Files
pytorch/torch/_export/verifier.py
Tugsbayasgalan (Tugsuu) Manlaibaatar 194fcfcfbd Add support for param mutation under inference mode (#159661)
Summary:
In HF model rwkv, we have parameter mutation under inference mode which should be safe. This PR does multiple things to make sure it works:
1. We execute global autograd mutation while tracing so that we can actually trace through parameter inplace mutation
2. Add support for parameter mutation under inference mode in AOTAutograd
3. Add support for parameter mutation under inference mode in export.

Test Plan:
test

Rollback Plan:

Differential Revision: D79460136

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159661
Approved by: https://github.com/ydwu4
2025-08-14 03:34:04 +00:00

516 lines
20 KiB
Python

# mypy: allow-untyped-defs
import inspect
import math
import operator
from collections.abc import Iterable
from typing import Any, final, TYPE_CHECKING
import torch
from torch._ops import HigherOrderOperator, OpOverload
from torch._subclasses.fake_tensor import FakeTensor
from torch.export.graph_signature import (
CustomObjArgument,
InputKind,
SymBoolArgument,
SymFloatArgument,
SymIntArgument,
TensorArgument,
TokenArgument,
)
from torch.fx import GraphModule
if TYPE_CHECKING:
from torch.export.exported_program import ExportedProgram
class SpecViolationError(Exception):
pass
def is_functional(op: OpOverload) -> bool:
return not op._schema.is_mutable
def _check_has_fake_tensor(node: torch.fx.Node) -> None:
# TODO(angelayi): remove this in favor of _check_val
return _check_val(node)
def _check_val(node: torch.fx.Node) -> None:
from torch.fx.experimental.symbolic_shapes import SymBool, SymFloat, SymInt
def _check_correct_val(val):
if val is None:
return True
elif isinstance(val, (int, bool, str, float)):
return True
elif isinstance(
val, (torch.memory_format, torch.dtype, torch.device, torch.layout)
):
return True
elif isinstance(
val, (FakeTensor, torch.Tensor)
): # TODO(zhxchen17) Remove Tensor.
return True
elif isinstance(val, (SymInt, SymFloat, SymBool)):
return True
elif isinstance(val, CustomObjArgument):
return True
elif isinstance(val, Iterable):
return all(_check_correct_val(x) for x in val)
return False
def _no_returns(op):
if not isinstance(op, OpOverload):
return False
return len(op._schema.returns) == 0
if "val" not in node.meta:
if node.op == "call_function" and _no_returns(node.target):
return
raise SpecViolationError(f"Node.meta {node.name} is missing val field.")
val = node.meta["val"]
if not _check_correct_val(val):
raise SpecViolationError(f"Node.meta {node.name} has invalid val field {val}")
def _check_torch_fn(node: torch.fx.Node) -> None:
torch_fn = node.meta.get("torch_fn")
if torch_fn is None:
raise SpecViolationError(
f"Unable to find torch_fn metadata for node {node.name}"
)
if (
not isinstance(torch_fn, tuple)
and isinstance(torch_fn[0], str)
and isinstance(torch_fn[1], str)
):
raise SpecViolationError(
f"Node.meta {node.name} has invalid torch_fn field {torch_fn}"
)
class _VerifierMeta(type):
_registry: dict[str, type["Verifier"]] = {}
def __new__(metacls, name, bases, attrs):
if bases:
if "check" in attrs or "_check_graph_module" in attrs:
raise SyntaxError("Overriding method check is not allowed.")
assert "dialect" in attrs and attrs["dialect"] != "ATEN"
else:
assert "check" in attrs
assert "_check_graph_module" in attrs
assert attrs["dialect"] == "ATEN"
assert isinstance(attrs["dialect"], str)
ret = type.__new__(metacls, name, bases, attrs)
metacls._registry[attrs["dialect"]] = ret # type: ignore[assignment]
return ret
def getattr_recursive(obj: Any, target: str) -> Any:
target_atoms = target.split(".")
