + y
z.add_(4)
return z
def f(xs, y):
return control_flow.map(map_fn, xs, y)
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
functional_f = torch.func.functionalize(f)
self.assertEqual(functional_f(*example_inputs), f(*example_inputs))
gm = make_fx(torch.func.functionalize(f))(*example_inputs)
self.assertEqual(gm(*example_inputs), f(*example_inputs))
gm = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(
*example_inputs
)
self.assertEqual(gm(*example_inputs), f(*example_inputs))
for node in gm.body_graph_0.graph.nodes:
if node.op == "call_function":
self.assertTrue(not node.target._schema.is_mutable)
self.check_map_count(gm, 1)
def test_map_functionalized_aot_func(self):
def map_fn(x, y):
z = x + y
z.add_(4)
return z
def f(xs, y):
return control_flow.map(map_fn, xs, y)
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
return pytree.tree_map(from_fun_old, func(*args, **kwargs))
finally:
torch._disable_functionalization()
return wrapper
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
gm = make_fx(f_wrapper(f))(*example_inputs)
for node in gm.body_graph_0.graph.nodes:
if node.op == "call_function":
self.assertTrue(not node.target._schema.is_mutable)
self.assertEqual(gm(*example_inputs), f(*example_inputs))
def test_map_functionalized_arg_mutation(self):
def map_fn(x, y):
y.add_(4)
return x + y
def f(xs, y):
return control_flow.map(map_fn, xs, y)
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError,
"map might be modifying the input!",
):
functional_f(*example_inputs)
def test_map_functionalized_elem_mutation(self):
def map_fn(x, y):
x.add_(4)
return x + y
def f(xs, y):
return control_flow.map(map_fn, xs, y)
example_inputs = (torch.ones(3, 2, 4), torch.ones(4))
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
torch._dynamo.exc.TorchRuntimeError, "map might be modifying the input!"
):
functional_f(*example_inputs)
def test_cond_autograd_backward(self):
def true_fn(x):
return x.cos()
def false_fn(x):
return x.sin()
def f(x, y):
return control_flow.cond(x.shape[0] > 4, true_fn, false_fn, [y])
example_inputs = (
torch.ones(3, 2, 4, requires_grad=True),
torch.ones(4, requires_grad=True),
)
f(*example_inputs).sum().backward()
# Ensure no error is thrown when not running backward
res = f(*example_inputs)
# Ensure no error is thrown when not running backward
res_compiled = torch.compile(f)(*example_inputs)
self.assertEqual(res, res_compiled)
def test_map_functionalized_elem_alias(self):
def map_fn(x):
x.view(x.shape)
return x
def f(xs):
return control_flow.map(map_fn, xs)
example_inputs = (torch.ones(3, 2, 4),)
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"map doesn't work unless it is captured completely with torch.compile.*",
):
functional_f(*example_inputs)
def test_nested_map_cond_real(self):
def true_fn(x, y):
return x * y
def false_fn(x, y):
return x + y
def f(x, pred, y):
return cond(pred, true_fn, false_fn, [x, y])
def g(pred, xs, y):
return control_flow.map(f, xs, pred, y)
gm = make_fx(g, tracing_mode="real")(
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
)
pred = torch.tensor(False)
x = torch.randn(3, 2, 4)
y = torch.randn(4)
res = gm(pred, x, y)
self.assertEqual(res, g(pred, x, y))
self.check_map_count(gm, 1)
def test_nested_map_cond_symbolic(self):
def true_fn(x, y):
return x * y
def false_fn(x, y):
return x + y
def f(x, pred, y):
return cond(pred, true_fn, false_fn, [x, y])
def g(pred, xs, y):
return control_flow.map(f, xs, pred, y)
gm = make_fx(g, tracing_mode="symbolic")(
torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
)
pred = torch.tensor(False)
x = torch.randn(3, 2, 2)
y = torch.randn(2)
res = gm(pred, x, y)
self.assertEqual(res, g(pred, x, y))
self.check_map_count(gm, 1)
def test_nested_cond_map_cond_symbolic(self):
def true_fn(x, y):
return x * y
def false_fn(x, y):
return x + y
def f(x, pred, y):
return cond(pred, true_fn, false_fn, [x, y])
def g(pred, xs, y):
return control_flow.map(f, xs, pred, y)
def main_true_fn(pred, xs, y):
return g(pred, xs, y) * 2
def main_false_fn(pred, xs, y):
return g(pred, xs, y) + 1
def main(p, pred, xs, y):
return cond(p, main_true_fn, main_false_fn, [pred, xs, y])
gm = make_fx(main, tracing_mode="symbolic")(
torch.tensor(True), torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4)
)
p = torch.tensor(False)
pred = torch.tensor(False)
xs = torch.randn(3, 2, 2)
y = torch.randn(2)
res = gm(p, pred, xs, y)
self.assertEqual(res, main(p, pred, xs, y))
self.check_map_count(gm, 2)
def test_cond_with_sym_pred(self):
def true_fn(x):
return x + x
def false_fn(x):
return x * x
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 2, 1))
# The symbols in make_fx's shape_env should not be specialized.
self.assertEqual(len(gm.shape_env.guards), 0)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
eq = sym_size_int == 4
sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 1)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, (x_1, sym_size_int_1, sym_size_int)); eq = true_graph_0 = false_graph_0 = x_1 = sym_size_int_1 = sym_size_int = None
getitem = cond[0]; cond = None
return getitem""", # noqa: B950
)
# We expect the traced graph module to work even if input size changes.
x = torch.ones(4, 3, 2)
self.assertEqual(gm(x), true_fn(x))
self.assertEqual(foo(x), true_fn(x))
def test_cond_with_unbacked_sym_pred(self):
def foo(x):
def true_fn(x):
return x + x
def false_fn(x):
return x * x
az = x.nonzero()
return cond(az.shape[0] > 3, true_fn, false_fn, (x,))
gm = make_fx(foo, tracing_mode="symbolic")(torch.randn(7))
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
nonzero = torch.ops.aten.nonzero.default(x_1)
sym_size_int = torch.ops.aten.sym_size.int(nonzero, 0); nonzero = None
gt = sym_size_int > 3; sym_size_int = None
sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 0)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (x_1, sym_size_int_1)); gt = true_graph_0 = false_graph_0 = x_1 = sym_size_int_1 = None
getitem = cond[0]; cond = None
return getitem""", # noqa: B950
)
def _check_closure_correctly_lifted(self, f, *, args, exp_res, exp_arg_num):
assert isinstance(args, (tuple, list))
self.assertEqual(f(*args), exp_res)
gm = make_fx(f)(*args)
self.assertEqual(gm(*args), exp_res)
def cnt_placeholder(gm):
return len([node for node in gm.graph.nodes if node.op == "placeholder"])
placeholder_cnts = [cnt_placeholder(mod) for mod in gm.children()]
self.assertTrue(all(cnt == exp_arg_num for cnt in placeholder_cnts))
def _check_closure_correctly_lifted_with_mutation(
self, f, closures_to_be_mutated, *, args, exp_arg_num
):
exp_res = f(*args)
self._check_closure_correctly_lifted(
f, args=args, exp_res=exp_res, exp_arg_num=exp_arg_num
)
for closure in closures_to_be_mutated:
closure.add(-1)
new_exp_res = f(*args)
self._check_closure_correctly_lifted(
f, args=args, exp_res=new_exp_res, exp_arg_num=exp_arg_num
)
def test_cond_with_tensor_closure(self):
a = torch.ones(2, 3)
b = torch.ones(2, 3) + 1
def true_fn(x):
return x + a
def false_fn(x):
return x + b
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
# expected branches takes [x, a, b] as input
inp = torch.randn(2, 3)
self._check_closure_correctly_lifted_with_mutation(
foo, (a, b), args=(inp,), exp_arg_num=3
)
def test_cond_with_tensor_closure_graph_module(self):
a = torch.ones(2, 3)
b = torch.ones(2, 3) + 1
def true_fn(x):
return x + a
def false_fn(x):
return x + b
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
# expected branches takes [x, a, b] as input
inp = torch.randn(2, 3)
gm = make_fx(foo, tracing_mode="symbolic", _allow_non_fake_inputs=True)(inp)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
eq = sym_size_int == 4
sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 1)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
_tensor_constant0 = self._tensor_constant0
_tensor_constant1 = self._tensor_constant1
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, (x_1, _tensor_constant0, sym_size_int_1, sym_size_int, _tensor_constant1)); eq = true_graph_0 = false_graph_0 = x_1 = _tensor_constant0 = sym_size_int_1 = sym_size_int = _tensor_constant1 = None
getitem = cond[0]; cond = None
return getitem""", # noqa: B950
)
self.assertExpectedInline(
gm.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1):
add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
return (add,)""",
)
def test_cond_with_module_param_closure(self):
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.register_parameter(
"param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False)
)
self.buffer = torch.nn.Buffer(torch.ones(2, 3) + 1)
my_mode = Mod()
def true_fn(x):
return x + my_mode.param
def false_fn(x):
return x + my_mode.buffer
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
inp = torch.ones(2, 3)
# expected both branches takes (x, param, buffer)
self._check_closure_correctly_lifted_with_mutation(
foo, (my_mode.param, my_mode.buffer), args=(inp,), exp_arg_num=3
)
def test_cond_with_module_python_scalar_closure(self):
def foo(x):
a = torch.ones(1, 1)
b = 1
def true_fn(x):
return x + a
def false_fn(x):
return x + b
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
inp = torch.ones(2, 3)
res = inp + 1
# python scalar b is not lifted as input, so both branches take (x, a)
self._check_closure_correctly_lifted(
foo, args=(inp,), exp_res=res, exp_arg_num=2
)
def test_cond_nested_with_closure(self):
a = torch.ones(1, 1)
b = torch.ones(1, 1) + 1
def inner_true_fn(x):
return x + a
def inner_false_fn(x):
return x + b
def foo(x):
def true_fn(x):
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
def false_fn(x):
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
inp = torch.ones(2, 3)
