mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
The tests were comparing raw exported strings for protobuf comparison, which is not backward/forward compatible with different versions of protobuf. This PR parses the strings into protobuf and compares the protobufs directly, similar to what we did in assertImageProto. Our test failed because we used a different version of protobuf, which output 44100.0 instead of 44100, which resulted in an error. However, they are equal, but only different in the exported strings. Pull Request resolved: https://github.com/pytorch/pytorch/pull/162644 Approved by: https://github.com/justinchuby, https://github.com/Skylion007
901 lines
32 KiB
Python
901 lines
32 KiB
Python
# Owner(s): ["module: unknown"]
|
|
|
|
import io
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
import expecttest
|
|
import numpy as np
|
|
|
|
|
|
TEST_TENSORBOARD = True
|
|
try:
|
|
import tensorboard.summary.writer.event_file_writer # noqa: F401
|
|
from tensorboard.compat.proto.summary_pb2 import Summary
|
|
except ImportError:
|
|
TEST_TENSORBOARD = False
|
|
|
|
HAS_TORCHVISION = True
|
|
try:
|
|
import torchvision
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
|
|
|
|
TEST_MATPLOTLIB = True
|
|
try:
|
|
import matplotlib
|
|
|
|
if os.environ.get("DISPLAY", "") == "":
|
|
matplotlib.use("Agg")
|
|
import matplotlib.pyplot as plt
|
|
except ImportError:
|
|
TEST_MATPLOTLIB = False
|
|
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
IS_MACOS,
|
|
IS_WINDOWS,
|
|
parametrize,
|
|
run_tests,
|
|
skipIfTorchDynamo,
|
|
TEST_WITH_CROSSREF,
|
|
TestCase,
|
|
xfailIfS390X,
|
|
)
|
|
|
|
|
|
def tensor_N(shape, dtype=float):
|
|
numel = np.prod(shape)
|
|
x = (np.arange(numel, dtype=dtype)).reshape(shape)
|
|
return x
|
|
|
|
|
|
class BaseTestCase(TestCase):
|
|
"""Base class used for all TensorBoard tests"""
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
if not TEST_TENSORBOARD:
|
|
return self.skipTest("Skip the test since TensorBoard is not installed")
|
|
if TEST_WITH_CROSSREF:
|
|
return self.skipTest("Don't run TensorBoard tests with crossref")
|
|
self.temp_dirs = []
|
|
|
|
def createSummaryWriter(self):
|
|
# Just to get the name of the directory in a writable place. tearDown()
|
|
# is responsible for clean-ups.
|
|
temp_dir = tempfile.TemporaryDirectory(prefix="test_tensorboard").name
|
|
self.temp_dirs.append(temp_dir)
|
|
return SummaryWriter(temp_dir)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
# Remove directories created by SummaryWriter
|
|
for temp_dir in self.temp_dirs:
|
|
if os.path.exists(temp_dir):
|
|
shutil.rmtree(temp_dir)
|
|
|
|
def assertProto(self, actual_proto):
|
|
if expecttest.ACCEPT:
|
|
write_proto(actual_proto, self)
|
|
return True
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = Summary()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
self.assertEqual(actual_proto, expected_proto)
|
|
|
|
def assertImageProto(self, actual_proto):
|
|
if expecttest.ACCEPT:
|
|
expected_file = get_expected_file(self)
|
|
with open(expected_file, "w") as f:
|
|
f.write(text_format.MessageToString(actual_proto))
|
|
return True
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = Summary()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
[actual, expected] = [actual_proto.value[0], expected_proto.value[0]]
|
|
actual_img = Image.open(io.BytesIO(actual.image.encoded_image_string))
|
|
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
|
|
|
|
self.assertEqual(actual.tag, expected.tag)
|
|
self.assertEqual(actual.image.height, expected.image.height)
|
|
self.assertEqual(actual.image.width, expected.image.width)
|
|
self.assertEqual(actual.image.colorspace, expected.image.colorspace)
|
|
self.assertEqual(actual_img, expected_img)
|
|
|
|
|
|
if TEST_TENSORBOARD:
|
|
from google.protobuf import text_format
|
|
from PIL import Image
|
|
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
|
from tensorboard.compat.proto.types_pb2 import DataType
