Files
pytorch/torch/_export/wrappers.py
2025-06-25 06:16:06 +00:00

252 lines
9.2 KiB
Python

# mypy: allow-untyped-defs
from contextlib import contextmanager
import torch
import torch._custom_ops
from torch._C import DispatchKey
from torch._higher_order_ops.flat_apply import (
_ConstantFunction,
flat_apply,
to_graphable,
)
from torch._higher_order_ops.strict_mode import strict_mode
from torch._higher_order_ops.utils import autograd_not_implemented
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import (
get_proxy_slot,
PreDispatchTorchFunctionMode,
ProxyTorchDispatchMode,
track_tensor_tree,
)
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
class ExportTracepoint(HigherOrderOperator):
def __init__(self):
super().__init__("_export_tracepoint")
def __call__(self, *args, **kwargs):
return super().__call__(*args, **kwargs)
_export_tracepoint = ExportTracepoint()
@_export_tracepoint.py_impl(ProxyTorchDispatchMode)
def export_tracepoint_dispatch_mode(mode, *args, **kwargs):
p_args, p_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, (args, kwargs))
proxy = mode.tracer.create_proxy(
"call_function", _export_tracepoint, p_args, p_kwargs
)
return track_tensor_tree(args, proxy, constant=None, tracer=mode.tracer)
@_export_tracepoint.py_impl(FakeTensorMode)
def export_tracepoint_fake_tensor_mode(mode, *args, **kwargs):
with mode:
return args
@_export_tracepoint.py_functionalize_impl
def export_tracepoint_functional(ctx, *args, **kwargs):
unwrapped_args = ctx.unwrap_tensors(args)
unwrapped_kwargs = ctx.unwrap_tensors(kwargs)
with ctx.redispatch_to_next():
_export_tracepoint(*unwrapped_args, **unwrapped_kwargs)
return args
_export_tracepoint.py_impl(DispatchKey.Autograd)(
autograd_not_implemented(_export_tracepoint, deferred_error=True)
)
@_export_tracepoint.py_impl(DispatchKey.CPU)
def export_tracepoint_cpu(*args, **kwargs):
return args
def _wrap_submodule(mod, path, module_call_specs):
assert isinstance(mod, torch.nn.Module)
assert path != ""
submodule = torch.fx.graph_module._get_attr(mod, path)
def update_module_call_signatures(path, in_spec, out_spec):
if path in module_call_specs:
assert module_call_specs[path]["in_spec"] == in_spec
assert module_call_specs[path]["out_spec"] == out_spec
module_call_specs[path] = {"in_spec": in_spec, "out_spec": out_spec}
def check_flattened(flat_args):
for a in flat_args:
if not (isinstance(a, (torch.Tensor, str, int, float, bool)) or a is None):
raise AssertionError(
f"Only Tensors or scalars are supported as pytree flattened inputs, got: {a}"
)
def pre_hook(module, args, kwargs):
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
check_flattened(flat_args)
flat_args = _export_tracepoint(*flat_args, kind="module_call_inputs", path=path)
args, kwargs = pytree.tree_unflatten(flat_args, in_spec)
return args, kwargs
def post_hook(module, args, kwargs, res):
_, in_spec = pytree.tree_flatten((args, kwargs))
flat_res, out_spec = pytree.tree_flatten(res)
check_flattened(flat_res)
flat_res = _export_tracepoint(*flat_res, kind="module_call_outputs", path=path)
update_module_call_signatures(path, in_spec, out_spec)
return pytree.tree_unflatten(flat_res, out_spec)
pre_handle = submodule.register_forward_pre_hook(pre_hook, with_kwargs=True)
post_handle = submodule.register_forward_hook(post_hook, with_kwargs=True)
return pre_handle, post_handle
@contextmanager
def _wrap_submodules(f, preserve_signature, module_call_signatures):
handles = []
try:
for path in preserve_signature:
handles.extend(_wrap_submodule(f, path, module_call_signatures))
yield
finally:
for handle in handles:
handle.remove()
def _mark_strict_experimental(cls):
def call(self, *args):
return strict_mode(self, args)
cls.__call__ = call
return cls
def _register_subclass_spec_proxy_in_tracer(tracer, name, spec):
"""
This is a wrapper utility method on top of tracer to cache the
already registered subclass spec attribute. This is useful because
Subclass.__init__ will be same for each subclass. By default, fx will
create multiple attributes/proxies for given attribute.
