mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: In HF model rwkv, we have parameter mutation under inference mode which should be safe. This PR does multiple things to make sure it works: 1. We execute global autograd mutation while tracing so that we can actually trace through parameter inplace mutation 2. Add support for parameter mutation under inference mode in AOTAutograd 3. Add support for parameter mutation under inference mode in export. Test Plan: test Rollback Plan: Differential Revision: D79460136 Pull Request resolved: https://github.com/pytorch/pytorch/pull/159661 Approved by: https://github.com/ydwu4
516 lines
20 KiB
Python
516 lines
20 KiB
Python
# mypy: allow-untyped-defs
|
|
import inspect
|
|
import math
|
|
import operator
|
|
from collections.abc import Iterable
|
|
from typing import Any, final, TYPE_CHECKING
|
|
|
|
import torch
|
|
from torch._ops import HigherOrderOperator, OpOverload
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch.export.graph_signature import (
|
|
CustomObjArgument,
|
|
InputKind,
|
|
SymBoolArgument,
|
|
SymFloatArgument,
|
|
SymIntArgument,
|
|
TensorArgument,
|
|
TokenArgument,
|
|
)
|
|
from torch.fx import GraphModule
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch.export.exported_program import ExportedProgram
|
|
|
|
|
|
class SpecViolationError(Exception):
|
|
pass
|
|
|
|
|
|
def is_functional(op: OpOverload) -> bool:
|
|
return not op._schema.is_mutable
|
|
|
|
|
|
def _check_has_fake_tensor(node: torch.fx.Node) -> None:
|
|
# TODO(angelayi): remove this in favor of _check_val
|
|
return _check_val(node)
|
|
|
|
|
|
def _check_val(node: torch.fx.Node) -> None:
|
|
from torch.fx.experimental.symbolic_shapes import SymBool, SymFloat, SymInt
|
|
|
|
def _check_correct_val(val):
|
|
if val is None:
|
|
return True
|
|
elif isinstance(val, (int, bool, str, float)):
|
|
return True
|
|
elif isinstance(
|
|
val, (torch.memory_format, torch.dtype, torch.device, torch.layout)
|
|
):
|
|
return True
|
|
elif isinstance(
|
|
val, (FakeTensor, torch.Tensor)
|
|
): # TODO(zhxchen17) Remove Tensor.
|
|
return True
|
|
elif isinstance(val, (SymInt, SymFloat, SymBool)):
|
|
return True
|
|
elif isinstance(val, CustomObjArgument):
|
|
return True
|
|
elif isinstance(val, Iterable):
|
|
return all(_check_correct_val(x) for x in val)
|
|
return False
|
|
|
|
def _no_returns(op):
|
|
if not isinstance(op, OpOverload):
|
|
return False
|
|
return len(op._schema.returns) == 0
|
|
|
|
if "val" not in node.meta:
|
|
if node.op == "call_function" and _no_returns(node.target):
|
|
return
|
|
raise SpecViolationError(f"Node.meta {node.name} is missing val field.")
|
|
|
|
val = node.meta["val"]
|
|
if not _check_correct_val(val):
|
|
raise SpecViolationError(f"Node.meta {node.name} has invalid val field {val}")
|
|
|
|
|
|
def _check_torch_fn(node: torch.fx.Node) -> None:
|
|
torch_fn = node.meta.get("torch_fn")
|
|
if torch_fn is None:
|
|
raise SpecViolationError(
|
|
f"Unable to find torch_fn metadata for node {node.name}"
|
|
)
|
|
if (
|
|
not isinstance(torch_fn, tuple)
|
|
and isinstance(torch_fn[0], str)
|
|
and isinstance(torch_fn[1], str)
|
|
):
|
|
raise SpecViolationError(
|
|
f"Node.meta {node.name} has invalid torch_fn field {torch_fn}"
|
|
)
|
|
|
|
|
|
class _VerifierMeta(type):
|
|
_registry: dict[str, type["Verifier"]] = {}
|
|
|
|
def __new__(metacls, name, bases, attrs):
|
|
if bases:
|
|
if "check" in attrs or "_check_graph_module" in attrs:
|
|
raise SyntaxError("Overriding method check is not allowed.")