|
|
|
|
from torch.utils.tensorboard import summary, SummaryWriter
|
|
from torch.utils.tensorboard._convert_np import make_np
|
|
from torch.utils.tensorboard._pytorch_graph import graph
|
|
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
|
|
from torch.utils.tensorboard.summary import int_to_half, tensor_proto
|
|
else:
|
|
# Dummy for parametrization
|
|
class DataType:
|
|
DT_FLOAT, DT_HALF, DT_BFLOAT16, DT_INT32 = [None] * 4
|
|
|
|
|
|
class TestTensorBoardPyTorchNumpy(BaseTestCase):
|
|
def test_pytorch_np(self):
|
|
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
|
|
for tensor in tensors:
|
|
# regular tensor
|
|
self.assertIsInstance(make_np(tensor), np.ndarray)
|
|
|
|
# CUDA tensor
|
|
if torch.cuda.is_available():
|
|
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
|
|
|
|
# regular variable
|
|
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
|
|
|
|
# CUDA variable
|
|
if torch.cuda.is_available():
|
|
self.assertIsInstance(
|
|
make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray
|
|
)
|
|
|
|
# python primitive type
|
|
self.assertIsInstance(make_np(0), np.ndarray)
|
|
self.assertIsInstance(make_np(0.1), np.ndarray)
|
|
|
|
def test_pytorch_autograd_np(self):
|
|
x = torch.autograd.Variable(torch.empty(1))
|
|
self.assertIsInstance(make_np(x), np.ndarray)
|
|
|
|
def test_pytorch_write(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_scalar("scalar", torch.autograd.Variable(torch.rand(1)), 0)
|
|
|
|
def test_pytorch_histogram(self):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_histogram("float histogram", torch.rand((50,)))
|
|
w.add_histogram("int histogram", torch.randint(0, 100, (50,)))
|
|
w.add_histogram("bfloat16 histogram", torch.rand(50, dtype=torch.bfloat16))
|
|
|
|
def test_pytorch_histogram_raw(self):
|
|
with self.createSummaryWriter() as w:
|
|
num = 50
|
|
floats = make_np(torch.rand((num,)))
|
|
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
|
|
counts, limits = np.histogram(floats, bins)
|
|
sum_sq = floats.dot(floats).item()
|
|
w.add_histogram_raw(
|
|
"float histogram raw",
|
|
min=floats.min().item(),
|
|
max=floats.max().item(),
|
|
num=num,
|
|
sum=floats.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist(),
|
|
)
|
|
|
|
ints = make_np(torch.randint(0, 100, (num,)))
|
|
bins = [0, 25, 50, 75, 100]
|
|
counts, limits = np.histogram(ints, bins)
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw(
|
|
"int histogram raw",
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits[1:].tolist(),
|
|
bucket_counts=counts.tolist(),
|
|
)
|
|
|
|
ints = torch.tensor(range(0, 100)).float()
|
|
nbins = 100
|
|
counts = torch.histc(ints, bins=nbins, min=0, max=99)
|
|
limits = torch.tensor(range(nbins))
|
|
sum_sq = ints.dot(ints).item()
|
|
w.add_histogram_raw(
|
|
"int histogram raw",
|
|
min=ints.min().item(),
|
|
max=ints.max().item(),
|
|
num=num,
|
|
sum=ints.sum().item(),
|
|
sum_squares=sum_sq,
|
|
bucket_limits=limits.tolist(),
|
|
bucket_counts=counts.tolist(),
|
|
)
|
|
|
|
|
|
class TestTensorBoardUtils(BaseTestCase):
|
|
def test_to_HWC(self):
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, "chw")
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, "nchw")
|
|
self.assertEqual(converted.shape, (64, 256, 3))
|
|
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
|
|
converted = convert_to_HWC(test_image, "hw")
|
|
self.assertEqual(converted.shape, (32, 32, 3))
|
|
|
|
def test_convert_to_HWC_dtype_remains_same(self):
|
|
# test to ensure convert_to_HWC restores the dtype of input np array and
|
|
# thus the scale_factor calculated for the image is 1
|
|
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
|
|
tensor = make_np(test_image)
|
|
tensor = convert_to_HWC(tensor, "NCHW")
|
|
scale_factor = summary._calc_scale_factor(tensor)
|
|
self.assertEqual(
|
|
scale_factor,
|
|
1,
|
|
msg="Values are already in [0, 255], scale factor should be 1",
|
|
)
|
|
|
|
def test_prepare_video(self):