# For top-level cond, it take 3 arguments (x, a, b). Dynamo should
# realize that the nonlocal variables are same for the true and false
# branches, so it should de-dupe them.
# For second-level conds, it takes (x, a, b)
self._check_closure_correctly_lifted_with_mutation(
foo, (a, b), args=(inp,), exp_arg_num=3
)
def test_cond_nested_with_closure_graph_module(self):
a = torch.ones(1, 1)
b = torch.ones(1, 1) + 1
def inner_true_fn(x):
return x + a
def inner_false_fn(x):
return x + b
def foo(x):
def true_fn(x):
return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x])
def false_fn(x):
return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x])
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
def test_map_unfunc_boolean_tensor_for_nested_map_cond(self):
def map_fn(pred, x):
def fn(x, pred):
return control_flow.cond(pred, lambda x: x * 2, lambda x: x / 2, (x,))
return control_flow.map(fn, x, pred)
def f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
args,
)
func_kwargs = pytree.tree_map(
lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x,
kwargs,
)
return pytree.tree_map(
from_fun_old, func(*func_args, **func_kwargs)
)
finally:
torch._disable_functionalization()
return wrapper
gm = make_fx(f_wrapper(map_fn))(
torch.tensor(True), torch.ones([2, 3], requires_grad=False)
)
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, pred_1, x_1):
unbind = torch.ops.aten.unbind.int(x_1)
getitem = unbind[0]; getitem = None
getitem_1 = unbind[1]; unbind = getitem_1 = None
body_graph_0 = self.body_graph_0
map_impl = torch.ops.higher_order.map_impl(body_graph_0, [x_1], [pred_1]); body_graph_0 = x_1 = pred_1 = None
getitem_2 = map_impl[0]; map_impl = None
return getitem_2""",
)
self.assertExpectedInline(
gm.body_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(arg1_1, true_graph_0, false_graph_0, (arg0_1,)); arg1_1 = true_graph_0 = false_graph_0 = arg0_1 = None
getitem = cond[0]; cond = None
return (getitem,)""", # noqa: B950
)
@skipIfCrossRef # Arg order changes with crossref
def test_cond_make_fx_preserve_stack_trace_for_nodes_in_subgraph(self):
def true_fn(x):
return x + x.cos()
def false_fn(x):
return x * x.sin()
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, (x,))
inp = torch.randn([4, 3])
gm, _ = torch._dynamo.export(foo)(inp)
def run_with_interpreter(*args):
with torch.fx.traceback.preserve_node_meta():
return torch.fx.Interpreter(gm).run(*args)
new_gm = make_fx(run_with_interpreter)(inp)
checked_ops = {"add", "mul", "sin", "cos"}
checked_meta = ["source_fn_stack", "stack_trace"]
all_source_fns = collect_meta_for_filtered_nodes(gm, checked_ops, checked_meta)
new_source_fns = collect_meta_for_filtered_nodes(
new_gm, checked_ops, checked_meta
)
self.assertEqual(all_source_fns, new_source_fns)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO,
"triggers cache limit for foo and changes unique_graphs count.",
)
def test_cond_no_dynamo_cache_limit(self):
torch._dynamo.reset()
counters = torch._dynamo.utils.counters
counters.clear()
def foo(x, true_fn, false_fn):
return cond(x.sum() < 0, true_fn, false_fn, (x,))
inp = torch.ones(3, 4)
exp_out = inp.sin()
iter_n = torch._dynamo.config.recompile_limit + 1
# Need functions that cause recompilations
def get_dummy_fns(str):
def dummy_cos(x):
return x.cos() + len(str) - len(str)
def dummy_sin(x):
return x.sin() + len(str) - len(str)
return dummy_cos, dummy_sin
for i in range(iter_n):
# we fail guards each iter because `str(i)` is different
self.assertEqual(foo(inp, *get_dummy_fns(str(i))), exp_out)
# each iteration captures a cond and a getitem from the tuple output
self.assertEqual(counters["stats"]["calls_captured"], iter_n * 2)
self.assertEqual(counters["stats"]["unique_graphs"], iter_n)
def test_cond_with_consecutive_make_fx_symbolic(self):
def true_fn(x):
return x - x.cos()
def false_fn(x):
return x + x.sin()
def foo(x):
return cond(x.shape[0] == 4, true_fn, false_fn, [x])
inps = (torch.ones(3, 4), torch.ones(3, 5), torch.ones(5, 4), torch.ones(5, 3))
for inp in inps:
gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 4))
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
eq = sym_size_int == 4
sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 1)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, (x_1, sym_size_int_1, sym_size_int)); eq = true_graph_0 = false_graph_0 = x_1 = sym_size_int_1 = sym_size_int = None
getitem = cond[0]; cond = None
return getitem""", # noqa: B950
)
self.assertExpectedInline(
gm.true_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
cos = torch.ops.aten.cos.default(arg0_1)
sub = torch.ops.aten.sub.Tensor(arg0_1, cos); arg0_1 = cos = None
return (sub,)""",
)
self.assertExpectedInline(
gm.false_graph_0.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
sin = torch.ops.aten.sin.default(arg0_1)
add = torch.ops.aten.add.Tensor(arg0_1, sin); arg0_1 = sin = None
return (add,)""",
)
def _create_test_fns_for_cond(
self, pred, inner_most_fn, operands, closure_list, nested_level
):
if nested_level == 0:
if len(closure_list) > 0:
def true_fn(*operands):
return inner_most_fn(*operands) + inner_most_fn(*closure_list)
def false_fn(*operands):
return inner_most_fn(*operands) - inner_most_fn(*closure_list)
else:
def true_fn(*operands):
return inner_most_fn(*operands)
def false_fn(*operands):
return inner_most_fn(*operands)
def fn(*operands):
if len(operands) == 0 and len(closure_list) == 0:
return torch.zeros(1)
return cond(pred, true_fn, false_fn, operands)
return operands, fn
else:
args, inner_fn = self._create_test_fns_for_cond(
pred <= 0, inner_most_fn, operands, closure_list, nested_level - 1
)
def true_fn(*operands):
return inner_most_fn(*operands) + inner_fn(*args)
def false_fn(*operands):
return inner_most_fn(*operands) - inner_fn(*args)
def fn(*operands):
if len(operands) == 0 and len(closure_list) == 0:
return torch.ones(1)
return cond(pred, true_fn, false_fn, operands)
return operands, fn
def _init_predicate(self, pred_type):
if pred_type == "bool":
return True
elif pred_type == "intTensor":
return torch.tensor(1)
elif pred_type == "floatTensor":
return torch.tensor(1.0)
elif pred_type == "boolTensor":
return torch.tensor(False)
else:
raise NotImplementedError
def _init_fn(self, inner_fn_type):
if inner_fn_type == "function":
return reduce_func
elif inner_fn_type == "module":
return ReduceMod()
elif inner_fn_type == "object":
return ReduceObj()
else:
raise NotImplementedError
@parametrize("predType", ["bool", "intTensor", "floatTensor", "boolTensor"])
@parametrize("innerFnType", ["function", "module", "object"])
@parametrize("nOperands", [0, 1])
@parametrize("nClosure", [0, 1])
@parametrize("nesting", [0, 2])
def test_cond_tracing_with_valid_inputs(
self, predType, innerFnType, nOperands, nClosure, nesting
):
pred = self._init_predicate(predType)
inner_fn = self._init_fn(innerFnType)
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
args, fn = self._create_test_fns_for_cond(
pred, inner_fn, operands, closure, nesting
)
eager_res = fn(*args)
for tracing_mode in ["symbolic", "fake", "real"]:
# set _allow_non_fake_inputs = True to allow fake prop through closures
with self.subTest(tracing_mode=tracing_mode):
gm = make_fx(
fn, tracing_mode=tracing_mode, _allow_non_fake_inputs=True
)(*args)
self.assertEqual(gm(*args), eager_res)
@parametrize("predType", ["boolTensor"])
@parametrize("innerFnType", ["function", "module", "object"])
@parametrize("nOperands", [1, 2])
@parametrize("nClosure", [0, 1])
@parametrize("nesting", [0])
def test_cond_vmap(self, predType, innerFnType, nOperands, nClosure, nesting):
pred = self._init_predicate(predType)
inner_fn = self._init_fn(innerFnType)
operands = [torch.ones(2, 3) + i for i in range(nOperands)]
closure = [torch.ones(2, 3) - i for i in range(nClosure)]
args, fn = self._create_test_fns_for_cond(
pred, inner_fn, operands, closure, nesting
)
eager_res = fn(*args)
out = torch.vmap(fn)(*args)
if nClosure == 0:
self.assertEqual(eager_res, out)
else:
self.assertEqual(eager_res, out[0])
self.assertEqual(eager_res, out[1])
def test_cond_vmap_simple(self):
def fn(x):
return torch.cond(
pred=torch.tensor([True]),
true_fn=lambda x: x + 100,
false_fn=lambda x: x.clone(),
operands=(x,),
)
a = torch.arange(15).reshape((3, 5))
res = torch.vmap(fn, in_dims=(0,))(a)
self.assertEqual(res.shape, (3, 5))
self.assertEqual(res, a + 100)
def test_cond_vmap_multiple_inputs(self):
def fn(x, y):
return torch.cond(
pred=x.sum() < y.sum(),
true_fn=lambda x, y: x + 100,
false_fn=lambda x, y: y.clone(),
operands=(x, y),
)
a = torch.arange(15).reshape(3, 5)
b = torch.ones_like(a) + 3
res = torch.vmap(fn, in_dims=(0, 0))(a, b)
expected = torch.tensor(
[[100, 101, 102, 103, 104], [4, 4, 4, 4, 4], [4, 4, 4, 4, 4]]
)
self.assertEqual(res.shape, (3, 5))
self.assertEqual(expected, res)
def test_cond_vmap_single_input_with_closure(self):
a = torch.ones((3, 5)) + 3
c = torch.arange(5)
def fn(x):
return torch.cond(
pred=torch.tensor([True]),
true_fn=lambda x: x + c,
false_fn=lambda x: x - c,
operands=(x,),
)
res = torch.vmap(fn, in_dims=(0,))(
a,
)
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
res = torch.vmap(fn, in_dims=(0,))(
a,
)
self.assertEqual(a + c, res)
def test_cond_vmap_multiple_args_with_closure(self):
a = torch.ones((3, 5), dtype=torch.int64) + 3
b = torch.arange(15).reshape(3, 5)
c = torch.arange(5)
def fn(x, y):
return torch.cond(
pred=torch.tensor([False]),
true_fn=lambda x, y: x + c,
false_fn=lambda x, y: y - c,
operands=(x, y),
)
res = torch.vmap(fn)(a, b)
self.assertEqual(b - c, res)
@parametrize("nClosure", [0, 1])
