Files
pytorch/torch/optim/radam.py
Jane Xu d947b9d500 [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 02:02:58 +00:00

510 lines
20 KiB
Python

import math
from typing import List, Optional
import torch
from torch import Tensor
from .optimizer import (
Optimizer,
_default_to_fused_or_foreach,
_differentiable_doc,
_capturable_doc,
_dispatch_sqrt,
_foreach_doc,
_get_scalar_dtype,
_get_value,
_use_grad_for_differentiable,
_view_as_real,
)
__all__ = ["RAdam", "radam"]
class RAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
decoupled_weight_decay: bool = False,
*,
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if foreach is False and capturable:
raise ValueError("Capturable not supported with single tensor RAdam")
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
foreach=foreach,
capturable=capturable,
decoupled_weight_decay=decoupled_weight_decay,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("differentiable", False)
group.setdefault("decoupled_weight_decay", False)
group.setdefault("capturable", False)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0 and not torch.is_tensor(p_state['step']):
step_val = float(p_state["step"])
p_state["step"] = (torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device) if group['capturable']
else torch.tensor(step_val, dtype=_get_scalar_dtype()))
def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps):
has_complex = False
for p in group["params"]:
if p.grad is not None:
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("RAdam does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
state['step'] = (
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
if group['capturable']
else torch.tensor(0.0, dtype=_get_scalar_dtype())
)
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
state_steps.append(state["step"])
return has_complex
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
state_steps = []
beta1, beta2 = group["betas"]
has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps)
radam(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
eps=group["eps"],
foreach=group["foreach"],
capturable=group["capturable"],
differentiable=group["differentiable"],
decoupled_weight_decay=group["decoupled_weight_decay"],
has_complex=has_complex,
)
return loss
RAdam.__doc__ = r"""Implements RAdam algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2
\text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
\lambda \text{ (weightdecay)}, \\
&\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
v_0 \leftarrow 0 \text{ ( second moment)}, \\
&\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{6mm} \theta_t \leftarrow \theta_{t-1} \\
&\hspace{6mm} \textbf{if} \: \lambda \neq 0 \\
&\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\
&\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t} \\
&\hspace{12mm}\textbf{else} \\
&\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t} \\
&\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
&\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
2 t \beta^t_2 /\big(1-\beta_2^t \big) \\[0.1.ex]
&\hspace{6mm}\textbf{if} \: \rho_t > 5 \\
&\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon } \\
&\hspace{12mm} r_t \leftarrow
\sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
&\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t \\
&\hspace{6mm}\textbf{else} \\
&\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.
This implementation provides an option to use either the original weight_decay implementation as in Adam
(where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
(default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.
""" + fr"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
decoupled_weight_decay (bool, optional): whether to use decoupled weight
decay as in AdamW to obtain RAdamW (default: False)
{_foreach_doc}
{_differentiable_doc}
{_capturable_doc} For RAdam, capturable is only supported when foreach=True.
.. _On the variance of the adaptive learning rate and beyond:
https://arxiv.org/abs/1908.03265
.. _author's implementation:
https://github.com/LiyuanLucasLiu/RAdam
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
def radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
decoupled_weight_decay: bool = False,
foreach: Optional[bool] = None,
differentiable: bool = False,
capturable: bool = False,
has_complex: bool = False,
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
):
r"""Functional API that performs RAdam algorithm computation.
See :class:`~torch.optim.RAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_radam
else:
func = _single_tensor_radam
func(
params,
grads,
exp_avgs,
exp_avg_sqs,
state_steps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
eps=eps,
decoupled_weight_decay=decoupled_weight_decay,
differentiable=differentiable,
capturable=capturable,
has_complex=has_complex,
)
def _single_tensor_radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
differentiable: bool,
decoupled_weight_decay: bool,
capturable: bool,
has_complex: bool,
):
if capturable:
raise RuntimeError("capturable is not supported for single tensor RAdam (when foreach=False)")
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
step_t = state_steps[i]
if torch.is_complex(param):
param = torch.view_as_real(param)
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_avg_sq = torch.view_as_real(exp_avg_sq)
# update step
step_t += 1
step = _get_value(step_t)
bias_correction1 = 1 - beta1 ** step
bias_correction2 = 1 - beta2 ** step
if weight_decay != 0:
if decoupled_weight_decay:
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.lerp_(grad, 1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# correcting bias for the first moving moment
bias_corrected_exp_avg = exp_avg / bias_correction1
# maximum length of the approximated SMA
rho_inf = 2 / (1 - beta2) - 1
# compute the length of the approximated SMA
rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2
if rho_t > 5.0:
# Compute the variance rectification term and update parameters accordingly
rect = math.sqrt(
(rho_t - 4)
* (rho_t - 2)
* rho_inf
/ ((rho_inf - 4) * (rho_inf - 2) * rho_t)
)
exp_avg_sq_sqrt = exp_avg_sq.sqrt()
if differentiable:
exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
else:
exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)
adaptive_lr = math.sqrt(bias_correction2) / exp_avg_sq_sqrt
param.add_(bias_corrected_exp_avg * lr * adaptive_lr * rect, alpha=-1.0)
else:
param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)
def _multi_tensor_radam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
decoupled_weight_decay: bool,
differentiable: bool,
capturable: bool,
has_complex: bool,
):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
"If capturable=True, params and state_steps must be CUDA tensors."