|
|
# At each timeframe, the sum over all other
|
|
# dimensions of the video should be the same.
|
|
shapes = [
|
|
(16, 30, 3, 28, 28),
|
|
(36, 30, 3, 28, 28),
|
|
(19, 29, 3, 23, 19),
|
|
(3, 3, 3, 3, 3),
|
|
]
|
|
for s in shapes:
|
|
V_input = np.random.random(s)
|
|
V_after = _prepare_video(np.copy(V_input))
|
|
total_frame = s[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
def test_numpy_vid_uint8(self):
|
|
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
|
|
V_after = _prepare_video(np.copy(V_input)) * 255
|
|
total_frame = V_input.shape[1]
|
|
V_input = np.swapaxes(V_input, 0, 1)
|
|
for f in range(total_frame):
|
|
x = np.reshape(V_input[f], newshape=(-1))
|
|
y = np.reshape(V_after[f], newshape=(-1))
|
|
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
|
|
|
|
|
|
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
|
|
|
|
true_positive_counts = [75, 64, 21, 5, 0]
|
|
false_positive_counts = [150, 105, 18, 0, 0]
|
|
true_negative_counts = [0, 45, 132, 150, 150]
|
|
false_negative_counts = [0, 11, 54, 70, 75]
|
|
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
|
|
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
|
|
|
|
|
|
class TestTensorBoardWriter(BaseTestCase):
|
|
@unittest.skipIf(
|
|
sys.version_info >= (3, 13),
|
|
"numpy failure, likely caused by old tensorboard version",
|
|
)
|
|
def test_writer(self):
|
|
with self.createSummaryWriter() as writer:
|
|
sample_rate = 44100
|
|
|
|
n_iter = 0
|
|
writer.add_hparams(
|
|
{"lr": 0.1, "bsize": 1}, {"hparam/accuracy": 10, "hparam/loss": 10}
|
|
)
|
|
writer.add_scalar("data/scalar_systemtime", 0.1, n_iter)
|
|
writer.add_scalar("data/scalar_customtime", 0.2, n_iter, walltime=n_iter)
|
|
writer.add_scalar("data/new_style", 0.2, n_iter, new_style=True)
|
|
writer.add_scalars(
|
|
"data/scalar_group",
|
|
{
|
|
"xsinx": n_iter * np.sin(n_iter),
|
|
"xcosx": n_iter * np.cos(n_iter),
|
|
"arctanx": np.arctan(n_iter),
|
|
},
|
|
n_iter,
|
|
)
|
|
x = np.zeros((32, 3, 64, 64)) # output from network
|
|
writer.add_images("Image", x, n_iter) # Tensor
|
|
writer.add_image_with_boxes(
|
|
"imagebox",
|
|
np.zeros((3, 64, 64)),
|
|
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
|
|
n_iter,
|
|
)
|
|
x = np.zeros(sample_rate * 2)
|
|
|
|
writer.add_audio("myAudio", x, n_iter)
|
|
writer.add_video(
|
|
"myVideo", np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter
|
|
)
|
|
writer.add_text("Text", "text logged at step:" + str(n_iter), n_iter)
|
|
writer.add_text("markdown Text", """a|b\n-|-\nc|d""", n_iter)
|
|
writer.add_histogram("hist", np.random.rand(100, 100), n_iter)
|
|
writer.add_pr_curve(
|
|
"xoxo", np.random.randint(2, size=100), np.random.rand(100), n_iter
|
|
) # needs tensorboard 0.4RC or later
|
|
writer.add_pr_curve_raw(
|
|
"prcurve with raw data",
|
|
true_positive_counts,
|
|
false_positive_counts,
|
|
true_negative_counts,
|
|
false_negative_counts,
|
|
precision,
|
|
recall,
|
|
n_iter,
|
|
)
|
|
|
|
v = np.array(
|
|
[[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float
|
|
)
|
|
c = np.array(
|
|
[[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int
