mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Purely a refactor, improve typing and get rid of some type errors. Make certain fields as nonnull, since in general it's not empty. The goal of this stack of PRs is to move the save/load logic of guard serialization into separate, flat phases, instead of being embedded in guard creation. This way, we can put a try/catch around it and fail safely if certain guards are not serializable. Pull Request resolved: https://github.com/pytorch/pytorch/pull/160530 Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
3273 lines
137 KiB
Python
3273 lines
137 KiB
Python
"""
|
|
Core graph building functionality for PyTorch's Dynamo system. This module contains
|
|
the essential components for constructing and managing FX graphs during compilation:
|
|
|
|
- OutputGraph: Manages the overall graph construction and compilation process. It owns
|
|
a SubgraphTracer and handles graph compilation, execution, and state management.
|
|
OutputGraph also manages features like graph deduplication, symbolic shape handling,
|
|
and tracking of side effects.
|
|
|
|
- SubgraphTracer: Handles the actual FX graph construction by tracing Python code.
|
|
It supports advanced features like higher-order operators through nested tracers,
|
|
lifting of free variables, and handling of symbolic shapes.
|
|
|
|
The module supports key Dynamo features including:
|
|
- Higher-order operators through nested SubgraphTracers
|
|
- Graph deduplication for optimization
|
|
- Symbolic shape handling and propagation
|
|
- Side effect tracking and management
|
|
- Guard insertion and management
|
|
"""
|
|
|
|
import collections
|
|
import contextlib
|
|
import copy
|
|
import functools
|
|
import inspect
|
|
import itertools
|
|
import logging
|
|
import operator
|
|
import re
|
|
import sys
|
|
import traceback
|
|
import warnings
|
|
import weakref
|
|
from collections.abc import Generator, Sequence
|
|
from dataclasses import dataclass, field as dc_field
|
|
from types import CodeType
|
|
from typing import Any, Callable, cast, Optional, TYPE_CHECKING, Union
|
|
from typing_extensions import ParamSpec, TypeVar
|
|
|
|
import sympy
|
|
|
|
import torch._guards
|
|
import torch._logging
|
|
import torch.distributed as dist
|
|
import torch.nn
|
|
import torch.utils._pytree as pytree
|
|
from torch import fx, Tensor
|
|
from torch._C._dynamo import guards
|
|
from torch._dynamo.exc import ShortenTraceback, TensorifyScalarRestartAnalysis
|
|
from torch._guards import (
|
|
CompileContext,
|
|
CompileId,
|
|
GlobalContextCheckpointState,
|
|
Source,
|
|
tracing,
|
|
TracingContext,
|
|
)
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch._utils_internal import signpost_event
|
|
from torch.export.dynamic_shapes import _ConstraintTarget
|
|
from torch.fx._lazy_graph_module import _make_graph_module # type: ignore[attr-defined]
|
|
from torch.fx.experimental._backward_state import BackwardState
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
free_symbols,
|
|
guard_scalar,
|
|
is_symbolic,
|
|
ShapeEnv,
|
|
Specialization,
|
|
)
|
|
from torch.fx.node import Target
|
|
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
|
|
from torch.multiprocessing.reductions import StorageWeakRef
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
|
|
|
from . import config, exc, logging as torchdynamo_logging, variables
|
|
from .backends.registry import CompiledFn, CompilerFn
|
|
from .bytecode_transformation import (
|
|
create_call_function,
|
|
create_instruction,
|
|
create_load_const,
|
|
Instruction,
|
|
unique_id,
|
|
)
|
|
from .code_context import code_context
|
|
from .codegen import PyCodegen
|
|
from .current_scope_id import enter_new_scope
|
|
from .device_interface import get_interface_for_device
|
|
from .exc import (
|
|
BackendCompilerFailed,
|
|
exceptions_allowed_to_be_fallback,
|
|
SkipFrame,
|
|
unimplemented_v2,
|
|
unimplemented_v2_with_warning,
|
|
)
|
|
from .graph_deduplication import apply_graph_deduplication
|
|
from .graph_region_tracker import GraphRegionTracker
|
|
from .guards import GuardBuilder, install_guard
|
|
from .mutation_guard import is_dynamic_nn_module
|
|
from .side_effects import AttributeMutationExisting, SideEffects, ValueMutationExisting
|
|
from .source import (
|
|
_get_source_debug_name,
|
|
AttrSource,