attr_itr = obj
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr
class Verifier(metaclass=_VerifierMeta):
dialect = "ATEN"
def allowed_builtin_ops(self) -> list:
return [
operator.getitem,
operator.add,
operator.mul,
operator.sub,
operator.truediv,
operator.ge,
operator.le,
operator.gt,
operator.lt,
operator.eq,
operator.ne,
operator.floordiv,
operator.mod,
operator.and_,
operator.or_,
operator.not_,
operator.pow,
operator.neg,
operator.abs,
operator.lshift,
operator.rshift,
math.ceil,
math.floor,
math.trunc,
round,
]
def allowed_op_types(self) -> tuple[type[Any], ...]:
return (OpOverload, HigherOrderOperator)
def allowed_getattr_types(self) -> tuple[type[Any], ...]:
return (torch.fx.GraphModule, torch.utils._pytree.TreeSpec)
def allowed_getattr_types_for_subgm(self) -> tuple[type[Any], ...]:
# subgm in HOP's argument could has have getattr(weight) nodes, thus stateful
return (
torch.fx.GraphModule,
torch.nn.parameter.Parameter,
torch.Tensor, # for buffer and constant tensor
torch.utils._pytree.TreeSpec,
)
def check_valid_op(self, op):
pass
def check_additional(self, gm: GraphModule) -> None:
"""
Additional checks that are specific to some dialects.
"""
@final
def check(self, ep: "ExportedProgram") -> None:
self._check_graph_module(ep.graph_module)
_verify_exported_program_module_call_graph(ep)
_verify_exported_program_signature(ep)
@final
def _check_graph_module(self, gm: torch.fx.GraphModule) -> None:
def _allowed_getattr_types(is_toplevel_gm) -> tuple[type[Any], ...]:
if is_toplevel_gm:
ret = self.allowed_getattr_types()
else:
ret = self.allowed_getattr_types_for_subgm()
assert not any(t is object for t in ret)
return ret
def _check_valid_op(op) -> None:
def _allowed_builtin_ops() -> list:
ret = self.allowed_builtin_ops()
assert all(inspect.isbuiltin(op) for op in ret)
return ret
def _allowed_op_types() -> tuple[type[Any], ...]:
ret = self.allowed_op_types()
assert not any(t is object for t in ret)
return ret
# TODO Remove this allowlist.
_allowed_torch_functions = (
torch.autograd.grad_mode.set_grad_enabled,
torch.sym_int,
torch.sym_float,
torch.sym_ite,
torch.sym_max,
torch.sym_min,
torch.sym_not,
torch.sym_sqrt,
torch.sym_sum,
# TODO (tmanlaibaatar)
# Predispatch export is able to contain autograd ops.
# These will be modeled as HOO later
torch._C._set_grad_enabled,
torch.amp.autocast_mode._enter_autocast,
torch.amp.autocast_mode._exit_autocast,
torch.fx.experimental.symbolic_shapes.cast_symbool_to_symint_guardless,
)
if not isinstance(op, _allowed_op_types()):
if (
op not in _allowed_builtin_ops()
and op not in _allowed_torch_functions
):
raise SpecViolationError(
f"Operator '{op}' is not an allowed operator type: {_allowed_op_types()}\n"
f"Valid builtin ops: {_allowed_builtin_ops()}"
f"Valid torch functions: {_allowed_torch_functions}"
)
if isinstance(op, OpOverload):
# All ops functional
# TODO (tmanlaibaatar) more proper way is needed here
if self.dialect != "TRAINING" and not is_functional(op):
raise SpecViolationError(f"operator '{op}' is not functional")
self.check_valid_op(op)
for mod in gm.modules():
is_toplevel_gm = mod is gm
if not isinstance(mod, torch.fx.GraphModule):
continue
mod.graph.lint()
for node in mod.graph.nodes:
# TODO(T140410192): should have fake tensor for all dialects
if node.op in {"call_module", "call_method"}:
raise SpecViolationError(
f"call_module is not valid: got a class '{node.target}' ",
)
elif node.op == "call_function":
_check_val(node)
_check_valid_op(node.target)
elif node.op == "get_attr":
if not isinstance(node.target, str):
raise SpecViolationError(
f"Expected get_attr target to be string, but got {type(node.target)}"
)
attr = getattr_recursive(mod, node.target)
if isinstance(attr, torch.nn.Module):
def _is_type(name, ty):
return isinstance(getattr(attr, name, None), ty)
if type(attr).__name__ == "LoweredBackendModule":
if (
_is_type("backend_id", str)