def test_cond_vmap_multiple_outputs(self, nClosure):
if nClosure:
c = torch.ones(5, dtype=torch.int64) + 5
def fn(x):
return torch.cond(
pred=torch.tensor([True]),
true_fn=lambda x: (x + c, x - c),
false_fn=lambda x: (x.clone(), x.clone()),
operands=(x,),
)
else:
def fn(x):
return torch.cond(
pred=torch.tensor([True]),
true_fn=lambda x: (x + 1, x - 1),
false_fn=lambda x: (x.clone(), x.clone()),
operands=(x,),
)
a = torch.arange(15).reshape(3, 5)
res = torch.vmap(fn)(
a,
)
self.assertEqual(len(res), 2)
if nClosure:
self.assertEqual(res, (a + c, a - c))
else:
self.assertEqual(res, (a + 1, a - 1))
@parametrize("boolcond", [True, False])
def test_vmap_vmap(self, boolcond):
def fn(x):
return torch.cond(
pred=torch.tensor([True]) if not boolcond else True,
true_fn=lambda x: x + 1,
false_fn=lambda x: x - 1,
operands=(x,),
)
def wrapper(x):
return torch.vmap(fn)(x)
a = torch.ones((3, 4, 5))
res = torch.vmap(wrapper)(a)
self.assertEqual(res, a + 1)
def test_cond_trace_set__and_mutate_input(self):
def f(a, tmp):
a_view = a.view(-1)
with torch.no_grad():
a.set_(tmp)
a_view.mul_(2)
return a + tmp
inp = torch.ones(3, 3, requires_grad=True)
tmp = torch.ones(3, 3, requires_grad=True)
# graph break: torch._dynamo.exc.Unsupported: call_function DelayGraphBreakVariable() [TensorVariable()] {}
# due to set_
with self.assertRaisesRegex(
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile",
):
torch.cond(inp.sum() > 0, f, f, (inp, tmp))
@skipIfCrossRef # Arg order changes with crossref
def test_cond_trace_set__and_mutate_intermediate(self):
def f(a, tmp):
a = a.clone()
a_view = a.view(-1)
tmp = tmp.clone()
with torch.no_grad():
a.set_(tmp)
a_view.mul_(2)
return a + tmp
inp = torch.ones(3, 3, requires_grad=True)
tmp = torch.ones(3, 3, requires_grad=True)
class Mod(torch.nn.Module):
def forward(self, inp: torch.Tensor, tmp: torch.Tensor) -> torch.Tensor:
return torch.cond(inp.sum() > 0, f, f, (inp, tmp))
with self.assertRaisesRegex(
RuntimeError, "cannot mutate tensors with frozen storage"
):
out = torch.compile(Mod(), backend="aot_eager")(inp, tmp)
with self.assertRaisesRegex(
RuntimeError, "cannot mutate tensors with frozen storage"
):
out = torch.compile(Mod(), backend="inductor")(inp, tmp)
backend = EagerAndRecordGraphs()
out = torch.compile(Mod(), backend=backend)(inp, tmp)
self.assertExpectedInline(
backend.graphs[0].cond_true_0.code.strip("\n"),
"""\
def forward(self, l_inp_, l_tmp_):
l_inp__1 = l_inp_
l_tmp__1 = l_tmp_
a = l_inp__1.clone(); l_inp__1 = None
a_view = a.view(-1)
tmp = l_tmp__1.clone(); l_tmp__1 = None
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
set_ = a.set_(tmp); set_ = None
mul_ = a_view.mul_(2); a_view = mul_ = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
add = a + tmp; a = tmp = None
return (add,)
""",
)
self.assertEqual(out, f(inp, tmp))
@skipIfCrossRef # Args get renamed to r in crossref mode
@parametrize("requires_grad", [True, False])
def test_cond_symint_operands(self, requires_grad):
backend = EagerAndRecordGraphs()
class Mod(torch.nn.Module):
def __init__(self):
super().__init__()
self.num = 3
def forward(self, a, b):
return torch.cond(
pred=torch.tensor([True]),
true_fn=lambda a, b: a + b + self.num,
false_fn=lambda a, b: a - b - self.num,
operands=(a, b),
)
a = torch.ones(3, 3, requires_grad=requires_grad)
b = torch.ones(3, 3, requires_grad=requires_grad)
out = torch.compile(Mod(), backend=backend, dynamic=True)(a, b)
self.assertEqual(out, Mod()(a, b))
self.assertEqual(len(backend.graphs), 1)
self.assertExpectedInline(
backend.graphs[0].code.strip(),
"""\
def forward(self, s97 : torch.SymInt, L_a_ : torch.Tensor, L_b_ : torch.Tensor):
l_a_ = L_a_
l_b_ = L_b_
tensor = torch.tensor([True])
cond_true_0 = self.cond_true_0
cond_false_0 = self.cond_false_0
cond = torch.ops.higher_order.cond(tensor, cond_true_0, cond_false_0, (l_a_, l_b_, s97)); tensor = cond_true_0 = cond_false_0 = l_a_ = l_b_ = s97 = None
getitem = cond[0]; cond = None
return (getitem,)""", # noqa: B950
)
def test_two_hops_not_sharing_code_obj(self):
pred, args = torch.tensor(True), (torch.ones(3, 3),)
def fn1(x):
return x + 1
def fn2(x):
return x - 1
from torch._dynamo.testing import CompileCounter
# Tests rely on automatic_dynamic = True
with torch._dynamo.config.patch(automatic_dynamic_shapes=True):
cnt = CompileCounter()
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, args)
self.assertEqual(cnt.frame_count, 1)
args = (torch.randn(3, 3),)
# No recompilation
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, args)
self.assertEqual(cnt.frame_count, 1)
def cond_fn(x):
return x.sum() > 0
args = (torch.randn(4, 4),)
torch.compile(torch.while_loop, backend=cnt)(cond_fn, fn2, args)
# recompilation
self.assertEqual(cnt.frame_count, 2)
args = (torch.randn(4, 4),)
torch.compile(torch.while_loop, backend=cnt)(cond_fn, fn2, args)
self.assertEqual(cnt.frame_count, 2)
# With recompilation due to automatic dynamic
# This also proves that while_loop doesn't share code obj with cond
torch.compile(torch.cond, backend=cnt)(pred, fn1, fn2, (torch.randn(4, 4),))
self.assertEqual(cnt.frame_count, 3)
def test_hop_raises_if_not_overriding_call(self):
class WrongHop(torch._ops.HigherOrderOperator):
pass
with self.assertRaisesRegex(TypeError, "WrongHop"):
WrongHop("wrong_hop")
def test_scan_functionalized(self):
def f(init, xs):
return scan(get_scan_combine_fn("add", False), init, xs, dim=1)
example_inputs = torch.ones(5, 7, 4)
example_init = torch.ones(5, 4)
functional_f = torch.func.functionalize(f)
self.assertEqual(
functional_f(example_init, example_inputs), f(example_init, example_inputs)
)
def test_scan_functionalized_elem_mutation(self):
def add1(x, y):
x.add_(4)
return x + y, x + y
def f(init, xs):
return scan(add1, init, xs, dim=1)
example_inputs = torch.ones(5, 7, 4)
example_init = torch.ones(5, 4)
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
# TODO: Fix this so that the HOPs show similar errors for functionalization
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=0
# RuntimeError,
# "torch.scan might be modifying the input!",
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=1
# torch._dynamo.exc.TorchDynamoException,
# "Unexpected exception when running generated GraphModule.*"
Exception,
".*",
):
functional_f(example_init, example_inputs)
def add2(x, y):
y.add_(4)
return x + y, x + y
def f(init, xs):
return scan(add2, init, xs, dim=1)
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
# TODO: Fix this so that the HOPs show similar errors for functionalization
# Should be
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=0
# RuntimeError,
# "torch.scan might be modifying the input!",
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=1
# torch._dynamo.exc.TorchDynamoException,
# "Unexpected exception when running generated GraphModule.*"
Exception,
".*",
):
functional_f(example_init, example_inputs)
def test_scan_functionalized_elem_alias(self):
def add(x, y):
return x, x
def f(init, xs):
return scan(add, init, xs, dim=1)
example_inputs = torch.ones(5, 7, 4)
example_init = torch.ones(5, 4)
functional_f = torch.func.functionalize(f)
with self.assertRaisesRegex(
# TODO: Fix this so that the HOPs show similar errors for functionalization
# Should be
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=0
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
# This is the Exception with PYTORCH_TEST_WITH_DYNAMO=1
# torch._dynamo.exc.UncapturedHigherOrderOpError,
# "scan must be captured completely with torch.compile.*",
Exception,
".*",
):
functional_f(example_init, example_inputs)
@skipIfTorchDynamo("Graph is not captured by backend if test with dynamo")
def test_scan_pytree_closure(self):
param_buffer = ({"param": torch.randn(3, 3)}, (torch.randn(3),))
def add(carry, x):
ret = (carry @ param_buffer[0]["param"]) @ x + param_buffer[1][0]
return ret, ret.sum()
def f(init, xs):
return scan(add, init, xs)
init = torch.randn(4, 3)
xs = torch.randn(3, 3, 3)
backend = EagerAndRecordGraphs()
eager_out = f(init, xs)
compiled_out = torch.compile(f, backend=backend)(init, xs)
exp_out = _fake_scan(add, init, xs)
self.assertEqual(len(backend.graphs), 1)
if TEST_WITH_CROSSREF:
self.assertExpectedInline(
backend.graphs[0].code.strip(),
"""\
def forward(self, L_init_ : torch.Tensor, L_xs_ : torch.Tensor, L_add_closure_0_cell_contents_0_param_ : torch.Tensor, L_add_closure_0_cell_contents_1_0_ : torch.Tensor):
l_init_ = L_init_
l_xs_ = L_xs_
l_add_closure_0_cell_contents_0_param_ = L_add_closure_0_cell_contents_0_param_
l_add_closure_0_cell_contents_1_0_ = L_add_closure_0_cell_contents_1_0_
r = torch.movedim(l_xs_, 0, 0); l_xs_ = None
scan_combine_fn_0 = self.scan_combine_fn_0
scan = torch.ops.higher_order.scan(scan_combine_fn_0, [l_init_], [r], [l_add_closure_0_cell_contents_0_param_, l_add_closure_0_cell_contents_1_0_]); scan_combine_fn_0 = l_init_ = r = l_add_closure_0_cell_contents_0_param_ = l_add_closure_0_cell_contents_1_0_ = None
carry = scan[0]
out = scan[1]; scan = None
return (carry, out)""", # noqa: B950
)
else:
self.assertExpectedInline(
backend.graphs[0].code.strip(),
"""\
def forward(self, L_init_ : torch.Tensor, L_xs_ : torch.Tensor, L_add_closure_0_cell_contents_0_param_ : torch.Tensor, L_add_closure_0_cell_contents_1_0_ : torch.Tensor):
l_init_ = L_init_
l_xs_ = L_xs_
l_add_closure_0_cell_contents_0_param_ = L_add_closure_0_cell_contents_0_param_
l_add_closure_0_cell_contents_1_0_ = L_add_closure_0_cell_contents_1_0_
movedim = torch.movedim(l_xs_, 0, 0); l_xs_ = None
scan_combine_fn_0 = self.scan_combine_fn_0