|
|
)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
writer.add_mesh("my_mesh", vertices=v, colors=c, faces=f)
|
|
|
|
|
|
class TestTensorBoardSummaryWriter(BaseTestCase):
|
|
def test_summary_writer_ctx(self):
|
|
# after using a SummaryWriter as a ctx it should be closed
|
|
with self.createSummaryWriter() as writer:
|
|
writer.add_scalar("test", 1)
|
|
self.assertIs(writer.file_writer, None)
|
|
|
|
def test_summary_writer_close(self):
|
|
# Opening and closing SummaryWriter a lot should not run into
|
|
# OSError: [Errno 24] Too many open files
|
|
passed = True
|
|
try:
|
|
writer = self.createSummaryWriter()
|
|
writer.close()
|
|
except OSError:
|
|
passed = False
|
|
|
|
self.assertTrue(passed)
|
|
|
|
def test_pathlib(self):
|
|
with tempfile.TemporaryDirectory(prefix="test_tensorboard_pathlib") as d:
|
|
p = Path(d)
|
|
with SummaryWriter(p) as writer:
|
|
writer.add_scalar("test", 1)
|
|
|
|
|
|
class TestTensorBoardEmbedding(BaseTestCase):
|
|
def test_embedding(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.tensor([[1.0, 2.0, 3.0], [5.0, 4.0, 1.0], [3.0, 7.0, 7.0]])
|
|
all_labels = torch.tensor([33.0, 44.0, 55.0])
|
|
all_images = torch.zeros(3, 3, 5, 5)
|
|
|
|
w.add_embedding(
|
|
all_features, metadata=all_labels, label_img=all_images, global_step=2
|
|
)
|
|
|
|
dataset_label = ["test"] * 2 + ["train"] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(
|
|
all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=["digit", "dataset"],
|
|
global_step=2,
|
|
)
|
|
# assert...
|
|
|
|
def test_embedding_64(self):
|
|
w = self.createSummaryWriter()
|
|
all_features = torch.tensor([[1.0, 2.0, 3.0], [5.0, 4.0, 1.0], [3.0, 7.0, 7.0]])
|
|
all_labels = torch.tensor([33.0, 44.0, 55.0])
|
|
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
|
|
|
|
w.add_embedding(
|
|
all_features, metadata=all_labels, label_img=all_images, global_step=2
|
|
)
|
|
|
|
dataset_label = ["test"] * 2 + ["train"] * 2
|
|
all_labels = list(zip(all_labels, dataset_label))
|
|
w.add_embedding(
|
|
all_features,
|
|
metadata=all_labels,
|
|
label_img=all_images,
|
|
metadata_header=["digit", "dataset"],
|
|
global_step=2,
|
|
)
|
|
|
|
|
|
class TestTensorBoardSummary(BaseTestCase):
|
|
def test_uint8_image(self):
|
|
"""
|
|
Tests that uint8 image (pixel values in [0, 255]) is not changed
|
|
"""
|
|
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(
|
|
scale_factor,
|
|
1,
|
|
msg="Values are already in [0, 255], scale factor should be 1",
|
|
)
|
|
|
|
def test_float32_image(self):
|
|
"""
|
|
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
|
|
to [0, 255]
|
|
"""
|
|
test_image = np.random.rand(3, 32, 32).astype(np.float32)
|
|
scale_factor = summary._calc_scale_factor(test_image)
|
|
self.assertEqual(
|
|
scale_factor, 255, msg="Values are in [0, 1], scale factor should be 255"
|
|
)
|
|
|
|
def test_list_input(self):
|
|
with self.assertRaises(Exception):
|
|
summary.histogram("dummy", [1, 3, 4, 5, 6], "tensorflow")
|
|
|
|
def test_empty_input(self):
|
|
with self.assertRaises(Exception):
|
|
summary.histogram("dummy", np.ndarray(0), "tensorflow")