|
|
BackwardStateSource,
|
|
ConstantSource,
|
|
GetItemSource,
|
|
GlobalStateSource,
|
|
is_constant_source,
|
|
is_from_local_source,
|
|
LocalSource,
|
|
NumpyTensorSource,
|
|
ParamBufferSource,
|
|
ShapeEnvSource,
|
|
SyntheticLocalSource,
|
|
TensorProperty,
|
|
TensorPropertySource,
|
|
)
|
|
from .utils import (
|
|
_extract_tensor_dict,
|
|
checkpoint_params,
|
|
CleanupHook,
|
|
clone_inputs,
|
|
count_calls,
|
|
counters,
|
|
dynamo_timed,
|
|
get_instruction_source_311,
|
|
get_locals_to_steal,
|
|
get_static_address_type,
|
|
get_unique_name_wrt,
|
|
graph_break_reasons,
|
|
increment_op_count,
|
|
istype,
|
|
lazy_format_graph_code,
|
|
LazyString,
|
|
nn_module_proxy,
|
|
same,
|
|
set_example_value,
|
|
)
|
|
from .variables.base import VariableTracker
|
|
from .variables.builder import (
|
|
BackwardStateGraphArg,
|
|
GraphArg,
|
|
TrackedFake,
|
|
wrap_fx_proxy,
|
|
)
|
|
from .variables.ctx_manager import ContextWrappingVariable
|
|
from .variables.lists import BaseListVariable
|
|
from .variables.misc import CellVariable, NullVariable
|
|
from .variables.nn_module import NNModuleVariable
|
|
from .variables.tensor import (
|
|
NumpyNdarrayVariable,
|
|
SymNodeVariable,
|
|
TensorVariable,
|
|
UnspecializedPythonVariable,
|
|
)
|
|
from .variables.torch_function import TensorWithTFOverrideVariable
|
|
from .variables.user_defined import UserDefinedDictVariable
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.package import CompilePackage
|
|
from torch._dynamo.symbolic_convert import InstructionTranslatorBase
|
|
|
|
log = logging.getLogger(__name__)
|
|
graph_tabular_log = torch._logging.getArtifactLogger(__name__, "graph")
|
|
graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code")
|
|
graph_sizes_log = torch._logging.getArtifactLogger(__name__, "graph_sizes")
|
|
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")
|
|
|
|
RootGuardManager = guards.RootGuardManager
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class VariableTrackerCacheKey:
|
|
vt_id: int
|
|
# Two different source can point to the same object. However, Dynamo handles
|
|
# globals and local source differently when it comes to guards and possibly
|
|
# some other parts as well. So, cache also relies on the source.
|
|
source: Source
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class AliasingInfo:
|
|
has_aliasing: bool
|
|
msg: str
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class MutationInfo:
|
|
has_mutation: bool
|
|
msg: str
|
|
|
|
|
|
class VariableTrackerCache:
|
|
def __init__(self) -> None:
|
|
self.cache: dict[VariableTrackerCacheKey, VariableTracker] = {}
|
|
|
|
def lookup(self, value: Any, source: Source) -> Optional[VariableTracker]:
|
|
key = VariableTrackerCacheKey(id(value), source)
|
|
if key not in self.cache:
|
|
return None
|
|
return self.cache[key]
|
|
|
|
def add(self, value: Any, source: Source, vt: VariableTracker) -> None:
|
|
key = VariableTrackerCacheKey(id(value), source)
|
|
self.cache[key] = vt
|
|
|
|
def clone(self) -> "VariableTrackerCache":
|
|
# Needed for copy and restore graph state
|
|
new_cache = VariableTrackerCache()
|
|
new_cache.cache.update(self.cache)
|
|
return new_cache
|
|
|
|
def clear(self) -> None:
|
|
self.cache.clear()
|
|
|
|
|
|
@functools.cache
|
|
def _step_logger() -> Any:
|
|
return torchdynamo_logging.get_step_logger(log)
|
|
|
|
|
|
@dataclass
|
|
class GraphCompileReason:
|
|
"""Stores why a given output graph was compiled; i.e. what caused the graph break."""
|
|
|
|
reason: str
|
|
user_stack: list[traceback.FrameSummary]
|
|
|
|
# Indicates if this was a graph break reason due to graph break.
|
|
graph_break: bool = True
|
|
|
|
def __post_init__(self) -> None:
|
|
if self.graph_break:
|
|
graph_break_reasons.append(self)
|
|
|
|
|
|
def _get_gen_rand_values_fn(random_calls: Any) -> Callable[[], list[Any]]:
|
|
def _gen_rand_values() -> list[Any]:
|
|
return [fn(*args, **kwargs) for fn, args, kwargs in random_calls]
|
|
|
|
return _gen_rand_values
|
|
|
|
|
|
class FakeRootModule(torch.nn.Module):
|
|
"""Trick the constructor of fx.GraphModule"""
|
|
|
|
def __init__(self, nn_modules: dict[str, torch.nn.Module]):
|
|
super().__init__()
|
|
for k, v in nn_modules.items():
|
|
setattr(self, k, v)
|
|
|
|
def __repr__(self) -> str:
|
|
return "FakeRootModule(...)"