scan = torch.ops.higher_order.scan(scan_combine_fn_0, [l_init_], [movedim], [l_add_closure_0_cell_contents_0_param_, l_add_closure_0_cell_contents_1_0_]); scan_combine_fn_0 = l_init_ = movedim = l_add_closure_0_cell_contents_0_param_ = l_add_closure_0_cell_contents_1_0_ = None
carry = scan[0]
out = scan[1]; scan = None
return (carry, out)""", # noqa: B950
)
self.assertEqual(eager_out, exp_out)
self.assertEqual(compiled_out, exp_out)
@skipIfTorchDynamo("Skip because we're testing export")
@parametrize("strict", [True, False])
@parametrize("dynamic", [True, False])
def test_while_loop_op_int_carry_export(self, strict, dynamic):
m, args = WHILE_LOOP_TESTS["int_carry"]
dynamic_shapes = {"x": {0: torch.export.Dim("dim_x")}} if dynamic else None
ep = self._check_export(m, args, strict=strict, dynamic_shapes=dynamic_shapes)
if not strict and dynamic:
self.assertExpectedInline(
normalize_gm(ep.module().print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, x):
x: "f32[s77, 3]";
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
sym_size_int_1: "Sym(s77)" = torch.ops.aten.sym_size.int(x, 0)
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (0, x), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = x = None
getitem_2: "Sym(u1)" = while_loop[0]
ge: "Sym(u1 >= 1)" = getitem_2 >= 1
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u1 >= 1 on node 'ge'"); ge = _assert_scalar_default = None
gt_1: "Sym(u1 > 0)" = getitem_2 > 0
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(gt_1, "Runtime assertion failed for expression 0 < u1 on node 'gt_1'"); gt_1 = _assert_scalar_default_1 = None
getitem_1: "f32[s77, 3]" = while_loop[1]; while_loop = None
add: "Sym(u1 + 1)" = getitem_2 + 1
add_1: "f32[s77, 3]" = torch.ops.aten.add.Tensor(getitem_1, getitem_2); getitem_1 = None
lt: "Sym(u1 < s77)" = getitem_2 < sym_size_int_1; sym_size_int_1 = None
mul: "Sym(2*u1)" = getitem_2 * 2; getitem_2 = None
ones: "f32[2*u1]" = torch.ops.aten.ones.default([mul], device = device(type='cpu'), pin_memory = False); mul = None
return pytree.tree_unflatten((add, add_1, lt, ones), self._out_spec)
class while_loop_cond_graph_0(torch.nn.Module):
def forward(self, it_1: "Sym(u0)", x_1: "f32[s77, 3]"):
sym_size_int_1: "Sym(s77)" = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
lt: "Sym(u0 < s77)" = it_1 < sym_size_int_1; it_1 = sym_size_int_1 = None
return lt
class while_loop_body_graph_0(torch.nn.Module):
def forward(self, it_1: "Sym(u0)", x_1: "f32[s77, 3]"):
clone: "f32[s77, 3]" = torch.ops.aten.clone.default(x_1); x_1 = None
select: "f32[3]" = torch.ops.aten.select.int(clone, 0, it_1)
select_1: "f32[3]" = torch.ops.aten.select.int(clone, 0, it_1)
add: "f32[3]" = torch.ops.aten.add.Tensor(select_1, it_1); select_1 = None
copy_: "f32[3]" = torch.ops.aten.copy_.default(select, add); select = add = copy_ = None
add_1: "Sym(u0 + 1)" = it_1 + 1; it_1 = None
return (add_1, clone)
""", # noqa: B950
)
@skipIfTorchDynamo("Graph is not captured correctly when test with dynamo")
@parametrize("dynamic", [True, False])
@parametrize("backend", ["eager", "aot_eager"])
def test_while_loop_op_int_carry_compile(self, dynamic, backend):
m, args = WHILE_LOOP_TESTS["int_carry"]
if backend == "eager":
backend = EagerAndRecordGraphs()
self._check_compile(m, args, dynamic=dynamic, backend=backend)
if (
isinstance(backend, EagerAndRecordGraphs)
and dynamic
and not TEST_WITH_CROSSREF
):
self.assertEqual(len(backend.graphs), 1)
self.assertExpectedInline(
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, s77: "Sym(s77)", s27: "Sym(s27)", L_x_: "f32[s77, s27]"):
l_x_ = L_x_
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (0, l_x_), (s27, s77)); cond_fn_0 = body_fn_0 = l_x_ = s27 = None
getitem_4: "Sym(u2)" = while_loop[0]
ge: "Sym(u2 >= 1)" = getitem_4 >= 1
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u2 >= 1 on node 'ge'"); ge = _assert_scalar_default = None
gt_1: "Sym(u2 > 0)" = getitem_4 > 0
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(gt_1, "Runtime assertion failed for expression 0 < u2 on node 'gt_1'"); gt_1 = _assert_scalar_default_1 = None
out_x: "f32[s77, s27]" = while_loop[1]; while_loop = None
gt: "Sym(u2 > 0)" = getitem_4 > 0
_check = torch._check(gt); gt = _check = None
add: "Sym(u2 + 1)" = getitem_4 + 1
add_1: "f32[s77, s27]" = getitem_4 + out_x; out_x = None
lt: "Sym(u2 < s77)" = getitem_4 < s77; s77 = None
mul: "Sym(2*u2)" = getitem_4 * 2; getitem_4 = None
ones: "f32[2*u2]" = torch.ones(mul); mul = None
return (add, add_1, lt, ones)
class cond_fn_0(torch.nn.Module):
def forward(self, unbacked_symint: "Sym(u0)", child: "f32[s77, s27]", s27: "Sym(s27)", s77: "Sym(s77)"):
s27_1 = s27
s77_1 = s77
size = child.size(); child = None
getitem: "Sym(s77)" = size[0]
getitem_1: "Sym(s27)" = size[1]; size = getitem_1 = None
lt: "Sym(u0 < s77)" = unbacked_symint < getitem; unbacked_symint = getitem = None
return lt
class body_fn_0(torch.nn.Module):
def forward(self, unbacked_symint_0: "Sym(u1)", child_1: "f32[s77, s27]", s27: "Sym(s27)", s77: "Sym(s77)"):
s27_1 = s27
s77_1 = s77
x_clone: "f32[s77, s27]" = child_1.clone()
ge: "Sym(u1 >= 0)" = unbacked_symint_0 >= 0
_check = torch._check(ge); ge = _check = None
size = child_1.size(); child_1 = None
getitem: "Sym(s77)" = size[0]
getitem_1: "Sym(s27)" = size[1]; size = getitem_1 = None
lt: "Sym(u1 < s77)" = unbacked_symint_0 < getitem; getitem = None
_check_1 = torch._check(lt); lt = _check_1 = None
select: "f32[s27]" = x_clone.select(0, unbacked_symint_0)
select_1: "f32[s27]" = x_clone.select(0, unbacked_symint_0)
add: "f32[s27]" = select_1 + unbacked_symint_0; select_1 = None
copy_: "f32[s27]" = select.copy_(add); select = add = copy_ = None
add_1: "Sym(u1 + 1)" = unbacked_symint_0 + 1; unbacked_symint_0 = None
return (add_1, x_clone)
""", # noqa: B950
)
@skipIfTorchDynamo("Skip because we're testing export")
@parametrize("strict", [True, False])
@parametrize("dynamic", [True, False])
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_while_loop_op_constant_and_symint_output_export(self, strict, dynamic):
m, args = WHILE_LOOP_TESTS["const_and_symint_output"]
dynamic_shapes = {"t": {0: torch.export.Dim("dim_t")}} if dynamic else None
ep = self._check_export(m, args, strict=strict, dynamic_shapes=dynamic_shapes)
# strict or dynamic gives a slightly different graph
if not strict and not dynamic:
self.assertExpectedInline(
normalize_gm(ep.module().print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, t):
t: "f32[2, 3]";
t, = fx_pytree.tree_flatten_spec(([t], {}), self._in_spec)
sum_1: "f32[]" = torch.ops.aten.sum.default(t)
_assert_tensor_metadata_default = torch.ops.aten._assert_tensor_metadata.default(sum_1, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default = None
to: "i64[]" = torch.ops.aten.to.dtype(sum_1, torch.int64); sum_1 = None
item: "Sym(u0)" = torch.ops.aten.item.default(to); to = None
sin: "f32[2, 3]" = torch.ops.aten.sin.default(t)
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (2, 3, 1, 1, 1, 3, item, sin), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = item = sin = None
getitem_8: "Sym(u8)" = while_loop[0]
getitem_9: "Sym(u9)" = while_loop[1]
getitem_10: "Sym(u10)" = while_loop[2]
getitem_11: "Sym(u11)" = while_loop[3]
getitem_12: "Sym(u12)" = while_loop[4]
getitem_13: "Sym(u13)" = while_loop[5]
getitem_14: "Sym(u14)" = while_loop[6]
getitem_7: "f32[2, 3]" = while_loop[7]; while_loop = None
add: "Sym(u8 + 1)" = getitem_8 + 1
add_1: "Sym(u9 + 1)" = getitem_9 + 1
add_2: "Sym(u10 + 1)" = getitem_10 + 1
add_3: "Sym(u11 + 1)" = getitem_11 + 1
add_4: "Sym(u12 + 1)" = getitem_12 + 1
add_5: "Sym(u13 + 1)" = getitem_13 + 1
add_6: "Sym(u14 + 1)" = getitem_14 + 1
add_7: "f32[2, 3]" = torch.ops.aten.add.Tensor(getitem_7, 1)
add_8: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_8); getitem_8 = None
add_9: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_9); getitem_9 = None
add_10: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_10); getitem_10 = None
add_11: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_11); getitem_11 = None
add_12: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_12); getitem_12 = None
add_13: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_13); getitem_13 = None
add_14: "f32[2, 3]" = torch.ops.aten.add.Tensor(t, getitem_14); getitem_14 = None
add_15: "f32[2, 3]" = torch.ops.aten.add.Tensor(getitem_7, t); getitem_7 = t = None
return pytree.tree_unflatten((add, add_1, add_2, add_3, add_4, add_5, add_6, add_7, add_8, add_9, add_10, add_11, add_12, add_13, add_14, add_15), self._out_spec)
class while_loop_cond_graph_0(torch.nn.Module):
def forward(self, a_1: "Sym(u1)", b_1: "Sym(u2)", c1_1: "Sym(u3)", c2_1: "Sym(u4)", c3_1: "Sym(u5)", c0_1: "Sym(u6)", u0_1: "Sym(u7)", x_1: "f32[2, 3]"):
mul: "Sym(u3*u4)" = c1_1 * c2_1; c1_1 = c2_1 = None
mul_1: "Sym(u3*u4*u5)" = mul * c3_1; mul = c3_1 = None
mul_2: "Sym(u1*u2)" = a_1 * b_1; a_1 = b_1 = None
lt: "Sym(u3*u4*u5 < u1*u2)" = mul_1 < mul_2; mul_1 = mul_2 = None
return lt
class while_loop_body_graph_0(torch.nn.Module):
def forward(self, a_1: "Sym(u1)", b_1: "Sym(u2)", c1_1: "Sym(u3)", c2_1: "Sym(u4)", c3_1: "Sym(u5)", c0_1: "Sym(u6)", u0_1: "Sym(u7)", x_1: "f32[2, 3]"):
add: "Sym(u7 + 1)" = u0_1 + 1; u0_1 = None
add_1: "f32[2, 3]" = torch.ops.aten.add.Tensor(x_1, 1); x_1 = None
return (b_1, c1_1, c2_1, c3_1, a_1, 0, add, add_1)
""", # noqa: B950
)
@skipIfTorchDynamo("Graph is not captured correctly when test with dynamo")
@parametrize("dynamic", [True, False])
@parametrize("backend", ["eager", "aot_eager"])