|
|
|
|
def test_image_with_boxes(self):
|
|
self.assertImageProto(
|
|
summary.image_boxes(
|
|
"dummy", tensor_N(shape=(3, 32, 32)), np.array([[10, 10, 40, 40]])
|
|
)
|
|
)
|
|
|
|
def test_image_with_one_channel(self):
|
|
self.assertImageProto(
|
|
summary.image("dummy", tensor_N(shape=(1, 8, 8)), dataformats="CHW")
|
|
)
|
|
|
|
def test_image_with_one_channel_batched(self):
|
|
self.assertImageProto(
|
|
summary.image("dummy", tensor_N(shape=(2, 1, 8, 8)), dataformats="NCHW")
|
|
)
|
|
|
|
def test_image_with_3_channel_batched(self):
|
|
self.assertImageProto(
|
|
summary.image("dummy", tensor_N(shape=(2, 3, 8, 8)), dataformats="NCHW")
|
|
)
|
|
|
|
def test_image_without_channel(self):
|
|
self.assertImageProto(
|
|
summary.image("dummy", tensor_N(shape=(8, 8)), dataformats="HW")
|
|
)
|
|
|
|
def test_video(self):
|
|
try:
|
|
import moviepy # noqa: F401
|
|
except ImportError:
|
|
return
|
|
|
|
self.assertProto(summary.video("dummy", tensor_N(shape=(4, 3, 1, 8, 8))))
|
|
|
|
summary.video("dummy", np.random.rand(16, 48, 1, 28, 28))
|
|
summary.video("dummy", np.random.rand(20, 7, 1, 8, 8))
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
@xfailIfS390X
|
|
def test_audio(self):
|
|
self.assertProto(summary.audio("dummy", tensor_N(shape=(42,))))
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_text(self):
|
|
self.assertProto(summary.text("dummy", "text 123"))
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_histogram_auto(self):
|
|
self.assertProto(
|
|
summary.histogram("dummy", tensor_N(shape=(1024,)), bins="auto", max_bins=5)
|
|
)
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_histogram_fd(self):
|
|
self.assertProto(
|
|
summary.histogram("dummy", tensor_N(shape=(1024,)), bins="fd", max_bins=5)
|
|
)
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_histogram_doane(self):
|
|
self.assertProto(
|
|
summary.histogram(
|
|
"dummy", tensor_N(shape=(1024,)), bins="doane", max_bins=5
|
|
)
|
|
)
|
|
|
|
def test_custom_scalars(self):
|
|
layout = {
|
|
"Taiwan": {"twse": ["Multiline", ["twse/0050", "twse/2330"]]},
|
|
"USA": {
|
|
"dow": ["Margin", ["dow/aaa", "dow/bbb", "dow/ccc"]],
|
|
"nasdaq": ["Margin", ["nasdaq/aaa", "nasdaq/bbb", "nasdaq/ccc"]],
|
|
},
|
|
}
|
|
summary.custom_scalars(
|
|
layout
|
|
) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_mesh(self):
|
|
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
|
|
c = np.array(
|
|
[[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int
|
|
)
|
|
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
|
|
mesh = summary.mesh("my_mesh", vertices=v, colors=c, faces=f, config_dict=None)
|
|
self.assertProto(mesh)
|
|
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_scalar_new_style(self):
|
|
scalar = summary.scalar("test_scalar", 1.0, new_style=True)
|
|
self.assertProto(scalar)
|
|
with self.assertRaises(AssertionError):
|
|
summary.scalar("test_scalar2", torch.Tensor([1, 2, 3]), new_style=True)
|
|
|
|
|
|
def remove_whitespace(string):
|
|
return string.replace(" ", "").replace("\t", "").replace("\n", "")
|
|
|
|
|
|
def get_expected_file(function_ptr):