|
|
assert "dialect" in attrs and attrs["dialect"] != "ATEN"
|
|
else:
|
|
assert "check" in attrs
|
|
assert "_check_graph_module" in attrs
|
|
assert attrs["dialect"] == "ATEN"
|
|
|
|
assert isinstance(attrs["dialect"], str)
|
|
ret = type.__new__(metacls, name, bases, attrs)
|
|
metacls._registry[attrs["dialect"]] = ret # type: ignore[assignment]
|
|
return ret
|
|
|
|
|
|
def getattr_recursive(obj: Any, target: str) -> Any:
|
|
target_atoms = target.split(".")
|
|
attr_itr = obj
|
|
for i, atom in enumerate(target_atoms):
|
|
if not hasattr(attr_itr, atom):
|
|
raise RuntimeError(
|
|
f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}"
|
|
)
|
|
attr_itr = getattr(attr_itr, atom)
|
|
return attr_itr
|
|
|
|
|
|
class Verifier(metaclass=_VerifierMeta):
|
|
dialect = "ATEN"
|
|
|
|
def allowed_builtin_ops(self) -> list:
|
|
return [
|
|
operator.getitem,
|
|
operator.add,
|
|
operator.mul,
|
|
operator.sub,
|
|
operator.truediv,
|
|
operator.ge,
|
|
operator.le,
|
|
operator.gt,
|
|
operator.lt,
|
|
operator.eq,
|
|
operator.ne,
|
|
operator.floordiv,
|
|
operator.mod,
|
|
operator.and_,
|
|
operator.or_,
|
|
operator.not_,
|
|
operator.pow,
|
|
operator.neg,
|
|
operator.abs,
|
|
operator.lshift,
|
|
operator.rshift,
|
|
math.ceil,
|
|
math.floor,
|
|
math.trunc,
|
|
round,
|
|
]
|
|
|
|
def allowed_op_types(self) -> tuple[type[Any], ...]:
|
|
return (OpOverload, HigherOrderOperator)
|
|
|
|
def allowed_getattr_types(self) -> tuple[type[Any], ...]:
|
|
return (torch.fx.GraphModule, torch.utils._pytree.TreeSpec)
|
|
|
|
def allowed_getattr_types_for_subgm(self) -> tuple[type[Any], ...]:
|
|
# subgm in HOP's argument could has have getattr(weight) nodes, thus stateful
|
|
return (
|
|
torch.fx.GraphModule,
|
|
torch.nn.parameter.Parameter,
|
|
torch.Tensor, # for buffer and constant tensor
|
|
torch.utils._pytree.TreeSpec,
|
|
)
|
|
|
|
def check_valid_op(self, op):
|
|
pass
|
|
|
|
def check_additional(self, gm: GraphModule) -> None:
|
|
"""
|
|
Additional checks that are specific to some dialects.
|
|
"""
|
|
|
|
@final
|
|
def check(self, ep: "ExportedProgram") -> None:
|
|
self._check_graph_module(ep.graph_module)
|
|
_verify_exported_program_module_call_graph(ep)
|
|
_verify_exported_program_signature(ep)
|
|
|
|
@final
|
|
def _check_graph_module(self, gm: torch.fx.GraphModule) -> None:
|
|
def _allowed_getattr_types(is_toplevel_gm) -> tuple[type[Any], ...]:
|
|
if is_toplevel_gm:
|
|
ret = self.allowed_getattr_types()
|
|
else:
|
|
ret = self.allowed_getattr_types_for_subgm()
|
|
assert not any(t is object for t in ret)
|
|
return ret
|
|
|
|
def _check_valid_op(op) -> None:
|
|
def _allowed_builtin_ops() -> list:
|
|
ret = self.allowed_builtin_ops()
|
|
assert all(inspect.isbuiltin(op) for op in ret)
|
|
return ret
|
|
|
|
def _allowed_op_types() -> tuple[type[Any], ...]:
|
|
ret = self.allowed_op_types()
|
|
assert not any(t is object for t in ret)