|
|
|
|
def add_nn_modules(self, nn_modules: dict[str, torch.nn.Module]) -> None:
|
|
for k, v in nn_modules.items():
|
|
setattr(self, k, v)
|
|
|
|
|
|
class WrapperBackend:
|
|
def __init__(self, backend: CompilerFn) -> None:
|
|
self.backend: CompilerFn = backend
|
|
|
|
def __call__(
|
|
self, gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
|
|
) -> CompiledFn:
|
|
self.restore = checkpoint_params(gm)
|
|
self.gm = gm
|
|
copy_gm = copy.deepcopy(self.gm)
|
|
self.candidate = self.backend(copy_gm, example_inputs)
|
|
|
|
if self.candidate is None or self.candidate is self.gm.forward:
|
|
return self.gm.forward
|
|
|
|
if not config.verify_correctness:
|
|
return self.candidate
|
|
|
|
# if verify_correctness=True
|
|
try:
|
|
correct = self.gm.forward(*clone_inputs(example_inputs))
|
|
result = self.candidate(*clone_inputs(example_inputs))
|
|
|
|
# TODO: replace `same` function with the one in testing
|
|
if same(correct, result):
|
|
return self.candidate
|
|
|
|
raise RuntimeError(f"incorrect results of backend {self}")
|
|
|
|
except Exception:
|
|
log.exception("error in verify_correctness")
|
|
raise
|
|
finally:
|
|
self.restore()
|
|
|
|
|
|
Scope = dict[str, object]
|
|
|
|
|
|
@dataclass
|
|
class OutputGraphGuardsState:
|
|
"""
|
|
A base class containing fields that are considered "persistent" when we
|
|
want to save all the important state for reconstrucing guards in a different
|
|
process. Normally we don't need to add states here, but we may have to when
|
|
the information is needed to serialize the guards, so the fields here are
|
|
supposed to be serializable as a requirement.
|
|
"""
|
|
|
|
local_scope: Scope
|
|
global_scope: Scope
|
|
# This records the initial torch function mode stack for guarding
|
|
torch_function_mode_stack: list[torch.overrides.TorchFunctionMode]
|
|
guard_on_key_order: set[Source]
|
|
# Map from graph input's `Source` to sizes / strides metadata
|
|
input_source_to_sizes_strides: dict[Source, dict[str, Any]]
|
|
dual_level: int
|
|
functorch_layers: list[torch._functorch.pyfunctorch.FuncTorchInterpreter]
|
|
current_device: Optional[torch.device]
|
|
global_state_guard: torch._C._dynamo.guards.GlobalStateGuard
|
|
_guards: torch._guards.GuardsSet
|
|
_aotautograd_guards: list[torch._guards.GuardEnvExpr]
|
|
|
|
export: bool = False
|
|
export_constraints: bool = False
|
|
name_of_builtins_dict_key_in_fglobals: Optional[str] = None
|
|
|
|
@property
|
|
def shape_env(self) -> ShapeEnv:
|
|
raise AssertionError(f"shape_env shouldn't be accessed from {type(self)}")
|
|
|
|
@property
|
|
def guards(self) -> torch._guards.GuardsSet:
|
|
return self._guards
|
|
|
|
@property
|
|
def aotautograd_guards(self) -> list[torch._guards.GuardEnvExpr]:
|
|
return self._aotautograd_guards
|
|
|
|
|
|
@dataclass
|
|
class StackLocalsMetadata:
|
|
"""
|
|
Stores metadata for a frame's stack and locals for the purposes of building resume functions
|
|
"""
|
|
|
|
stack_null_idxes: list[int] = dc_field(default_factory=list)
|
|
locals_null_keys: list[str] = dc_field(default_factory=list)
|
|
stack_ctx_args: list[tuple[int, tuple[Any, ...]]] = dc_field(default_factory=list)
|
|
stack_ctx_idxes_orig: list[int] = dc_field(default_factory=list)
|
|
locals_ctx_args: list[tuple[str, tuple[Any, ...]]] = dc_field(default_factory=list)
|
|
|
|
|
|
def get_builtins_dict(global_scope: Scope) -> dict[str, Any]:
|
|
# f_globals["__builtins__"] can be a dict or a module. This is an
|
|
# implementation detail -
|
|
# https://docs.python.org/3/library/builtins.html.
|
|
|
|
# This makes guarding on any builtin messy because the guard check_fn
|
|
# has to check if the __builtins__ is a module or dict, and then access
|
|
# by either using getattr or getitem respectively.
|
|
|
|
# To solve this problem, we insert a new entry in f_globals which points
|
|
# to the builtins __dict__ and then we guard any builtin on this dict.
|
|
# To avoid any collision with the pre-existing keys, we use the
|
|
# install_global to give us a unique dict key.
|
|
|
|
f_builtins = global_scope["__builtins__"]
|
|
if not isinstance(f_builtins, dict):
|
|
f_builtins = f_builtins.__dict__
|
|
return f_builtins
|
|
|
|
|
|
class OutputGraph(OutputGraphGuardsState):
|
|
"""
|
|
Wrapper class to hold outputs of InstructionTranslator. Mainly the
|
|
generated fx.Graph.
|
|
|
|
OutputGraph is 1:1 with a frame being processed. Each frame is associated
|
|
with some root InstructionTranslator. When user code calls a function,
|
|
we construct a InliningInstructionTranslator that continues to write into
|
|
the root InstructionTranslator's OutputGraph.