|
|
module_id = function_ptr.__class__.__module__
|
|
test_file = sys.modules[module_id].__file__
|
|
# Look for the .py file (since __file__ could be pyc).
|
|
test_file = ".".join(test_file.split(".")[:-1]) + ".py"
|
|
|
|
# Use realpath to follow symlinks appropriately.
|
|
test_dir = os.path.dirname(os.path.realpath(test_file))
|
|
functionName = function_ptr.id().split(".")[-1]
|
|
return os.path.join(
|
|
test_dir, "expect", "TestTensorBoard." + functionName + ".expect"
|
|
)
|
|
|
|
|
|
def read_expected_content(function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
assert os.path.exists(expected_file), expected_file
|
|
with open(expected_file) as f:
|
|
return f.read()
|
|
|
|
|
|
def write_proto(str_to_compare, function_ptr):
|
|
expected_file = get_expected_file(function_ptr)
|
|
with open(expected_file, "w") as f:
|
|
f.write(str(str_to_compare))
|
|
|
|
|
|
class TestTensorBoardPytorchGraph(BaseTestCase):
|
|
def test_pytorch_graph(self):
|
|
dummy_input = (torch.zeros(1, 3),)
|
|
|
|
class myLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return self.l(x)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myLinear(), dummy_input)
|
|
|
|
actual_proto, _ = graph(myLinear(), dummy_input)
|
|
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = GraphDef()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
|
|
for i in range(len(expected_proto.node)):
|
|
expected_node = expected_proto.node[i]
|
|
actual_node = actual_proto.node[i]
|
|
self.assertEqual(expected_node.name, actual_node.name)
|
|
self.assertEqual(expected_node.op, actual_node.op)
|
|
self.assertEqual(expected_node.input, actual_node.input)
|
|
self.assertEqual(expected_node.device, actual_node.device)
|
|
self.assertEqual(
|
|
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())
|
|
)
|
|
|
|
def test_nested_nn_squential(self):
|
|
dummy_input = torch.randn(2, 3)
|
|
|
|
class InnerNNSquential(torch.nn.Module):
|
|
def __init__(self, dim1, dim2):
|
|
super().__init__()
|
|
self.inner_nn_squential = torch.nn.Sequential(
|
|
torch.nn.Linear(dim1, dim2),
|
|
torch.nn.Linear(dim2, dim1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.inner_nn_squential(x)
|
|
return x
|
|
|
|
class OuterNNSquential(torch.nn.Module):
|
|
def __init__(self, dim1=3, dim2=4, depth=2):
|
|
super().__init__()
|
|
layers = []
|
|
for _ in range(depth):
|
|
layers.append(InnerNNSquential(dim1, dim2))
|
|
self.outer_nn_squential = torch.nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.outer_nn_squential(x)
|
|
return x
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(OuterNNSquential(), dummy_input)
|
|
|
|
actual_proto, _ = graph(OuterNNSquential(), dummy_input)
|
|
|
|
expected_str = read_expected_content(self)
|
|
expected_proto = GraphDef()
|
|
text_format.Parse(expected_str, expected_proto)
|
|
|
|
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
|
|
for i in range(len(expected_proto.node)):
|
|
expected_node = expected_proto.node[i]
|
|
actual_node = actual_proto.node[i]
|
|
self.assertEqual(expected_node.name, actual_node.name)
|
|
self.assertEqual(expected_node.op, actual_node.op)
|
|
self.assertEqual(expected_node.input, actual_node.input)
|
|
self.assertEqual(expected_node.device, actual_node.device)
|
|
self.assertEqual(
|
|
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys())
|
|
)
|
|
|
|
def test_pytorch_graph_dict_input(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return self.l(x)
|
|
|
|
class ModelDict(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
return {"out": self.l(x)}
|
|
|
|
dummy_input = torch.zeros(1, 3)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(Model(), dummy_input)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(Model(), dummy_input, use_strict_trace=True)