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, state_steps])
for ((
grouped_params,
grouped_grads,
grouped_exp_avgs,
grouped_exp_avg_sqs,
grouped_state_steps,
), _) in grouped_tensors.values():
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if grouped_state_steps[0].is_cpu:
torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
else:
torch._foreach_add_(grouped_state_steps, 1)
if has_complex:
_view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)
# maximum length of the approximated SMA
rho_inf = 2 / (1 - beta2) - 1
# compute the length of the approximated SMA
if capturable:
bias_correction1 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_neg_(bias_correction1)
torch._foreach_add_(bias_correction1, 1)
bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_mul_(bias_correction2, grouped_state_steps)
torch._foreach_mul_(bias_correction2, 2)
torch._foreach_div_(bias_correction2, bias_correction1)
torch._foreach_neg_(bias_correction2)
torch._foreach_add_(bias_correction2, rho_inf)
rho_t_list = bias_correction2
else:
rho_t_list = [rho_inf - 2 * _get_value(step) * (beta2 ** _get_value(step)) /
(1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
if weight_decay != 0:
if decoupled_weight_decay:
torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
else:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# Decay the first and second moment running average coefficient
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
# Delete the local intermediate since it won't be used anymore to save on peak memory
del grouped_grads
if capturable:
num = torch._foreach_sub(rho_t_list, 4)
sub2 = torch._foreach_sub(rho_t_list, 2)
torch._foreach_mul_(num, sub2)
del sub2
torch._foreach_mul_(num, rho_inf)
rho_inf = ((rho_inf - 4) * (rho_inf - 2))
denom = torch._foreach_mul(rho_t_list, rho_inf)
torch._foreach_div_(num, denom)
del denom
torch._foreach_sqrt_(num)
# TODO(mlazos): we should try and get a foreach_where op https://github.com/pytorch/pytorch/issues/117884
rect = [torch.where(rho_t > 5.0, n, 0.0) for n, rho_t in zip(num, rho_t_list)]
del num
del rho_t_list
unrect_step_size = [torch.where(rect > 0, 0.0, 1.0) for rect in rect]
torch._foreach_mul_(unrect_step_size, lr)
bias_correction1 = torch._foreach_pow(beta1, grouped_state_steps)
torch._foreach_neg_(bias_correction1)
torch._foreach_add_(bias_correction1, 1)
torch._foreach_div_(unrect_step_size, bias_correction1)
torch._foreach_neg_(unrect_step_size)
bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
torch._foreach_neg_(bias_correction2)
torch._foreach_add_(bias_correction2, 1)
torch._foreach_sqrt_(bias_correction2)
torch._foreach_mul_(bias_correction2, lr)
torch._foreach_mul_(bias_correction2, rect)
del rect
torch._foreach_neg_(bias_correction2)
torch._foreach_div_(bias_correction2, bias_correction1)
del bias_correction1
else:
rect = [
_dispatch_sqrt(
(rho_t - 4)
* (rho_t - 2)
* rho_inf
/ ((rho_inf - 4) * (rho_inf - 2) * rho_t)
)
if rho_t > 5
else 0
for rho_t in rho_t_list
]
unrectified = [0 if rect > 0 else 1.0 for rect in rect]
bias_correction1 = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
unrect_step_size = [(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)]
bias_correction2 = [
_dispatch_sqrt(1 - beta2 ** _get_value(step)) * (lr * rect / bc) * -1
for step, rect, bc in zip(grouped_state_steps, rect, bias_correction1)
]
buffer = torch._foreach_sqrt(grouped_exp_avg_sqs)
torch._foreach_add_(buffer, eps)
torch._foreach_div_(buffer, bias_correction2)
torch._foreach_reciprocal_(buffer)
torch._foreach_add_(buffer, unrect_step_size)
# Here, buffer = sqrt(1 - beta2^t) * rect_step_size / (sqrt(v) + eps) + unrect_step_size
torch._foreach_addcmul_(grouped_params, grouped_exp_avgs, buffer)