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_while_loop_op_constant_and_symint_output_compile(self, dynamic, backend):
m, args = WHILE_LOOP_TESTS["const_and_symint_output"]
if backend == "eager":
backend = EagerAndRecordGraphs()
self._check_compile(m, args, dynamic=dynamic, backend=backend)
if (
isinstance(backend, EagerAndRecordGraphs)
# cross ref or dynamic gives a slightly different graph
and not dynamic
and not TEST_WITH_CROSSREF
):
self.assertEqual(len(backend.graphs), 1)
self.assertExpectedInline(
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_t_: "f32[2, 3]"):
l_t_ = L_t_
sum_1: "f32[]" = l_t_.sum()
to: "i64[]" = sum_1.to(torch.int64); sum_1 = None
item: "Sym(u0)" = to.item(); to = None
sin: "f32[2, 3]" = l_t_.sin()
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (2, 3, 1, 1, 1, 3, item, sin), ()); cond_fn_0 = body_fn_0 = item = sin = None
getitem_8: "Sym(u15)" = while_loop[0]
getitem_9: "Sym(u16)" = while_loop[1]
getitem_10: "Sym(u17)" = while_loop[2]
getitem_11: "Sym(u18)" = while_loop[3]
getitem_12: "Sym(u19)" = while_loop[4]
getitem_13: "Sym(u20)" = while_loop[5]
getitem_14: "Sym(u21)" = while_loop[6]
child: "f32[2, 3]" = while_loop[7]; while_loop = None
add: "Sym(u15 + 1)" = getitem_8 + 1
add_1: "Sym(u16 + 1)" = getitem_9 + 1
add_2: "Sym(u17 + 1)" = getitem_10 + 1
add_3: "Sym(u18 + 1)" = getitem_11 + 1
add_4: "Sym(u19 + 1)" = getitem_12 + 1
add_5: "Sym(u20 + 1)" = getitem_13 + 1
add_6: "Sym(u21 + 1)" = getitem_14 + 1
add_7: "f32[2, 3]" = child + 1
add_8: "f32[2, 3]" = getitem_8 + l_t_; getitem_8 = None
add_9: "f32[2, 3]" = getitem_9 + l_t_; getitem_9 = None
add_10: "f32[2, 3]" = getitem_10 + l_t_; getitem_10 = None
add_11: "f32[2, 3]" = getitem_11 + l_t_; getitem_11 = None
add_12: "f32[2, 3]" = getitem_12 + l_t_; getitem_12 = None
add_13: "f32[2, 3]" = getitem_13 + l_t_; getitem_13 = None
add_14: "f32[2, 3]" = getitem_14 + l_t_; getitem_14 = None
add_15: "f32[2, 3]" = child + l_t_; child = l_t_ = None
return (add, add_1, add_2, add_3, add_4, add_5, add_6, add_7, add_8, add_9, add_10, add_11, add_12, add_13, add_14, add_15)
class cond_fn_0(torch.nn.Module):
def forward(self, unbacked_symint: "Sym(u1)", unbacked_symint_0: "Sym(u2)", unbacked_symint_1: "Sym(u3)", unbacked_symint_2: "Sym(u4)", unbacked_symint_3: "Sym(u5)", unbacked_symint_4: "Sym(u6)", unbacked_symint_5: "Sym(u7)", child: "f32[2, 3]"):
mul: "Sym(u3*u4)" = unbacked_symint_1 * unbacked_symint_2; unbacked_symint_1 = unbacked_symint_2 = None
mul_1: "Sym(u3*u4*u5)" = mul * unbacked_symint_3; mul = unbacked_symint_3 = None
mul_2: "Sym(u1*u2)" = unbacked_symint * unbacked_symint_0; unbacked_symint = unbacked_symint_0 = None
lt: "Sym(u3*u4*u5 < u1*u2)" = mul_1 < mul_2; mul_1 = mul_2 = None
return lt
class body_fn_0(torch.nn.Module):
def forward(self, unbacked_symint_6: "Sym(u8)", unbacked_symint_7: "Sym(u9)", unbacked_symint_8: "Sym(u10)", unbacked_symint_9: "Sym(u11)", unbacked_symint_10: "Sym(u12)", unbacked_symint_11: "Sym(u13)", unbacked_symint_12: "Sym(u14)", child_1: "f32[2, 3]"):
add: "Sym(u14 + 1)" = unbacked_symint_12 + 1; unbacked_symint_12 = None
child: "f32[2, 3]" = child_1 + 1; child_1 = None
return (unbacked_symint_7, unbacked_symint_8, unbacked_symint_9, unbacked_symint_10, unbacked_symint_6, 0, add, child)
""", # noqa: B950
)
@skipIfTorchDynamo("Skip because we're testing export")
@parametrize("strict", [True, False])
@parametrize("dynamic", [True, False])
def test_while_loop_op_pytree_int_carry_export(self, strict, dynamic):
m, args = WHILE_LOOP_TESTS["pytree_int_carry"]
dynamic_shapes = {"x": {0: torch.export.Dim("dim_x")}} if dynamic else None
ep = self._check_export(m, args, strict=strict, dynamic_shapes=dynamic_shapes)
if strict and dynamic:
self.assertExpectedInline(
normalize_gm(ep.module().print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, x):
x: "f32[s77, 3]";
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
sym_size_int_1: "Sym(s77)" = torch.ops.aten.sym_size.int(x, 0)
sin: "f32[s77, 3]" = torch.ops.aten.sin.default(x); x = None
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
while_loop_body_graph_0 = self.while_loop_body_graph_0
while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (sym_size_int_1, 3, 2, 2, 3, sin), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = sym_size_int_1 = sin = None
getitem_6: "Sym(u10)" = while_loop[0]
getitem_7: "Sym(u11)" = while_loop[1]
getitem_8: "Sym(u12)" = while_loop[2]
getitem_9: "Sym(u13)" = while_loop[3]
getitem_10: "Sym(u14)" = while_loop[4]
getitem_5: "f32[s77, 3]" = while_loop[5]; while_loop = None
add: "Sym(u12 + 1)" = getitem_8 + 1
add_1: "Sym(u13 + 1)" = getitem_9 + 1
add_2: "Sym(u14 + 1)" = getitem_10 + 1
add_3: "f32[s77, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_8); getitem_8 = None
add_4: "f32[s77, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_9); getitem_9 = None
add_5: "f32[s77, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_10); getitem_10 = None
return pytree.tree_unflatten((getitem_6, getitem_7, add, add_1, add_2, add_3, add_4, add_5, getitem_5), self._out_spec)
class while_loop_cond_graph_0(torch.nn.Module):
def forward(self, arg0_1: "Sym(u20)", arg1_1: "Sym(u21)", arg2_1: "Sym(u22)", arg3_1: "Sym(u23)", arg4_1: "Sym(u24)", arg5_1: "f32[s77, 3]"):
mul: "Sym(u22*u23)" = arg2_1 * arg3_1; arg2_1 = arg3_1 = None
mul_1: "Sym(u22*u23*u24)" = mul * arg4_1; mul = arg4_1 = None
mul_2: "Sym(u20*u21)" = arg0_1 * arg1_1; arg0_1 = arg1_1 = None
lt: "Sym(u22*u23*u24 < u20*u21)" = mul_1 < mul_2; mul_1 = mul_2 = None
return lt
class while_loop_body_graph_0(torch.nn.Module):
def forward(self, arg0_1: "Sym(u20)", arg1_1: "Sym(u21)", arg2_1: "Sym(u22)", arg3_1: "Sym(u23)", arg4_1: "Sym(u24)", arg5_1: "f32[s77, 3]"):
add: "Sym(u20 + 1)" = arg0_1 + 1; arg0_1 = None
add_1: "Sym(u21 + 1)" = arg1_1 + 1; arg1_1 = None
add_2: "Sym(u22 + 1)" = arg2_1 + 1; arg2_1 = None
add_3: "Sym(u23 + 1)" = arg3_1 + 1; arg3_1 = None
add_4: "Sym(u24 + 1)" = arg4_1 + 1; arg4_1 = None
add_5: "f32[s77, 3]" = torch.ops.aten.add.Tensor(arg5_1, 1); arg5_1 = None
return (add, add_1, add_2, add_3, add_4, add_5)
""", # noqa: B950
)
@skipIfTorchDynamo("Graph is not captured correctly when test with dynamo")
@parametrize("dynamic", [True, False])
@parametrize("backend", ["eager", "aot_eager"])
def test_while_loop_op_pytree_int_carry_compile(self, dynamic, backend):
m, args = WHILE_LOOP_TESTS["pytree_int_carry"]
if backend == "eager":
backend = EagerAndRecordGraphs()
self._check_compile(m, args, dynamic=dynamic, backend=backend)
if (
isinstance(backend, EagerAndRecordGraphs)
and dynamic
and not TEST_WITH_CROSSREF
):
self.assertEqual(len(backend.graphs), 1)
self.assertExpectedInline(
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, s77: "Sym(s77)", s27: "Sym(s27)", L_x_: "f32[s77, s27]"):
l_x_ = L_x_
child: "f32[s77, s27]" = l_x_.sin(); l_x_ = None
cond_fn_0 = self.cond_fn_0
body_fn_0 = self.body_fn_0
while_loop = torch.ops.higher_order.while_loop(cond_fn_0, body_fn_0, (s77, s27, 2, 2, 3, child), (s27, s77)); cond_fn_0 = body_fn_0 = s77 = s27 = child = None
getitem_10: "Sym(u10)" = while_loop[0]
getitem_11: "Sym(u11)" = while_loop[1]
getitem_12: "Sym(u12)" = while_loop[2]
getitem_13: "Sym(u13)" = while_loop[3]
getitem_14: "Sym(u14)" = while_loop[4]
out_x: "f32[s77, s27]" = while_loop[5]; while_loop = None
add: "Sym(u12 + 1)" = getitem_12 + 1
add_1: "Sym(u13 + 1)" = getitem_13 + 1
add_2: "Sym(u14 + 1)" = getitem_14 + 1
add_3: "f32[s77, s27]" = getitem_12 + out_x; getitem_12 = None
add_4: "f32[s77, s27]" = getitem_13 + out_x; getitem_13 = None
add_5: "f32[s77, s27]" = getitem_14 + out_x; getitem_14 = None
return (getitem_10, getitem_11, add, add_1, add_2, add_3, add_4, add_5, out_x)
class cond_fn_0(torch.nn.Module):
def forward(self, unbacked_symint: "Sym(u0)", unbacked_symint_0: "Sym(u1)", unbacked_symint_1: "Sym(u2)", unbacked_symint_2: "Sym(u3)", unbacked_symint_3: "Sym(u4)", child_1: "f32[s77, s27]", s27: "Sym(s27)", s77: "Sym(s77)"):
s27_1 = s27
s77_1 = s77
mul: "Sym(u2*u3)" = unbacked_symint_1 * unbacked_symint_2; unbacked_symint_1 = unbacked_symint_2 = None
mul_1: "Sym(u2*u3*u4)" = mul * unbacked_symint_3; mul = unbacked_symint_3 = None
mul_2: "Sym(u0*u1)" = unbacked_symint * unbacked_symint_0; unbacked_symint = unbacked_symint_0 = None
lt: "Sym(u2*u3*u4 < u0*u1)" = mul_1 < mul_2; mul_1 = mul_2 = None
return lt
class body_fn_0(torch.nn.Module):
def forward(self, unbacked_symint_4: "Sym(u5)", unbacked_symint_5: "Sym(u6)", unbacked_symint_6: "Sym(u7)", unbacked_symint_7: "Sym(u8)", unbacked_symint_8: "Sym(u9)", child_2: "f32[s77, s27]", s27: "Sym(s27)", s77: "Sym(s77)"):
s27_1 = s27
s77_1 = s77
add: "Sym(u5 + 1)" = unbacked_symint_4 + 1; unbacked_symint_4 = None
add_1: "Sym(u6 + 1)" = unbacked_symint_5 + 1; unbacked_symint_5 = None
add_2: "Sym(u7 + 1)" = unbacked_symint_6 + 1; unbacked_symint_6 = None
add_3: "Sym(u8 + 1)" = unbacked_symint_7 + 1; unbacked_symint_7 = None
add_4: "Sym(u9 + 1)" = unbacked_symint_8 + 1; unbacked_symint_8 = None
child: "f32[s77, s27]" = child_2 + 1; child_2 = None
return (add, add_1, add_2, add_3, add_4, child)
""", # noqa: B950
)
def test_input_output_alias(self):
def fn(f, *args):
return torch.cond(args[0].sum() > 0, f, f, args)
x = torch.randn(2, 2)
for f in ALIAS_FN:
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
torch.compile(fn)(f, x)
def test_input_input_alias(self):
def fn(view_f, arg):
def f(arg1, arg2):
return arg1.cos(), arg2.sin()
return torch.cond(arg.sum() > 0, f, f, (arg, view_f(arg)))
x = torch.randn(2, 2)