and _is_type("processed_bytes", bytes)
and _is_type("compile_specs", list)
and hasattr(attr, "original_module")
):
continue
else:
backend_id = getattr(attr, "backend_id", None)
processed_bytes = getattr(attr, "processed_bytes", None)
compile_specs = getattr(attr, "compile_specs", None)
raise SpecViolationError(
f"Invalid get_attr type {type(attr)}. \n"
f"LoweredBackendModule fields: "
f"backend_id(str) : {type(backend_id)}, "
f"processed_bytes(bytes) : {type(processed_bytes)}, "
f"compile_specs(list) : {type(compile_specs)}"
)
elif type(attr).__name__ == "AOTInductorEPModule":
continue
elif type(attr).__name__ == "AOTInductorRunnerWrapper":
continue
if not isinstance(attr, _allowed_getattr_types(is_toplevel_gm)):
raise SpecViolationError(
f"Invalid get_attr type {type(attr)} on target {node.target}. \n"
f"Valid get_attr types: {_allowed_getattr_types(is_toplevel_gm)}"
)
elif node.op == "placeholder":
_check_val(node)
# TODO(zhxchen17)
# elif node.op == "output":
# _check_flattened_outputs()
self.check_additional(gm)
class TrainingIRVerifier(Verifier):
dialect = "TRAINING"
def _verify_exported_program_module_call_graph(exported_program) -> None:
module_call_graph = exported_program.module_call_graph
nodes = {node.name for node in exported_program.graph.nodes}
for entry in module_call_graph:
if entry.signature is not None:
for arg in entry.signature.inputs:
if arg.name and arg.name not in nodes:
raise SpecViolationError(
f"Input {arg.name} does not exist in the graph."
)
for arg in entry.signature.outputs:
if arg.name and arg.name not in nodes:
raise SpecViolationError(
f"Output {arg.name} does not exist in the graph."
)
def _verify_exported_program_signature(exported_program) -> None:
# Check ExportedProgram signature matches
gs = exported_program.graph_signature
# Check every node in the signature exists in the graph
input_node_names = [
node.name for node in exported_program.graph.nodes if node.op == "placeholder"
]
if len(input_node_names) != len(gs.input_specs):
raise SpecViolationError(
f"Number of graph inputs ({len(input_node_names)}) "
f"does not match number of inputs in the graph signature ({len(gs.input_specs)})"
)
for input_spec, node in zip(gs.input_specs, input_node_names):
if isinstance(
input_spec.arg,
(TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument),
):
if input_spec.arg.name != node:
raise SpecViolationError(
f"Input spec name {input_spec.arg.name} does not match node name {node}"
)
if input_spec.kind == InputKind.USER_INPUT:
continue
elif input_spec.kind == InputKind.PARAMETER:
if not isinstance(input_spec.arg, TensorArgument):
raise SpecViolationError(
f"Parameter {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
)
if input_spec.target is None:
raise SpecViolationError(
f"InputSpec for {input_spec.name} has no target."
)
param = input_spec.target
if param not in exported_program.state_dict:
raise SpecViolationError(f"Parameter {param} is not in the state dict.")
if not isinstance(exported_program.state_dict[param], torch.nn.Parameter):
raise SpecViolationError(
f"State dict entry for parameter {param} is not an instance of torch.nn.Parameter."
)
elif input_spec.kind == InputKind.BUFFER:
if not isinstance(input_spec.arg, TensorArgument):
raise SpecViolationError(
f"Buffer {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
)
if input_spec.target is None:
raise SpecViolationError(
f"InputSpec for {input_spec.name} has no target."
)
buffer = input_spec.target
if input_spec.persistent is None:
raise SpecViolationError(
f"Buffer {buffer} is missing a persistence flag"
)
if (
input_spec.persistent is True
and buffer not in exported_program.state_dict
):
raise SpecViolationError(f"Buffer {buffer} is not in the state dict.")
if input_spec.persistent is False and buffer in exported_program.state_dict:
raise SpecViolationError(
f"Non-persistent buffer {buffer} is in the state dict, it should not be."