"""
fx_name = name + "0"
if hasattr(tracer.root, fx_name):
assert getattr(tracer.root, fx_name) == spec
return tracer.create_proxy("get_attr", fx_name, (), {})
qualname = tracer.get_fresh_qualname(name)
setattr(tracer.root, qualname, spec)
return tracer.create_proxy("get_attr", qualname, (), {})
def mark_subclass_constructor_exportable_experimental(constructor_subclass):
"""
Experimental decorator that makes subclass to be traceable in export
with pre-dispatch IR. To make your subclass traceble in export, you need to:
1. Implement __init__ method for your subclass (Look at DTensor implementation)
2. Decorate your __init__ method with _mark_constructor_exportable_experimental
3. Put torch._dynamo_disable decorator to prevent dynamo from peeking into its' impl
Example:
class FooTensor(torch.Tensor):
@staticmethod
def __new__(cls, elem, *, requires_grad=False):
# ...
return torch.Tensor._make_subclass(cls, elem, requires_grad=requires_grad)
@torch._dynamo_disable
@mark_subclass_constructor_exportable_experimental
def __init__(self, elem, ...):
# ...
"""
def _is_init(fn):
return callable(fn) and fn.__name__ == "__init__"
if not _is_init(constructor_subclass):
raise RuntimeError(
f"torch._export.wrappers.mark_constructor_exportable_experimental can only be applied on subclass tensor.__init__"
f"But, you are adding it on {constructor_subclass.__name__} which is not supported. "
f"If __init__ doesn't exist on your subclass, please add it. Look at DTensor.__init__ implementation for example"
)
def wrapper(*args, **kwargs):
if not is_traceable_wrapper_subclass_type(type(args[0])):
assert constructor_subclass.__qualname__.endswith("__init__")
obj_name = constructor_subclass.__qualname__[: -len("__init__")]
raise RuntimeError(
f"Applying mark_constructor_exportable_experimental on {obj_name} is not valid as it is not a traceable "
f"tensor subclass. Please look at DTensor.__init__ implementation as an example of proper usage of this API."
)
constructor_subclass(*args, **kwargs)
if not torch._C._is_torch_function_mode_enabled():
return
torch_function_mode_stack = torch.overrides._get_current_function_mode_stack()
pre_dispatch_tf_modes = [
mode
for mode in torch_function_mode_stack
if isinstance(mode, PreDispatchTorchFunctionMode)
]
assert len(pre_dispatch_tf_modes) <= 1, (
f"Expected only one PreDispatchTorchFunctionMode, found {len(pre_dispatch_tf_modes)}"
)
if len(pre_dispatch_tf_modes) == 0:
return
mode = pre_dispatch_tf_modes[0]
tracer = mode.tracer
subclass = args[0]
flat_args, in_spec = to_graphable((tuple(args[1:]), kwargs))
constructor_spec_name = "_".join(
constructor_subclass.__qualname__.lower().split(".")
)
qualname = tracer.get_fresh_qualname(constructor_spec_name) # type: ignore[union-attr]
setattr(tracer.root, qualname, in_spec) # type: ignore[union-attr]
spec_proxy = tracer.create_proxy("get_attr", qualname, (), {})
flat_proxy_args = pytree.tree_map_only(
torch.Tensor, lambda x: get_proxy_slot(x, tracer).proxy, flat_args
)
_, func_spec = torch.utils._pytree.tree_flatten(
_ConstantFunction(type(subclass))
)
# We actually don't want to create a new spec for each instance
# In fx graph, it will look like dtensor_const_func_spec
# We can't directly shove DTensor.__init__ into fx as it is not
# allowed type.
fxable_constructor_call_spec_name = (
type(subclass).__name__.lower() + "_const_func_spec"
)
# We should try to reuse the constructor call spec as it is guaranteed to be same
# for each subclass type. This is different from proxy-ing the init arguments which
# can't be reused because for example, DTensor can receive different DeviceMesh etc
# as it's arguments
func_spec_proxy = _register_subclass_spec_proxy_in_tracer(
tracer, fxable_constructor_call_spec_name, func_spec
)
inner_proxy = tracer.create_proxy(
"call_function",
flat_apply,
(func_spec_proxy, spec_proxy, *flat_proxy_args),
{},
)
track_tensor_tree(subclass, inner_proxy, constant=None, tracer=tracer)
return
return wrapper