# ALIAS_FN[0] is an identical function, cond optimizes the duplication
# as a result of auto lifting.
for view_f in ALIAS_FN[1:]:
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
torch.compile(fn)(view_f, x)
@parametrize("inference_mode", [True, False])
def test_input_mutation(self, inference_mode):
def fn(view_f, *args):
def mutate_f(x):
v = view_f(x)
v.add_(1)
return v.sin()
return torch.cond(args[0].sum() > 0, mutate_f, mutate_f, args)
x = torch.randn(2, 2)
for f in ALIAS_FN:
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
torch.compile(fn)(f, x)
with self.assertRaisesRegex(
# Should be
# torch._dynamo.exc.Unsupported,
# "Encountered aliasing during higher order op tracing for HOP.*"
torch._dynamo.exc.UncapturedHigherOrderOpError,
"Cond doesn't work unless it is captured completely with torch.compile.*",
):
with torch.inference_mode(inference_mode):
torch.compile(fn)(f, x)
@skipIfTorchDynamo("Graph is not captured correctly when test with dynamo")
def test_while_loop_unbacked_bindings(self):
m, args = WHILE_LOOP_TESTS["pytree_int_carry"]
backend = EagerAndRecordGraphs()
self._check_compile(m, args, dynamic=True, backend=backend)
self.assertEqual(len(backend.graphs), 1)
while_loop_nodes = backend.graphs[0].graph.find_nodes(
op="call_function", target=torch.ops.higher_order.while_loop
)
self.assertEqual(len(while_loop_nodes), 1)
self.assertEqual(len(while_loop_nodes[0].meta.get("unbacked_bindings")), 5)
# Return the .module() graph str result of non-strict export
def _check_export_ret_graph_str(self, fn, args, dynamic_shapes=None) -> str:
strict_ep = torch.export.export(
fn, args, dynamic_shapes=dynamic_shapes, strict=True
)
non_strict_ep = torch.export.export(
fn, args, dynamic_shapes=dynamic_shapes, strict=False
)
eager_res = fn(*args)
self.assertEqual(strict_ep.module()(*args), eager_res)
self.assertEqual(non_strict_ep.module()(*args), eager_res)
return normalize_gm(non_strict_ep.module().print_readable(print_output=False))
@skipIfTorchDynamo("Skip because dynamo cannot trace torch.export.")
def test_cond_eager_run_with_item(self):
class M(torch.nn.Module):
def forward(self, a, b1, b2, c):
def true_fn(x):
return x * b1.item()
def false_fn(x):
return x * b2.item()
r = torch.cond(a, true_fn, false_fn, (c,))
return r * 2
x = torch.randn(10, requires_grad=True)
args = (
torch.tensor(True),
torch.tensor([3]),
torch.tensor([4]),
x,
)
model = M()
torch.export.export(model, args, strict=True)
graph_str = self._check_export_ret_graph_str(model, args, None)
self.assertExpectedInline(
graph_str,
"""\
class GraphModule(torch.nn.Module):
def forward(self, a, b1, b2, c):
a: "b8[]"; b1: "i64[1]"; b2: "i64[1]"; c: "f32[10]";
a, b1, b2, c, = fx_pytree.tree_flatten_spec(([a, b1, b2, c], {}), self._in_spec)
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(a, true_graph_0, false_graph_0, (c, b1, b2)); a = true_graph_0 = false_graph_0 = c = b1 = b2 = None
getitem: "f32[10]" = cond[0]; cond = None
mul: "f32[10]" = torch.ops.aten.mul.Tensor(getitem, 2); getitem = None
return pytree.tree_unflatten((mul,), self._out_spec)
class true_graph_0(torch.nn.Module):
def forward(self, c: "f32[10]", b1: "i64[1]", b2: "i64[1]"):
item: "Sym(u0)" = torch.ops.aten.item.default(b1); b1 = None
mul: "f32[10]" = torch.ops.aten.mul.Tensor(c, item); c = item = None
return (mul,)
class false_graph_0(torch.nn.Module):
def forward(self, c: "f32[10]", b1: "i64[1]", b2: "i64[1]"):
item: "Sym(u1)" = torch.ops.aten.item.default(b2); b2 = None
mul: "f32[10]" = torch.ops.aten.mul.Tensor(c, item); c = item = None
return (mul,)
""", # noqa: B950
)
def test_cond_merge_graph_preserves_ph_meta(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
def true_fn(x):
return x + a
def false_fn(x):
return x + b * z
return torch.cond(x.sum() > 5, true_fn, false_fn, (x,))
backend = EagerAndRecordGraphs()
_ = torch.compile(M(), backend=backend)(
torch.randn(3, 4), torch.randn(3, 4), torch.randn(3, 4)
)
self.assertEqual(len(backend.graphs), 1)
gm = backend.graphs[0]
subgraph_attr = gm.graph.find_nodes(op="get_attr")[0]
subgm = getattr(gm, subgraph_attr.target)
for ph in subgm.graph.find_nodes(op="placeholder"):
self.assertTrue("example_value" in ph.meta)
@skipIfTorchDynamo("Skip because dynamo cannot trace torch.export.")
def test_cond_symint_closure(self):
from torch.export import Dim
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
def true_fn(x):
return x + a
def false_fn(x):
return x + b * z
# When exporting with non-strict: a and b are symints,
# so torch.compile need to wrap and trace symint inputs.
return torch.cond(x.shape[0] > 5, true_fn, false_fn, (x,))
args = (torch.ones(3, 3), torch.ones(5), torch.ones(3, 3))
model = M()
dynamic_shapes = {"x": {0: Dim("d")}, "y": {0: Dim("d1")}, "z": {0: Dim("d")}}
non_strict_graph_str = self._check_export_ret_graph_str(
model, args, dynamic_shapes
)
self.assertExpectedInline(
non_strict_graph_str,
"""\
class GraphModule(torch.nn.Module):
def forward(self, x, y, z):
x: "f32[s68, 3]"; y: "f32[s17]"; z: "f32[s68, 3]";
x, y, z, = fx_pytree.tree_flatten_spec(([x, y, z], {}), self._in_spec)
sym_size_int_4: "Sym(s17)" = torch.ops.aten.sym_size.int(y, 0); y = None
sym_size_int_5: "Sym(s68)" = torch.ops.aten.sym_size.int(z, 0)
gt: "Sym(s68 > 5)" = sym_size_int_5 > 5
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (x, sym_size_int_4, sym_size_int_5, z)); gt = true_graph_0 = false_graph_0 = x = sym_size_int_4 = sym_size_int_5 = z = None
getitem: "f32[s68, 3]" = cond[0]; cond = None
return pytree.tree_unflatten((getitem,), self._out_spec)
class true_graph_0(torch.nn.Module):
def forward(self, x: "f32[s68, 3]", sym_size_int_4: "Sym(s17)", sym_size_int_5: "Sym(s68)", z: "f32[s68, 3]"):
add: "f32[s68, 3]" = torch.ops.aten.add.Tensor(x, sym_size_int_4); x = sym_size_int_4 = None
return (add,)
class false_graph_0(torch.nn.Module):
def forward(self, x: "f32[s68, 3]", sym_size_int_4: "Sym(s17)", sym_size_int_5: "Sym(s68)", z: "f32[s68, 3]"):
mul: "f32[s68, 3]" = torch.ops.aten.mul.Tensor(z, sym_size_int_5); z = sym_size_int_5 = None
add: "f32[s68, 3]" = torch.ops.aten.add.Tensor(x, mul); x = mul = None
return (add,)
""", # noqa: B950
)
# unbacked symint inputs are created during non-strict export,
# which causes a graph break
@unittest.expectedFailure
def test_cond_unbacked_symint_closure(self):
from torch.export import Dim
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
# c is an unbacked symint in non-strict export
c = y.sum().item()
def true_fn(x):
return x + a + c
def false_fn(x):