|
|
"""
|
|
|
|
side_effects: SideEffects
|
|
|
|
def __init__(
|
|
self,
|
|
code_options: dict[str, Any],
|
|
compiler_fn: Optional[CompilerFn],
|
|
root_tx: "InstructionTranslatorBase",
|
|
export: bool,
|
|
export_constraints: Sequence[_ConstraintTarget],
|
|
frame_state: Any,
|
|
local_scope: Scope,
|
|
global_scope: Scope,
|
|
f_code: CodeType,
|
|
torch_function_mode_stack: list[torch.overrides.TorchFunctionMode],
|
|
package: Optional["CompilePackage"],
|
|
) -> None:
|
|
super().__init__(
|
|
local_scope,
|
|
global_scope,
|
|
torch_function_mode_stack,
|
|
guard_on_key_order=set(),
|
|
input_source_to_sizes_strides={},
|
|
dual_level=torch.autograd.forward_ad._current_level,
|
|
functorch_layers=torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters(),
|
|
current_device=torch.utils._device.CURRENT_DEVICE,
|
|
# initial_global_state is only None during NopTest.
|
|
global_state_guard=torch._dynamo.convert_frame.initial_global_state
|
|
or torch._C._dynamo.guards.GlobalStateGuard(),
|
|
# These are set by @property instead, just initialize them as blank
|
|
_guards=torch._guards.GuardsSet(),
|
|
_aotautograd_guards=[],
|
|
)
|
|
self.tracers = [SubgraphTracer(self, is_export=export)]
|
|
# Map from graph input's `Source` to its `VariableTracker` to
|
|
# de-duplicate graph inputs by source and reuse the tracker
|
|
self.input_source_to_var: dict[Source, VariableTracker] = {}
|
|
self.export = export
|
|
self.export_constraints = export_constraints # type: ignore[assignment]
|
|
self.frame_state = frame_state
|
|
self.cleanup_hooks: list[Callable[[], Any]] = []
|
|
# compile_id is an id number for the current torch.compile
|
|
self.compile_id: int = next(_compile_id_counter)
|
|
# Set of globals installed via install_global* APIs
|
|
self.installed_globals: set[str] = set()
|
|
|
|
# TODO: maybe should just pass the entire f_code in here? Not
|
|
# sure...
|
|
self.co_fields = {
|
|
"co_name": f_code.co_name,
|
|
"co_filename": f_code.co_filename,
|
|
"co_firstlineno": f_code.co_firstlineno,
|
|
}
|
|
|
|
self.region_tracker = GraphRegionTracker()
|
|
|
|
# tracked_fakes says where any tensor that was wrapped to fake came
|
|
# from. It is similar to GraphArg, in that all GraphArgs will get
|
|
# will get added to TrackedFakes, but TrackedFakes also contains
|
|
# GraphArgs that got pruned, and things like Tensor attributes which
|
|
# aren't explicit graph inputs. Used by shape guard
|
|
self.tracked_fakes: list[TrackedFake] = []
|
|
|
|
shape_env = ShapeEnv(
|
|
# Reference Cycle!
|
|
# Share a reference to the list of TrackedFake.
|
|
#
|
|
# ShapeEnv needs this in order to be able to reproduce the call
|
|
# to produce_guards at an arbitrary time point. That is because
|
|
# TrackedFake instances may have its metadata changed throughout
|
|
# the program execution.
|
|
tracked_fakes=self.tracked_fakes,
|
|
allow_scalar_outputs=config.capture_scalar_outputs,
|
|
allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops,
|
|
prefer_deferred_runtime_asserts_over_guards=config.prefer_deferred_runtime_asserts_over_guards,
|
|
allow_complex_guards_as_runtime_asserts=config.allow_complex_guards_as_runtime_asserts,
|
|
co_fields=self.co_fields,
|
|
)
|
|
|
|
# In export mode, we force the shape_env to strictly disallow any constraining
|
|
# of the user marked dynamic dims
|
|
import torch._functorch.config as _config
|
|
|
|
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
|
|
fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=shape_env,
|
|
# TODO (tmanlaibaatar) Remove this once we always lift params and buffers
|
|
allow_non_fake_inputs=True if self.export else False,
|
|
export=self.export,
|
|
)
|
|
self.tracing_context: TracingContext = TracingContext(fake_mode)
|
|
self.tracing_context.traced_code.append(f_code)
|
|
self.dynamo_compile_id: Optional[CompileId] = (
|
|
CompileContext.current_compile_id()
|
|
)
|
|
self.init_ambient_guards()