|
|
|
|
# expect error: Encountering a dict at the output of the tracer...
|
|
with self.assertRaises(RuntimeError):
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(ModelDict(), dummy_input, use_strict_trace=True)
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(ModelDict(), dummy_input, use_strict_trace=False)
|
|
|
|
def test_mlp_graph(self):
|
|
dummy_input = (torch.zeros(2, 1, 28, 28),)
|
|
|
|
# This MLP class with the above input is expected
|
|
# to fail JIT optimizations as seen at
|
|
# https://github.com/pytorch/pytorch/issues/18903
|
|
#
|
|
# However, it should not raise an error during
|
|
# the add_graph call and still continue.
|
|
class myMLP(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.input_len = 1 * 28 * 28
|
|
self.fc1 = torch.nn.Linear(self.input_len, 1200)
|
|
self.fc2 = torch.nn.Linear(1200, 1200)
|
|
self.fc3 = torch.nn.Linear(1200, 10)
|
|
|
|
def forward(self, x, update_batch_stats=True):
|
|
h = torch.nn.functional.relu(self.fc1(x.view(-1, self.input_len)))
|
|
h = self.fc2(h)
|
|
h = torch.nn.functional.relu(h)
|
|
h = self.fc3(h)
|
|
return h
|
|
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(myMLP(), dummy_input)
|
|
|
|
def test_wrong_input_size(self):
|
|
with self.assertRaises(RuntimeError):
|
|
dummy_input = torch.rand(1, 9)
|
|
model = torch.nn.Linear(3, 5)
|
|
with self.createSummaryWriter() as w:
|
|
w.add_graph(model, dummy_input) # error
|
|
|
|
@skipIfNoTorchVision
|
|
def test_torchvision_smoke(self):
|
|
model_input_shapes = {
|
|
"alexnet": (2, 3, 224, 224),
|
|
"resnet34": (2, 3, 224, 224),
|
|
"resnet152": (2, 3, 224, 224),
|
|
"densenet121": (2, 3, 224, 224),
|
|
"vgg16": (2, 3, 224, 224),
|
|
"vgg19": (2, 3, 224, 224),
|
|
"vgg16_bn": (2, 3, 224, 224),
|
|
"vgg19_bn": (2, 3, 224, 224),
|
|
"mobilenet_v2": (2, 3, 224, 224),
|
|
}
|
|
for model_name, input_shape in model_input_shapes.items():
|
|
with self.createSummaryWriter() as w:
|
|
model = getattr(torchvision.models, model_name)()
|
|
w.add_graph(model, torch.zeros(input_shape))
|
|
|
|
|
|
class TestTensorBoardFigure(BaseTestCase):
|
|
@skipIfNoMatplotlib
|
|
def test_figure(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figure, axes = plt.figure(), plt.gca()
|
|
circle1 = plt.Circle((0.2, 0.5), 0.2, color="r")
|
|
circle2 = plt.Circle((0.8, 0.5), 0.2, color="g")
|
|
axes.add_patch(circle1)
|
|
axes.add_patch(circle2)
|
|
plt.axis("scaled")
|
|
plt.tight_layout()
|
|
|
|
writer.add_figure("add_figure/figure", figure, 0, close=False)
|
|
self.assertTrue(plt.fignum_exists(figure.number))
|
|
|
|
writer.add_figure("add_figure/figure", figure, 1)
|
|
if matplotlib.__version__ != "3.3.0":
|
|
self.assertFalse(plt.fignum_exists(figure.number))
|
|
else:
|
|
print(
|
|
"Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163"
|
|
)
|
|
|
|
writer.close()
|
|
|
|
@skipIfNoMatplotlib
|
|
def test_figure_list(self):
|
|
writer = self.createSummaryWriter()
|
|
|
|
figures = []
|
|
for i in range(5):
|
|
figure = plt.figure()
|
|
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
|
|
plt.xlabel("X")
|
|
plt.xlabel("Y")
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
figures.append(figure)
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
|
|