return x + b * z * c
# When exporting with non-strict: a and b are symints,
# so torch.compile need to wrap and trace symint inputs.
return torch.cond(x.shape[0] > 5, true_fn, false_fn, (x,))
args = (torch.ones(3, 3), torch.ones(5, dtype=torch.int32), torch.ones(3, 3))
model = M()
dynamic_shapes = {"x": {0: Dim("d")}, "y": {0: Dim("d1")}, "z": {0: Dim("d")}}
_ = self._check_export_ret_graph_str(model, args, dynamic_shapes)
@skipIfTorchDynamo(
"Skip because _merge_output is not intended for dynamo to compile"
)
def test_merge_output(self):
from torch._higher_order_ops.cond import _merge_output
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.symbolic_shapes import ShapeEnv
# The shapes and strides are from raondomly generated pairs of tensors then swapaxes
valid_test_cases = [
# [(size1, stride1), (size2, stride2), (expected_stride, expected_size)]
[((3,), (1,)), ((4,), (1,)), ("(u0,)", "(1,)")],
[((1, 3), (3, 1)), ((3, 2), (2, 1)), ("(u0, u1)", "(u1, 1)")],
[((2, 1), (1, 1)), ((7, 3), (3, 1)), ("(u0, u1)", "(u1, 1)")],
[((5, 5), (1, 5)), ((4, 5), (1, 4)), ("(u0, 5)", "(1, u0)")],
[
((7, 3, 1), (1, 7, 1)),
((4, 3, 3), (3, 12, 1)),
("(u0, 3, u1)", "(u1, u0*u1, 1)"),
],
[
((5, 7, 4), (7, 1, 35)),
((7, 4, 4), (4, 1, 28)),
("(u0, u1, 4)", "(u1, 1, u0*u1)"),
],
[
((1, 6, 3, 2), (36, 1, 6, 18)),
((4, 2, 2, 6), (24, 1, 2, 4)),
("(u0, u1, u2, u3)", "(u1*u2*u3, 1, u1, u1*u2)"),
],
[
((6, 1, 6, 3), (18, 1, 1, 6)),
((2, 1, 3, 4), (12, 1, 1, 3)),
("(u0, 1, u1, u2)", "(u1*u2, 1, 1, u1)"),
],
[
((3, 1, 2, 4, 1), (8, 8, 4, 1, 1)),
((2, 4, 1, 4, 1), (16, 4, 4, 1, 1)),
("(u0, u1, u2, 4, 1)", "(4*u1*u2, 4*u2, 4, 1, 1)"),
],
]
def _inner(case):
fake_mode = FakeTensorMode(shape_env=ShapeEnv())
(size1, stride1), (size2, stride2), (merged_size, merged_stride) = case
with fake_mode:
t1 = torch.empty_strided(size1, stride1)
t2 = torch.empty_strided(size2, stride2)
out = _merge_output(t1, t2, fake_mode)
self.assertEqual(str(tuple(out.size())), merged_size)
self.assertEqual(str(tuple(out.stride())), merged_stride)
for case in valid_test_cases:
_inner(case)
# The shapes and strides are from raondomly generated pairs of tensors then swapaxes
invalid_test_cases = [
# [(size1, stride1), (size2, stride2)]
[((1,), (1,)), ((1,), (0,))],
[
((1, 3), (1, 1)),
((5, 6), (6, 1)),
], # t1 is not contiguous, t2 is contiguous
[
((2, 1), (1, 1)),
((7, 3), (1, 3)),
], # t1 is contiguous, t2 is not contiguous
[
((5, 4), (4, 1)),
((5, 5), (1, 5)),
], # t1 is contiguous, t2 is not contiguous
[((7, 3, 1), (1, 7, 1)), ((4, 3, 3), (9, 1, 3))], # layout is different
[((5, 7, 4), (7, 1, 35)), ((7, 4, 4), (4, 28, 1))], # layout is different
[
((1, 6, 3, 2), (36, 1, 6, 18)),
((4, 1, 1, 6), (1, 4, 4, 4)),
], # layout is different
[
((6, 1, 6, 3), (18, 1, 1, 6)),
((1, 1, 1, 1), (1, 1, 1, 1)),
], # layout is different
[
((6, 1, 1, 6, 3), (3, 18, 18, 18, 1)),
((5, 1, 2, 1, 1), (2, 10, 1, 10, 1)),
], # layout is different
]
for case in invalid_test_cases:
with self.assertRaisesRegex(Exception, r"."):
_inner(case)
@parametrize("dynamic", [True, False])
@parametrize("backend", ["eager", "aot_eager"])
def test_cond_mismatched_branch_output(self, dynamic, backend):
class M(torch.nn.Module):
def forward(self, x, y, z):
a = y.shape[0]
b = z.shape[0]
def true_fn(x):
# clone the outputs so branches have the same storage_offset
return (x + a)[2:].clone()
def false_fn(x):
# clone the outputs so branches have the same storage_offset
return (x + b * z)[:2].clone()
ret = torch.cond(x.sum() > 0, true_fn, false_fn, (x,))
return y.sum() - ret
m = M()
x, y, z = torch.randn(5, 4), torch.randn(5, 4), torch.randn(5, 4)
out = m(x, y, z)
if not (backend == "eager" and dynamic and not TEST_WITH_CROSSREF):
compiled_out = torch.compile(
m, backend=backend, dynamic=dynamic, fullgraph=True
)(x, y, z)
self.assertEqual(compiled_out, out)
else:
bk = EagerAndRecordGraphs()
compiled_out = torch.compile(
m, backend=bk, dynamic=dynamic, fullgraph=True
)(x, y, z)
self.assertEqual(compiled_out, out)
self.assertExpectedInline(
normalize_gm(bk.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, s17: "Sym(s17)", s94: "Sym(s94)", L_y_: "f32[s17, s94]", L_z_: "f32[s17, s94]", L_x_: "f32[s17, s94]"):
l_y_ = L_y_
l_z_ = L_z_
l_x_ = L_x_
sum_1: "f32[]" = l_x_.sum()
gt: "b8[]" = sum_1 > 0; sum_1 = None
cond_true_0 = self.cond_true_0
cond_false_0 = self.cond_false_0
cond = torch.ops.higher_order.cond(gt, cond_true_0, cond_false_0, (l_x_, s94, s17, s17, l_z_)); gt = cond_true_0 = cond_false_0 = l_x_ = s94 = s17 = l_z_ = None
getitem_5: "f32[u0, s94]" = cond[0]
sym_size_int: "Sym(u0)" = torch.ops.aten.sym_size.int(getitem_5, 0); getitem_5 = None
_check_is_size = torch._check_is_size(sym_size_int); _check_is_size = None
ge: "Sym(u0 >= 0)" = sym_size_int >= 0; sym_size_int = None
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u0 >= 0 on node 'ge'"); ge = _assert_scalar_default = None
ret: "f32[u0, s94]" = cond[0]; cond = None
sum_2: "f32[]" = l_y_.sum(); l_y_ = None
sub: "f32[u0, s94]" = sum_2 - ret; sum_2 = ret = None
return (sub,)
class cond_true_0(torch.nn.Module):
def forward(self, l_x_: "f32[s17, s94]", s94: "Sym(s94)", s17_true_branch: "Sym(s17)", getitem_2_false_branch: "Sym(s17)", l_z__false_branch: "f32[s17, s94]"):
l_x__1 = l_x_
s94_1 = s94
add: "f32[s17, s94]" = l_x__1 + s17_true_branch; l_x__1 = s17_true_branch = None
getitem: "f32[s17 - 2, s94]" = add[slice(2, None, None)]; add = None
clone: "f32[s17 - 2, s94]" = getitem.clone(); getitem = None
return (clone,)
class cond_false_0(torch.nn.Module):
def forward(self, l_x_: "f32[s17, s94]", s94: "Sym(s94)", s17_true_branch: "Sym(s17)", getitem_2_false_branch: "Sym(s17)", l_z__false_branch: "f32[s17, s94]"):
l_x__1 = l_x_
s94_1 = s94
mul: "f32[s17, s94]" = getitem_2_false_branch * l_z__false_branch; getitem_2_false_branch = l_z__false_branch = None
add: "f32[s17, s94]" = l_x__1 + mul; l_x__1 = mul = None
getitem: "f32[2, s94]" = add[slice(None, 2, None)]; add = None
clone: "f32[2, s94]" = getitem.clone(); getitem = None
return (clone,)
""", # noqa: B950
)
@parametrize("dynamic", [True, False])
@parametrize("backend", ["eager", "aot_eager"])
def test_cond_mismatched_branch_strided_output(self, dynamic, backend):
class M(torch.nn.Module):
def forward(self, x, y):
def true_fn(x, y):
return (
(x.swapaxes(-1, 0) + 1)
.unsqueeze(1)
.expand(-1, 5, -1, -1, -1, -1, -1),
torch.empty_strided((3, 3), (0, 1)),
)
def false_fn(x, y):
return (
(y.swapaxes(-1, 0) + 1)
.unsqueeze(1)
.expand(-1, 4, -1, -1, -1, -1, -1),
torch.empty_strided((4, 5), (0, 1)),
)
ret = torch.cond(x.sum() > 0, true_fn, false_fn, (x, y))
return y.sum() + ret[0]
m = M()
x, y = torch.randn(1, 6, 1, 5, 4, 3), torch.randn(1, 4, 5, 1, 3, 8)
out = m(x, y)
compiled_out = torch.compile(
m, backend=backend, dynamic=dynamic, fullgraph=True
)(x, y)
self.assertEqual(compiled_out, out)
_hop_schema_test_schema_types = [
"bool",
"int",
"float",
"str",
"Tensor",
"SymInt",
"SymBool",
"GraphModule",
"ScriptObj",
]
@skipIfTorchDynamo("We don't expect users to torch.compile hop schema generation.")