|
|
return ret
|
|
|
|
# TODO Remove this allowlist.
|
|
_allowed_torch_functions = (
|
|
torch.autograd.grad_mode.set_grad_enabled,
|
|
torch.sym_int,
|
|
torch.sym_float,
|
|
torch.sym_ite,
|
|
torch.sym_max,
|
|
torch.sym_min,
|
|
torch.sym_not,
|
|
torch.sym_sqrt,
|
|
torch.sym_sum,
|
|
# TODO (tmanlaibaatar)
|
|
# Predispatch export is able to contain autograd ops.
|
|
# These will be modeled as HOO later
|
|
torch._C._set_grad_enabled,
|
|
torch.amp.autocast_mode._enter_autocast,
|
|
torch.amp.autocast_mode._exit_autocast,
|
|
torch.fx.experimental.symbolic_shapes.cast_symbool_to_symint_guardless,
|
|
)
|
|
|
|
if not isinstance(op, _allowed_op_types()):
|
|
if (
|
|
op not in _allowed_builtin_ops()
|
|
and op not in _allowed_torch_functions
|
|
):
|
|
raise SpecViolationError(
|
|
f"Operator '{op}' is not an allowed operator type: {_allowed_op_types()}\n"
|
|
f"Valid builtin ops: {_allowed_builtin_ops()}"
|
|
f"Valid torch functions: {_allowed_torch_functions}"
|
|
)
|
|
|
|
if isinstance(op, OpOverload):
|
|
# All ops functional
|
|
# TODO (tmanlaibaatar) more proper way is needed here
|
|
if self.dialect != "TRAINING" and not is_functional(op):
|
|
raise SpecViolationError(f"operator '{op}' is not functional")
|
|
self.check_valid_op(op)
|
|
|
|
for mod in gm.modules():
|
|
is_toplevel_gm = mod is gm
|
|
|
|
if not isinstance(mod, torch.fx.GraphModule):
|
|
continue
|
|
|
|
mod.graph.lint()
|
|
for node in mod.graph.nodes:
|
|
# TODO(T140410192): should have fake tensor for all dialects
|
|
if node.op in {"call_module", "call_method"}:
|
|
raise SpecViolationError(
|
|
f"call_module is not valid: got a class '{node.target}' ",
|
|
)
|
|
|
|
elif node.op == "call_function":
|
|
_check_val(node)
|
|
|
|
_check_valid_op(node.target)
|
|
|
|
elif node.op == "get_attr":
|
|
if not isinstance(node.target, str):
|
|
raise SpecViolationError(
|
|
f"Expected get_attr target to be string, but got {type(node.target)}"
|
|
)
|
|
|
|
attr = getattr_recursive(mod, node.target)
|
|
if isinstance(attr, torch.nn.Module):
|
|
|
|
def _is_type(name, ty):
|
|
return isinstance(getattr(attr, name, None), ty)
|
|
|
|
if type(attr).__name__ == "LoweredBackendModule":
|
|
if (
|
|
_is_type("backend_id", str)
|
|
and _is_type("processed_bytes", bytes)
|
|
and _is_type("compile_specs", list)
|
|
and hasattr(attr, "original_module")
|
|
):
|
|
continue
|
|
else:
|
|
backend_id = getattr(attr, "backend_id", None)
|
|
processed_bytes = getattr(attr, "processed_bytes", None)
|
|
compile_specs = getattr(attr, "compile_specs", None)
|
|
raise SpecViolationError(
|
|
f"Invalid get_attr type {type(attr)}. \n"
|
|
f"LoweredBackendModule fields: "
|
|
f"backend_id(str) : {type(backend_id)}, "
|
|
f"processed_bytes(bytes) : {type(processed_bytes)}, "
|
|
f"compile_specs(list) : {type(compile_specs)}"
|
|
)
|
|
elif type(attr).__name__ == "AOTInductorEPModule":
|
|
continue
|
|
|
|
elif type(attr).__name__ == "AOTInductorRunnerWrapper":
|
|
continue
|
|
|
|
if not isinstance(attr, _allowed_getattr_types(is_toplevel_gm)):
|
|
raise SpecViolationError(
|
|
f"Invalid get_attr type {type(attr)} on target {node.target}. \n"
|
|
f"Valid get_attr types: {_allowed_getattr_types(is_toplevel_gm)}"
|
|
)
|
|
|
|
elif node.op == "placeholder":
|
|
_check_val(node)
|
|
# TODO(zhxchen17)
|
|
# elif node.op == "output":
|
|
# _check_flattened_outputs()
|
|
|
|
self.check_additional(gm)
|
|
|
|
|
|
class TrainingIRVerifier(Verifier):
|
|
dialect = "TRAINING"
|
|
|
|
|
|
def _verify_exported_program_module_call_graph(exported_program) -> None:
|
|
module_call_graph = exported_program.module_call_graph
|
|
nodes = {node.name for node in exported_program.graph.nodes}
|
|
for entry in module_call_graph:
|
|
if entry.signature is not None:
|
|
for arg in entry.signature.inputs:
|
|
if arg.name and arg.name not in nodes:
|
|
raise SpecViolationError(
|
|
f"Input {arg.name} does not exist in the graph."