self.assertTrue(all(plt.fignum_exists(figure.number) is True for figure in figures)) # noqa: F812
|
|
|
|
writer.add_figure("add_figure/figure_list", figures, 1)
|
|
if matplotlib.__version__ != "3.3.0":
|
|
self.assertTrue(all(plt.fignum_exists(figure.number) is False for figure in figures)) # noqa: F812
|
|
else:
|
|
print(
|
|
"Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163"
|
|
)
|
|
|
|
writer.close()
|
|
|
|
|
|
class TestTensorBoardNumpy(BaseTestCase):
|
|
@unittest.skipIf(
|
|
IS_WINDOWS,
|
|
"Skipping on windows, see https://github.com/pytorch/pytorch/pull/109349 ",
|
|
)
|
|
@unittest.skipIf(
|
|
IS_MACOS, "Skipping on mac, see https://github.com/pytorch/pytorch/pull/109349 "
|
|
)
|
|
def test_scalar(self):
|
|
res = make_np(1.1)
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(1 << 64 - 1) # uint64_max
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float16(1.00000087))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.float128(1.00008 + 9))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
res = make_np(np.int64(100000000000))
|
|
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
|
|
|
|
def test_pytorch_np_expect_fail(self):
|
|
with self.assertRaises(NotImplementedError):
|
|
make_np({"pytorch": 1.0})
|
|
|
|
|
|
class TestTensorProtoSummary(BaseTestCase):
|
|
@parametrize(
|
|
"tensor_type,proto_type",
|
|
[
|
|
(torch.float16, DataType.DT_HALF),
|
|
(torch.bfloat16, DataType.DT_BFLOAT16),
|
|
],
|
|
)
|
|
@skipIfTorchDynamo("Unsuitable test for Dynamo, behavior changes with version")
|
|
def test_half_tensor_proto(self, tensor_type, proto_type):
|
|
float_values = [1.0, 2.0, 3.0]
|
|
actual_proto = (
|
|
tensor_proto(
|
|
"dummy",
|
|
torch.tensor(float_values, dtype=tensor_type),
|
|
)
|
|
.value[0]
|
|
.tensor
|
|
)
|
|
self.assertSequenceEqual(
|
|
[int_to_half(x) for x in actual_proto.half_val],
|
|
float_values,
|
|
)
|
|
self.assertTrue(actual_proto.dtype == proto_type)
|
|
|
|
def test_float_tensor_proto(self):
|
|
float_values = [1.0, 2.0, 3.0]
|
|
actual_proto = tensor_proto("dummy", torch.tensor(float_values)).value[0].tensor
|
|
self.assertEqual(actual_proto.float_val, float_values)
|
|
self.assertTrue(actual_proto.dtype == DataType.DT_FLOAT)
|
|
|
|
def test_int_tensor_proto(self):
|
|
int_values = [1, 2, 3]
|
|
actual_proto = (
|
|
tensor_proto("dummy", torch.tensor(int_values, dtype=torch.int32))
|
|
.value[0]
|
|
.tensor
|
|
)
|
|
self.assertEqual(actual_proto.int_val, int_values)
|
|
self.assertTrue(actual_proto.dtype == DataType.DT_INT32)
|
|
|
|
def test_scalar_tensor_proto(self):
|
|
scalar_value = 0.1
|
|
actual_proto = tensor_proto("dummy", torch.tensor(scalar_value)).value[0].tensor
|
|
self.assertAlmostEqual(actual_proto.float_val[0], scalar_value)
|
|
|
|
def test_complex_tensor_proto(self):
|
|
real = torch.tensor([1.0, 2.0])
|
|
imag = torch.tensor([3.0, 4.0])
|
|
actual_proto = tensor_proto("dummy", torch.complex(real, imag)).value[0].tensor
|
|
self.assertEqual(actual_proto.scomplex_val, [1.0, 3.0, 2.0, 4.0])
|
|
|
|
def test_empty_tensor_proto(self):
|
|
actual_proto = tensor_proto("dummy", torch.empty(0)).value[0].tensor
|
|
self.assertEqual(actual_proto.float_val, [])
|
|
|
|
|
|
instantiate_parametrized_tests(TestTensorProtoSummary)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|