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
class TestHopSchema(TestCase):
def _get_example_val(self, ty: str):
from torch.fx.experimental.sym_node import SymNode
from torch.fx.experimental.symbolic_shapes import ShapeEnv
def create_symtype(cls, pytype, shape_env, val):
from torch._dynamo.source import ConstantSource
symbol = shape_env.create_symbol(
val,
source=ConstantSource(
f"__testing_hop_schema{len(shape_env.var_to_val)}"
),
)
return cls(SymNode(symbol, shape_env, pytype, hint=val))
if ty == "bool":
return True
elif ty == "int":
return 1
elif ty == "float":
return 1.0
elif ty == "str":
return "foo"
elif ty == "Tensor":
return torch.tensor(1)
elif ty == "SymInt":
shape_env = ShapeEnv()
return create_symtype(torch.SymInt, int, shape_env, 1)
elif ty == "SymBool":
shape_env = ShapeEnv()
return create_symtype(torch.SymBool, bool, shape_env, True)
elif ty == "GraphModule":
def f(x):
return x.sin()
return make_fx(f)(torch.ones(1))
elif ty == "ScriptObj":
from torch.testing._internal.torchbind_impls import (
init_torchbind_implementations,
)
init_torchbind_implementations()
foo = torch.classes._TorchScriptTesting._Foo(3, 4)
return foo
else:
raise NotImplementedError(ty)
@parametrize("schema_type", _hop_schema_test_schema_types)
def test_type_gen(self, schema_type):
from torchgen.gen_schema_utils import TypeGen
example_val = self._get_example_val(schema_type)
ty = TypeGen.from_example(example_val)
# Test the generated type can be parsed
self.assertEqual(ty.parse(str(ty)), ty)
@parametrize("schema_type", _hop_schema_test_schema_types)
def test_list_gen(self, schema_type):
from torchgen.gen_schema_utils import TypeGen
example_val = self._get_example_val(schema_type)
li1 = [example_val]
ty1 = TypeGen.from_example(li1)
ty2 = TypeGen.from_example(li1)
self.assertEqual(ty1.parse(str(ty1)), ty1)
self.assertEqual(ty2.parse(str(ty2)), ty2)
def test_function_schema_gen(self):
from torchgen.gen_schema_utils import FunctionSchemaGen
inps = [
(schema_type + "_v", self._get_example_val(schema_type))
for schema_type in _hop_schema_test_schema_types
]
schema1 = FunctionSchemaGen.from_example("test_op1", inps, torch.ones(1))
schema2 = FunctionSchemaGen.from_example(
"test_op2",
inps,
[
torch.ones(1),
],
)
schema3 = FunctionSchemaGen.from_example(
"test_op3", inps, [torch.ones(1), torch.ones(1)]
)
self.assertExpectedInline(
str(schema1),
"""test_op1(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> Tensor""", # noqa: B950
)
self.assertExpectedInline(
str(schema2),
"""test_op2(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> Tensor""", # noqa: B950
)
self.assertExpectedInline(
str(schema3),
"""test_op3(bool bool_v, int int_v, float float_v, str str_v, Tensor Tensor_v, SymInt SymInt_v, SymBool SymBool_v, GraphModule GraphModule_v, __torch__.torch.classes._Foo ScriptObj_v) -> (Tensor, Tensor)""", # noqa: B950,
)
self.assertEqual(schema1.parse(str(schema1)), schema1)
self.assertEqual(schema2.parse(str(schema2)), schema2)
self.assertEqual(schema3.parse(str(schema3)), schema3)
def test_while_loop_schema_gen(self):
fn, inp = WHILE_LOOP_TESTS["simple_with_linear"]
graph = make_fx(fn)(*inp).graph
while_loop_node = next(
node
for node in graph.nodes
if node.op == "call_function"
and node.target is torch.ops.higher_order.while_loop
)
schema = torch._library.utils.hop_schema_from_fx_node(while_loop_node)
self.assertExpectedInline(
str(schema),
"""while_loop(GraphModule cond_fn, GraphModule body_fn, Tensor[2] carried_inputs, Tensor[3] additional_inputs) -> Tensor[2]""", # noqa: B950
)
self.assertEqual(schema.parse(str(schema)), schema)
def test_schema_tree_spec(self):
schema_gen = HopSchemaGenerator(torch.ops.higher_order.cond)
args = (torch.randn(3, 4), torch.randn(2, 3))
with self.assertRaisesRegex(
RuntimeError, "Please only add flattened inputs to the hop schema"
):
schema_gen.add_arg("tuple_args", args)
for i, arg in enumerate(args):
schema_gen.add_arg(f"tuple_args{i}", arg)
schema_gen.add_schema_tree_spec(pytree.tree_flatten(args)[1])
flat_schema = schema_gen.gen_schema()
self.assertExpectedInline(
str(flat_schema), """cond(Tensor tuple_args0, Tensor tuple_args1) -> ()"""
)
def test_cond_gen_schema_tensor_inputs(self):
schema = torch.ops.higher_order.cond.gen_schema(
torch.tensor(True),
lambda x: x.sin(),
lambda x: x.cos(),
(torch.randn(3, 4),),
)
self.assertExpectedInline(
str(schema),
"""cond(Tensor pred, Any true_fn, Any false_fn, Tensor operand0) -> ((Tensor))""",
)
def test_cond_gen_schema_symbool_inputs(self):
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.symbolic_shapes import ShapeEnv
fake_mode = FakeTensorMode(shape_env=ShapeEnv())
with fake_mode, fake_mode.shape_env.ignore_fresh_unbacked_symbols():
sym_bool = torch.randn(3, 4).nonzero().size(0) == 0
schema = torch.ops.higher_order.cond.gen_schema(
sym_bool,
lambda x: x.sin(),
lambda x: x.cos(),
(torch.randn(3, 4),),
)
self.assertExpectedInline(
str(schema),
"""cond(SymBool pred, Any true_fn, Any false_fn, Tensor operand0) -> ((Tensor))""",
)
def test_while_loop_gen_schema_tensor_inputs(self):
def cond_fn(x, y):
return x.sum() < 10
def body_fn(x, y):
return x + 1, y.sin()
schema = torch.ops.higher_order.while_loop.gen_schema(
cond_fn,
body_fn,
(torch.randn(3, 4), torch.randn(2, 3)),
(),
)
self.assertExpectedInline(
str(schema),
"""while_loop(Any cond_fn, Any body_fn, Tensor carried_input0, Tensor carried_input1) -> (Tensor, Tensor)""",
)
def test_while_loop_gen_schema_with_additional_inputs(self):
def cond_fn(x, y, z):
return x.sum() < z
def body_fn(x, y, z):
return x + 1, y.sin()
schema = torch.ops.higher_order.while_loop.gen_schema(
cond_fn,
body_fn,
(torch.randn(3, 4), torch.randn(2, 3)),
(torch.tensor(10),),
)
self.assertExpectedInline(
str(schema),
"""while_loop(Any cond_fn, Any body_fn, Tensor carried_input0, Tensor carried_input1, Tensor additional_input0) -> (Tensor, Tensor)""", # noqa: B950
)
def test_scan_gen_schema_tensor_inputs(self):
def combine_fn(carry, x):
return carry + x, carry * x
schema = torch.ops.higher_order.scan.gen_schema(
combine_fn,
(torch.randn(3, 4),),
(torch.randn(5, 3, 4),),
(),
)
self.assertExpectedInline(
str(schema),
"""scan(Any combine_fn, Tensor init0, Tensor xs0) -> (Tensor, Tensor)""",
)
def test_scan_gen_schema_with_additional_inputs(self):
def combine_fn(carry, x, scale):
return carry + x * scale, carry * x
schema = torch.ops.higher_order.scan.gen_schema(
combine_fn,
(torch.randn(3, 4),),
(torch.randn(5, 3, 4),),
(torch.tensor(2.0),),
)
self.assertExpectedInline(
str(schema),
"""scan(Any combine_fn, Tensor init0, Tensor xs0, Tensor additional_input0) -> (Tensor, Tensor)""", # noqa: B950
)
def test_scan_gen_schema_multiple_inputs(self):
def combine_fn(carry1, carry2, x1, x2):
return carry1 + x1, carry2 * x2, carry1 - x1, carry2 + x2
schema = torch.ops.higher_order.scan.gen_schema(
combine_fn,
(torch.randn(3, 4), torch.randn(2, 3)),
(torch.randn(5, 3, 4), torch.randn(5, 2, 3)),
(),
)
self.assertExpectedInline(
str(schema),
"""scan(Any combine_fn, Tensor init0, Tensor init1, Tensor xs0, Tensor xs1) -> (Tensor, Tensor, Tensor, Tensor)""", # noqa: B950
)
def test_associative_scan_gen_schema_tensor_inputs(self):
def combine_fn(x, y):
return x + y
schema = torch.ops.higher_order.associative_scan.gen_schema(
combine_fn,
(torch.randn(5, 3, 4),),
(),
)
self.assertExpectedInline(
str(schema),
"""associative_scan(Any combine_fn, Tensor xs0) -> ((Tensor))""",
)
def test_associative_scan_gen_schema_with_additional_inputs(self):
def combine_fn(x, y, scale):
return x * y * scale
schema = torch.ops.higher_order.associative_scan.gen_schema(
combine_fn,
(torch.randn(5, 3, 4),),
(torch.tensor(2.0),),
)
self.assertExpectedInline(
str(schema),
"""associative_scan(Any combine_fn, Tensor xs0, Tensor additional_input0) -> ((Tensor))""",
)
def test_associative_scan_gen_schema_multiple_inputs(self):
def combine_fn(x1, x2, y1, y2):
return x1 + y1, x2 * y2
schema = torch.ops.higher_order.associative_scan.gen_schema(
combine_fn,
(torch.randn(5, 3, 4), torch.randn(5, 2, 3)),
(),
)
self.assertExpectedInline(
str(schema),
"""associative_scan(Any combine_fn, Tensor xs0, Tensor xs1) -> (Tensor, Tensor)""",
)
def test_while_loop_gen_schema_with_int_carries(self):
def cond_fn(x, y, z, c):
return x < y
def body_fn(x, y, z, c):
return x + 1, y - 1, z.sin(), c + x
schema = torch.ops.higher_order.while_loop.gen_schema(
cond_fn,
body_fn,
(2, 10, torch.randn(2, 3)),
(torch.tensor(10),),
)
self.assertExpectedInline(
str(schema),
"""while_loop(Any cond_fn, Any body_fn, int carried_input0, int carried_input1, Tensor carried_input2, Tensor additional_input0) -> (int, int, Tensor, Tensor)""", # noqa: B950
)
def test_while_loop_gen_schema_with_input_mutation(self):
def cond_fn(x, y, z, c):
return x < y
def body_fn(x, y, z, c):
x.add_(1)
y.sub_(1)
z.sin_()
c.add_(x)
return x, y, z
c = torch.randn(3, 3)
schema = torch.ops.higher_order.while_loop.gen_schema(
cond_fn,
body_fn,
(torch.randn(3, 3), torch.randn(3, 3), torch.randn(3, 3)),
(c,),
)
self.assertExpectedInline(
str(schema),
"""while_loop(Any cond_fn, Any body_fn, Tensor(a2!) carried_input0, Tensor(a3!) carried_input1, Tensor(a4!) carried_input2, Tensor(a5!) additional_input0) -> (Tensor, Tensor, Tensor)""", # noqa: B950
)
instantiate_parametrized_tests(TestHopSchema)
instantiate_parametrized_tests(TestControlFlowTraced)
instantiate_parametrized_tests(TestControlFlow)
instantiate_parametrized_tests(AssociativeScanTests)
if __name__ == "__main__":
run_tests()