|
|
)
|
|
for arg in entry.signature.outputs:
|
|
if arg.name and arg.name not in nodes:
|
|
raise SpecViolationError(
|
|
f"Output {arg.name} does not exist in the graph."
|
|
)
|
|
|
|
|
|
def _verify_exported_program_signature(exported_program) -> None:
|
|
# Check ExportedProgram signature matches
|
|
gs = exported_program.graph_signature
|
|
|
|
# Check every node in the signature exists in the graph
|
|
input_node_names = [
|
|
node.name for node in exported_program.graph.nodes if node.op == "placeholder"
|
|
]
|
|
|
|
if len(input_node_names) != len(gs.input_specs):
|
|
raise SpecViolationError(
|
|
f"Number of graph inputs ({len(input_node_names)}) "
|
|
f"does not match number of inputs in the graph signature ({len(gs.input_specs)})"
|
|
)
|
|
|
|
for input_spec, node in zip(gs.input_specs, input_node_names):
|
|
if isinstance(
|
|
input_spec.arg,
|
|
(TensorArgument, SymIntArgument, SymFloatArgument, SymBoolArgument),
|
|
):
|
|
if input_spec.arg.name != node:
|
|
raise SpecViolationError(
|
|
f"Input spec name {input_spec.arg.name} does not match node name {node}"
|
|
)
|
|
|
|
if input_spec.kind == InputKind.USER_INPUT:
|
|
continue
|
|
|
|
elif input_spec.kind == InputKind.PARAMETER:
|
|
if not isinstance(input_spec.arg, TensorArgument):
|
|
raise SpecViolationError(
|
|
f"Parameter {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
|
|
)
|
|
if input_spec.target is None:
|
|
raise SpecViolationError(
|
|
f"InputSpec for {input_spec.name} has no target."
|
|
)
|
|
|
|
param = input_spec.target
|
|
if param not in exported_program.state_dict:
|
|
raise SpecViolationError(f"Parameter {param} is not in the state dict.")
|
|
|
|
if not isinstance(exported_program.state_dict[param], torch.nn.Parameter):
|
|
raise SpecViolationError(
|
|
f"State dict entry for parameter {param} is not an instance of torch.nn.Parameter."
|
|
)
|
|
|
|
elif input_spec.kind == InputKind.BUFFER:
|
|
if not isinstance(input_spec.arg, TensorArgument):
|
|
raise SpecViolationError(
|
|
f"Buffer {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
|
|
)
|
|
if input_spec.target is None:
|
|
raise SpecViolationError(
|
|
f"InputSpec for {input_spec.name} has no target."
|
|
)
|
|
|
|
buffer = input_spec.target
|
|
if input_spec.persistent is None:
|
|
raise SpecViolationError(
|
|
f"Buffer {buffer} is missing a persistence flag"
|
|
)
|
|
|
|
if (
|
|
input_spec.persistent is True
|
|
and buffer not in exported_program.state_dict
|
|
):
|
|
raise SpecViolationError(f"Buffer {buffer} is not in the state dict.")
|
|
|
|
if input_spec.persistent is False and buffer in exported_program.state_dict:
|
|
raise SpecViolationError(
|
|
f"Non-persistent buffer {buffer} is in the state dict, it should not be."
|
|
)
|
|
elif input_spec.kind == InputKind.CONSTANT_TENSOR:
|
|
if not isinstance(input_spec.arg, TensorArgument):
|
|
raise SpecViolationError(
|
|
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
|
|
)
|
|
if input_spec.target is None:
|
|
raise SpecViolationError(
|
|
f"InputSpec for {input_spec.name} has no target."
|
|
)
|
|
|
|
tensor_const = input_spec.target
|
|
if tensor_const not in exported_program.constants:
|
|
raise SpecViolationError(
|
|
f"Constant tensor {tensor_const} is not in the constants dictionary."
|
|
)
|
|
elif input_spec.kind == InputKind.CUSTOM_OBJ:
|
|
if not isinstance(input_spec.arg, CustomObjArgument):
|
|
raise SpecViolationError(
|
|
f"Custom object {input_spec.name} is not a custom object argument. Found {input_spec.arg} instead."