|
|
|
|
# Map each tensor id to a list of sources. This is necessary because
|
|
# tensor ids cannot be recovered from tracked fakes (in general).
|
|
# We use this map to interpret (i.e., check for violations of) constraints,
|
|
# specifically equality constraints, which have shared tensor ids in them.
|
|
# This map should also be generally useful, e.g., for (de)serialization.
|
|
self.tracked_fakes_id_to_source: dict[int, list[Source]] = (
|
|
collections.defaultdict(list)
|
|
)
|
|
# Stores the full fqn of a param or buffer to the relevant source.
|
|
self.param_name_to_source: Optional[dict[str, Source]] = {}
|
|
self.side_effects = SideEffects(self)
|
|
# Cached variable trackers. This makes symbolic analysis of LOAD_GLOBAL
|
|
# and LOAD_ATTR for same python objects free.
|
|
self.variable_tracker_cache = VariableTrackerCache()
|
|
self.unique_var_id = itertools.count()
|
|
self.code_options: dict[str, Any] = dict(code_options)
|
|
self.output_instructions: list[Instruction] = []
|
|
# used to track nodes that are added between calls of copy_graphstate
|
|
# and restore_graphstate
|
|
self.timestamp = 0
|
|
|
|
# A list of register_finalizer_fns to apply to the output graph module
|
|
self.register_finalizer_fns: list[Callable[[fx.GraphModule], None]] = []
|
|
|
|
# Not checkpointed
|
|
self.compiler_fn: Optional[CompilerFn] = compiler_fn
|
|
self.root_tx = root_tx
|
|
|
|
self.package = package
|
|
# Given a source, what are the user stacks of all locations that
|
|
# accessed it?
|
|
#
|
|
# For efficiency, we only populate this:
|
|
# - During export, and
|
|
# - If the source could potentially lead to a spurious export input
|
|
#
|
|
# Feel free to populate this more frequently if other use-cases arise,
|
|
# but be aware that we have to generate full stacks for each
|
|
# recording!
|
|
self.source_to_user_stacks: dict[Source, list[traceback.StackSummary]] = {}
|
|
|
|
self._current_tx: list[InstructionTranslatorBase] = []
|
|
self.cleanups: list[CleanupHook] = []
|
|
self.should_exit = False
|
|
self.unspec_variable_map: dict[str, UnspecializedPythonVariable] = {}
|
|
|
|
# This returns false if TF Overall (both mode and subclass) is disabled OR that TF Mode stack is empty
|
|
self.torch_function_mode_enabled = torch._C._is_torch_function_mode_enabled()
|
|
|
|
# Tracks if the output graph has a user defined allowed function in the
|
|
# graph. This is used later to determine if we should fallback to eager
|
|
# for certain exceptions. THe idea is that if the user has applied
|
|
# allow_in_graph, they would like to see the error instead of falling
|
|
# back for backend errors.
|
|
self.has_user_defined_allowed_in_graph = False
|
|
|
|
# Tracks a list of called ops that were not tagged with "pt2_compliant_tag".
|
|
# This information is useful for logging.
|
|
self.non_compliant_ops: set[torch._ops.OpOverload] = set({})
|
|
|
|
# Tracks a list of called custom ops that were tagged with "pt2_compliant_tag".
|
|
# This information is useful for logging.
|
|
self.compliant_custom_ops: set[torch._ops.OpOverload] = set({})
|
|
|
|
# We save the global torch state here to be restored in case of graph
|
|
# breaks. The relevant issue is seen here
|
|
# https://github.com/pytorch/pytorch/pull/100570#issuecomment-1543427086
|
|
# where inlining of a function changes the global state (because of the
|
|
# presence of torch.no_grad) and there is a graph break.
|
|
self.save_global_state()
|
|
|
|
# Tracks the original FQNs of the constant tensors from the original graph,
|
|
# i.e. buffers and parameters.
|
|
self.dynamo_flat_name_to_original_fqn: dict[str, str] = {}
|
|
|
|
# All calls to random() are replaced with a single call to __gen_rand_values
|
|
# functions that returns a tuple of random values for each original call.
|
|
# random_calls tracks calls to random() and random_values_var stores the name of
|
|
# the variable that stores __gen_rand_values results.
|
|
self.random_calls: list[
|
|
tuple[Callable[..., object], tuple[object, ...], dict[str, object]]
|
|
] = []
|
|
self.random_values_var: Any = None
|
|
|
|
# Bytecode to insert right before we call the graph
|
|
self.pregraph_bytecode: list[Instruction] = []
|
|
|
|
# Use to pass values to backward hooks when using compiled autograd
|
|
self.backward_state: dict[str, VariableTracker] = {}
|
|
self.backward_state_proxy: Optional[torch.fx.Proxy] = None
|
|
self.backward_state_var: Optional[str] = None
|
|
|
|
self.name_of_builtins_dict_key_in_fglobals: str = (
|
|
self.install_builtins_dict_in_fglobals()
|
|
)
|
|
|
|
self.compiler_trace_stack = contextlib.ExitStack()