)
elif input_spec.kind == InputKind.CONSTANT_TENSOR:
if not isinstance(input_spec.arg, TensorArgument):
raise SpecViolationError(
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
)
if input_spec.target is None:
raise SpecViolationError(
f"InputSpec for {input_spec.name} has no target."
)
tensor_const = input_spec.target
if tensor_const not in exported_program.constants:
raise SpecViolationError(
f"Constant tensor {tensor_const} is not in the constants dictionary."
)
elif input_spec.kind == InputKind.CUSTOM_OBJ:
if not isinstance(input_spec.arg, CustomObjArgument):
raise SpecViolationError(
f"Custom object {input_spec.name} is not a custom object argument. Found {input_spec.arg} instead."
)
if input_spec.target is None:
raise SpecViolationError(
f"InputSpec for {input_spec.name} has no target."
)
custom_obj = input_spec.target
if custom_obj not in exported_program.constants:
raise SpecViolationError(
f"Custom object {custom_obj} is not in the constants dictionary."
)
elif input_spec.kind == InputKind.TOKEN:
if not isinstance(input_spec.arg, TokenArgument):
raise SpecViolationError(
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
)
else:
raise SpecViolationError(f"Unknown InputKind {input_spec.kind}.")
# Check outputs
output_node = list(exported_program.graph.nodes)[-1]
assert output_node.op == "output"
output_nodes = [
arg.name if isinstance(arg, torch.fx.Node) else arg
for arg in output_node.args[0]
]
if len(output_nodes) != len(gs.output_specs):
raise SpecViolationError(
f"Number of output nodes {len(output_nodes)} is different "
"Than the number of outputs specified by the graph signature: \n"
f"Number of mutated buffers: {len(gs.buffers_to_mutate)}. \n"
f"Number of user outputs: {len(gs.user_outputs)}. \n"
)
num_tokens = len(gs.output_tokens)
end = (
len(gs.buffers_to_mutate)
+ len(gs.parameters_to_mutate)
+ len(gs.user_inputs_to_mutate)
+ num_tokens
)
mutate_nodes: list[str] = output_nodes[num_tokens:end]
user_output_nodes = output_nodes[end : end + len(gs.user_outputs)]
for mutation_node in mutate_nodes:
if mutation_node in gs.buffers_to_mutate:
if gs.buffers_to_mutate[mutation_node] not in gs.buffers:
raise SpecViolationError(
f"Buffer output {mutation_node} does not point to a buffer that exists. \n"
f"Dict of buffers that are mutated, in order: {gs.buffers_to_mutate} \n"
f"Buffer nodes available: {gs.buffers} \n"
)
elif mutation_node in gs.parameters_to_mutate:
if gs.parameters_to_mutate[mutation_node] not in gs.parameters:
raise SpecViolationError(
f"Parameter output {mutation_node} does not point to a parameter that exists. \n"
f"Dict of parameters that are mutated, in order: {gs.parameters_to_mutate} \n"
f"Parameter nodes available: {gs.parameters} \n"
)
elif mutation_node in gs.user_inputs_to_mutate:
if gs.user_inputs_to_mutate[mutation_node] not in gs.user_inputs:
raise SpecViolationError(
f"User input output {mutation_node} does not point to a user input that exists. \n"
f"Dict of user inputs that are mutated, in order: {gs.user_inputs_to_mutate} \n"
f"User input nodes available: {gs.user_inputs} \n"
)
else:
raise SpecViolationError(
f"Mutation node {mutation_node} is neither a buffer nor a user input. "
f"Buffers to mutate: {gs.buffers_to_mutate}, User inputs to mutate: {gs.user_inputs_to_mutate}"
)
for user_output_node, user_output_name in zip(user_output_nodes, gs.user_outputs):
if user_output_node != user_output_name:
raise SpecViolationError(
f"User output {user_output_node} is not in the correct "
"order or is not found in the "
f"exported program's user_output list: {gs.user_outputs}. "
)
def load_verifier(dialect: str) -> type[Verifier]:
if dialect == "ATEN" or dialect == "":
return _VerifierMeta._registry.get(dialect, Verifier)
return _VerifierMeta._registry[dialect]