|
|
)
|
|
if input_spec.target is None:
|
|
raise SpecViolationError(
|
|
f"InputSpec for {input_spec.name} has no target."
|
|
)
|
|
|
|
custom_obj = input_spec.target
|
|
if custom_obj not in exported_program.constants:
|
|
raise SpecViolationError(
|
|
f"Custom object {custom_obj} is not in the constants dictionary."
|
|
)
|
|
elif input_spec.kind == InputKind.TOKEN:
|
|
if not isinstance(input_spec.arg, TokenArgument):
|
|
raise SpecViolationError(
|
|
f"Constant tensor {input_spec.name} is not a tensor argument. Found {input_spec.arg} instead."
|
|
)
|
|
else:
|
|
raise SpecViolationError(f"Unknown InputKind {input_spec.kind}.")
|
|
|
|
# Check outputs
|
|
output_node = list(exported_program.graph.nodes)[-1]
|
|
assert output_node.op == "output"
|
|
output_nodes = [
|
|
arg.name if isinstance(arg, torch.fx.Node) else arg
|
|
for arg in output_node.args[0]
|
|
]
|
|
|
|
if len(output_nodes) != len(gs.output_specs):
|
|
raise SpecViolationError(
|
|
f"Number of output nodes {len(output_nodes)} is different "
|
|
"Than the number of outputs specified by the graph signature: \n"
|
|
f"Number of mutated buffers: {len(gs.buffers_to_mutate)}. \n"
|
|
f"Number of user outputs: {len(gs.user_outputs)}. \n"
|
|
)
|
|
|
|
num_tokens = len(gs.output_tokens)
|
|
end = (
|
|
len(gs.buffers_to_mutate)
|
|
+ len(gs.parameters_to_mutate)
|
|
+ len(gs.user_inputs_to_mutate)
|
|
+ num_tokens
|
|
)
|
|
mutate_nodes: list[str] = output_nodes[num_tokens:end]
|
|
user_output_nodes = output_nodes[end : end + len(gs.user_outputs)]
|
|
|
|
for mutation_node in mutate_nodes:
|
|
if mutation_node in gs.buffers_to_mutate:
|
|
if gs.buffers_to_mutate[mutation_node] not in gs.buffers:
|
|
raise SpecViolationError(
|
|
f"Buffer output {mutation_node} does not point to a buffer that exists. \n"
|
|
f"Dict of buffers that are mutated, in order: {gs.buffers_to_mutate} \n"
|
|
f"Buffer nodes available: {gs.buffers} \n"
|
|
)
|
|
elif mutation_node in gs.parameters_to_mutate:
|
|
if gs.parameters_to_mutate[mutation_node] not in gs.parameters:
|
|
raise SpecViolationError(
|
|
f"Parameter output {mutation_node} does not point to a parameter that exists. \n"
|
|
f"Dict of parameters that are mutated, in order: {gs.parameters_to_mutate} \n"
|
|
f"Parameter nodes available: {gs.parameters} \n"
|
|
)
|
|
elif mutation_node in gs.user_inputs_to_mutate:
|
|
if gs.user_inputs_to_mutate[mutation_node] not in gs.user_inputs:
|
|
raise SpecViolationError(
|
|
f"User input output {mutation_node} does not point to a user input that exists. \n"
|
|
f"Dict of user inputs that are mutated, in order: {gs.user_inputs_to_mutate} \n"
|
|
f"User input nodes available: {gs.user_inputs} \n"
|
|
)
|
|
else:
|
|
raise SpecViolationError(
|
|
f"Mutation node {mutation_node} is neither a buffer nor a user input. "
|
|
f"Buffers to mutate: {gs.buffers_to_mutate}, User inputs to mutate: {gs.user_inputs_to_mutate}"
|
|
)
|
|
|
|
for user_output_node, user_output_name in zip(user_output_nodes, gs.user_outputs):
|
|
if user_output_node != user_output_name:
|
|
raise SpecViolationError(
|
|
f"User output {user_output_node} is not in the correct "
|
|
"order or is not found in the "
|
|
f"exported program's user_output list: {gs.user_outputs}. "
|
|
)
|
|
|
|
|
|
def load_verifier(dialect: str) -> type[Verifier]:
|
|
if dialect == "ATEN" or dialect == "":
|
|
return _VerifierMeta._registry.get(dialect, Verifier)
|
|
return _VerifierMeta._registry[dialect]
|