|
|
|
|
# These are the ambient, currently-global saved_tensor_hooks stashed in autograd,
|
|
# that are set for the entire duration of the compiled region.
|
|
# This is an invariant today because we graph break on the saved_tensor_hook
|
|
# context manager inside a compiled region
|
|
self.saved_tensors_hooks_subgraph_names: Optional[list[str]] = (
|
|
self.maybe_install_saved_tensors_hooks_subgraphs()
|
|
)
|
|
|
|
def mark_bytecode_tracing_start(self) -> None:
|
|
self.compiler_trace_stack.enter_context(
|
|
dynamo_timed(
|
|
"bytecode_tracing",
|
|
log_pt2_compile_event=True,
|
|
)
|
|
)
|
|
|
|
def mark_bytecode_tracing_stop(self) -> None:
|
|
self.compiler_trace_stack.close()
|
|
|
|
def install_builtins_dict_in_fglobals(self) -> str:
|
|
f_builtins = get_builtins_dict(self.global_scope)
|
|
return self.install_global("__builtins_dict__", f_builtins)
|
|
|
|
def add_backward_state_hook(
|
|
self, hook: VariableTracker, prefix: str = "hook"
|
|
) -> tuple[str, torch.fx.Proxy]:
|
|
name = f"{prefix}{len(self.backward_state)}"
|
|
assert name not in self.backward_state
|
|
self.backward_state[name] = hook
|
|
return name, self.get_backward_state_proxy()
|
|
|
|
def get_backward_state_proxy(self) -> torch.fx.Proxy:
|
|
if self.backward_state_proxy is None:
|
|
if self.export:
|
|
unimplemented_v2(
|
|
gb_type="backward_state does not support export",
|
|
context="",
|
|
explanation="Compiled autograd doesn't work with `torch.export`.",
|
|
hints=[],
|
|
)
|
|
example_value = BackwardState()
|
|
self.backward_state_proxy = self.root_tracer.create_graph_input(
|
|
"dynamo_backward_state",
|
|
type(example_value),
|
|
example_value,
|
|
source=BackwardStateSource(),
|
|
)
|
|
self.backward_state_proxy.node.meta["grapharg"] = BackwardStateGraphArg()
|
|
self.backward_state_var = self.new_var()
|
|
return self.backward_state_proxy
|
|
|
|
# This gets its own helper function so guards DEBUG logs are more informative
|
|
def init_ambient_guards(self) -> None:
|
|
# Register a SHAPE_ENV guard to make sure we setup shape guards
|
|
# that show up in ShapeEnv
|
|
self.guards.add(ShapeEnvSource().make_guard(GuardBuilder.SHAPE_ENV))
|
|
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.DETERMINISTIC_ALGORITHMS)
|
|
)
|
|
|
|
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.GRAD_MODE))
|
|
|
|
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.DEFAULT_DEVICE))
|
|
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.TORCH_FUNCTION_STATE)
|
|
)
|
|
|
|
ci = torch._C._functorch.peek_interpreter_stack()
|
|
if ci is not None:
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.FUNCTORCH_STACK_MATCH)
|
|
)
|
|
if not torch._dynamo.compiled_autograd.in_compiled_autograd_region:
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(
|
|
GuardBuilder.AUTOGRAD_SAVED_TENSORS_HOOKS
|
|
)
|
|
)
|
|
|
|
def maybe_install_saved_tensors_hooks_subgraphs(self) -> Optional[list[str]]:
|
|
if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
|
|
return None
|
|
|
|
get_hooks = torch._functorch._aot_autograd.utils.top_saved_tensors_hooks
|
|
are_inline_hooks = (
|
|
torch._functorch._aot_autograd.utils.saved_tensors_hooks_are_inlineable
|
|
)
|
|
hooks = get_hooks()
|
|
if not are_inline_hooks(hooks):
|
|
return None
|
|
|
|
# If GraphModule provided by user contains fx.wrap,
|
|
# We can only rely on user provided cache hash in this case.
|
|
# If user did not provide cache hash - then we always bypass cache.
|
|
|
|
pack_gm, unpack_gm = hooks
|
|
pack_subgraph_name = self.install_subgraph(
|
|
"saved_tensors_hooks_pack",
|
|
torch.fx.GraphModule(self.nn_modules, pack_gm.graph),
|
|
)
|
|
unpack_subgraph_name = self.install_subgraph(
|
|
"saved_tensors_hooks_unpack",
|
|
torch.fx.GraphModule(self.nn_modules, unpack_gm.graph),
|
|
)
|
|
assert pack_subgraph_name == "saved_tensors_hooks_pack_0"
|
|
assert unpack_subgraph_name == "saved_tensors_hooks_unpack_0"
|
|
return [pack_subgraph_name, unpack_subgraph_name]
|
|
|
|
def dump_guards_state(self) -> OutputGraphGuardsState:
|
|
# Dump a serializable version of self without extras
|
|
return OutputGraphGuardsState(
|
|
local_scope=self.local_scope,
|
|
global_scope=self.global_scope,
|
|
torch_function_mode_stack=self.torch_function_mode_stack,
|
|
guard_on_key_order=self.guard_on_key_order,
|
|
input_source_to_sizes_strides=self.input_source_to_sizes_strides,
|
|
dual_level=self.dual_level,
|
|
functorch_layers=self.functorch_layers,
|
|
current_device=self.current_device,
|
|
global_state_guard=self.global_state_guard,
|
|
name_of_builtins_dict_key_in_fglobals=self.name_of_builtins_dict_key_in_fglobals,
|
|
export=self.export,
|
|
export_constraints=self.export_constraints,
|
|
_guards=self.guards,
|
|
_aotautograd_guards=self.aotautograd_guards,
|
|
)
|
|
|
|
def synthetic_graph_input(
|
|
self, fn: Callable[..., Any], args: tuple[Any, ...]
|
|
) -> VariableTracker:
|
|
"""
|
|
call fn(*args) before the graph runs and turn the result into a fake input.
|
|
"""
|
|
example_value = fn(*args)
|
|
varname = self.new_var()
|
|
cg = PyCodegen(self.root_tx)
|
|
cg.add_push_null(
|
|
lambda: cg.load_import_from(
|
|
fn.__module__,
|
|
fn.__name__,
|
|
)
|
|
)
|
|
cg.foreach(map(variables.ConstantVariable.create, args))
|
|
cg.call_function(len(args), False)
|
|
cg.store(varname)
|
|
self.pregraph_bytecode.extend(cg.get_instructions())
|
|
source = SyntheticLocalSource(varname)
|
|
result = VariableTracker.build(self.root_tx, example_value, source)
|
|
# Realize the VT because we will delete the guards on it in the next line.
|
|
result = result.realize()
|
|
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
|
|
source
|
|
)
|
|
return result
|
|
|
|
def add_cleanup_hook(self, fn: Callable[[], Any]) -> None:
|
|
self.cleanup_hooks.append(fn)
|
|
|
|
def call_cleanup_hooks(self) -> None:
|
|
for hook in reversed(self.cleanup_hooks):
|
|
hook()
|
|
self.cleanup_hooks.clear()
|
|
|
|
@property
|
|
def root_tracer(self) -> "SubgraphTracer":
|
|
return self.tracers[0]
|
|
|
|
@property
|
|
def current_tracer(self) -> "SubgraphTracer":
|
|
return self.tracers[-1]
|
|
|
|
def is_root_tracer(self) -> bool:
|
|
# Helper to tell if we are inside the higher order operator tracing.
|
|
return len(self.tracers) == 1
|
|
|
|
@property
|
|
def graph(self) -> torch.fx.Graph:
|
|
return self.current_tracer.graph
|
|
|
|
# TODO(rzou): can delete after we refactor speculate_subgraph to use nested GraphTracer.
|
|
@graph.setter
|
|
def graph(self, value: torch.fx.Graph) -> None:
|
|
self.current_tracer.graph = value
|
|
|
|
@property
|
|
def input_name_to_proxy(self) -> dict[str, fx.Proxy]:
|
|
return self.current_tracer.input_name_to_proxy
|
|
|
|
@property
|
|
def real_value_cache(self) -> dict[fx.Node, torch.Tensor]:
|
|
return self.current_tracer.real_value_cache
|
|
|
|
@property
|
|
def bound_symbols(self) -> dict[sympy.Symbol, Union[torch.fx.Proxy, "LazyProxy"]]:
|
|
return self.current_tracer.bound_symbols
|
|
|
|
# If you are here, and you're looking for create_graph_input,
|
|
# to avoid ambiguity, please call one of the following:
|
|
# - self.current_tracer.create_graph_input
|
|
# - self.root_tracer.create_graph_input
|
|
# See NOTE [HigherOrderOperator tracing design] for more context.
|
|
|
|
def create_proxy(self, *args: Any, **kwargs: Any) -> torch.fx.Proxy:
|
|
return self.current_tracer.create_proxy(*args, **kwargs)
|
|
|
|
def create_node(self, *args: Any, **kwargs: Any) -> torch.fx.Node:
|
|
return self.current_tracer.create_node(*args, **kwargs)
|
|
|
|
def remove_node(self, *args: Any, **kwargs: Any) -> None:
|
|
return self.current_tracer.remove_node(*args, **kwargs)
|
|
|
|
@contextlib.contextmanager
|
|
def subtracer(
|
|
self, source_target: Optional[Target], prior_tracer: "SubgraphTracer"
|
|
) -> Generator[fx.Tracer, None, None]:
|
|
new_scope_ctx = enter_new_scope()
|
|
try:
|
|
if prior_tracer:
|
|
# Lineage MUST stay preserved
|
|
assert prior_tracer.parent is self.current_tracer
|
|
new_scope_ctx.__enter__()
|
|
tracer = (
|
|
prior_tracer
|
|
if prior_tracer
|
|
else SubgraphTracer(
|
|
self,
|
|
parent=self.current_tracer,
|
|
source_target=source_target,
|
|
is_export=self.current_tracer.is_export,
|
|
)
|
|
)
|
|
self.tracers.append(tracer)
|
|
yield tracer
|
|
finally:
|
|
new_scope_ctx.__exit__(None, None, None)
|
|
self.tracers.pop()
|
|
|
|
@property
|
|
def output(self) -> "OutputGraph":
|
|
return self
|
|
|
|
@property
|
|
def fake_mode(self) -> torch._subclasses.FakeTensorMode:
|
|
assert self.tracing_context.fake_mode is not None
|
|
return self.tracing_context.fake_mode
|
|
|
|
@property
|
|
def shape_env(self) -> ShapeEnv:
|
|
assert self.tracing_context.fake_mode is not None
|
|
assert self.tracing_context.fake_mode.shape_env is not None
|
|
return self.tracing_context.fake_mode.shape_env
|
|
|
|
@property
|
|
def guards(self) -> torch._guards.GuardsSet:
|
|
return self.tracing_context.guards_context.dynamo_guards
|
|
|
|
@property
|
|
def nn_modules(self) -> dict[str, Any]:
|
|
return self.tracing_context.module_context.nn_modules
|
|
|
|
@property
|
|
def aotautograd_guards(self) -> list[torch._guards.GuardEnvExpr]:
|
|
return self.tracing_context.guards_context.aotautograd_guards
|
|
|
|
def save_global_state(
|
|
self, out: Optional[dict[str, tuple[Callable[..., Any], bool]]] = None
|
|
) -> None:
|
|
"""
|
|
Saves to out if it is provided. Else saves to the tracing context's global_state.
|
|
"""
|
|
global_state = cast(
|
|
dict[str, tuple[Callable[..., Any], bool]],
|
|
(
|
|
out
|
|
if out is not None
|
|
else self.tracing_context.global_context.global_state
|
|
),
|
|
)
|
|
|
|
global_state["grad_enabled"] = (torch.set_grad_enabled, torch.is_grad_enabled())
|
|
|
|
global_state["autocast_enabled"] = (
|
|
functools.partial(torch.set_autocast_enabled, "cuda"),
|
|
torch.is_autocast_enabled("cuda"),
|
|
)
|
|
global_state["autocast_cpu_enabled"] = (
|
|
functools.partial(torch.set_autocast_enabled, "cpu"),
|
|
torch.is_autocast_enabled("cpu"),
|
|
)
|
|
global_state["autocast_gpu_dtype"] = ( # type:ignore[assignment]
|
|
functools.partial(torch.set_autocast_dtype, "cuda"),
|
|
torch.get_autocast_dtype("cuda"),
|
|
)
|
|
global_state["autocast_cpu_dtype"] = ( # type:ignore[assignment]
|
|
functools.partial(torch.set_autocast_dtype, "cpu"),
|
|
torch.get_autocast_dtype("cpu"),
|
|
)
|
|
global_state["autocast_cache_enabled"] = (
|
|
torch.set_autocast_cache_enabled,
|
|
torch.is_autocast_cache_enabled(),
|
|
)
|
|
|
|
def push_tx(self, tx: "InstructionTranslatorBase") -> None:
|
|
self._current_tx.append(tx)
|
|
|
|
def pop_tx(self) -> "InstructionTranslatorBase":
|
|
return self._current_tx.pop()
|
|
|
|
@property
|
|
def current_tx(self) -> "InstructionTranslatorBase":
|
|
return self.root_tx if not self._current_tx else self._current_tx[-1]
|
|
|
|
def count_calls(self) -> int:
|
|
return count_calls(self.graph)
|
|
|
|
def is_empty_graph(self) -> bool:
|
|
return len(list(self.graph.nodes)) == 0
|
|
|
|
def get_submodule(self, keys: str) -> Union[torch.nn.Module, Any]:
|
|
assert keys
|
|
obj: Union[torch.nn.Module, dict[str, torch.nn.Module]] = self.nn_modules
|
|
for k in keys.split("."):
|
|
if isinstance(obj, dict):
|
|
obj = obj[k]
|
|
else:
|
|
obj = getattr(obj, k)
|
|
return obj
|
|
|
|
def new_var(self, name: str = "tmp") -> str:
|
|
existing = set(self.code_options["co_varnames"])
|
|
# In common case, this will be O(1)
|
|
while True:
|
|
var = f"{name}_{next(self.unique_var_id)}"
|
|
if var not in existing:
|
|
self.code_options["co_varnames"] += (var,)
|
|
return var
|
|
|
|
def update_co_names(self, name: str) -> None:
|
|
"""Ensure self.code_options.co_names contains name"""
|
|
if name not in self.code_options["co_names"]:
|
|
self.code_options["co_names"] += (name,)
|
|
|
|
@staticmethod
|
|
def module_key_name(*names: Any) -> str:
|
|
# create a new unique name
|
|
name = "_".join(map(str, names))
|
|
# Strip the guard lookup L/G access
|
|
name = re.sub(r"^[GL]\['?(.*?)'?\]$", r"\1", name)
|
|
# e.g. replace abc.xyz[123].qkv with abc.xyz_123.qkv
|
|
name = re.sub(r"\[(\d+)\]", r"_\g<1>", name)
|
|
# e.g. replace abc.xyz_123.qkv with abc_xyz_123_qkv
|
|
name = re.sub(r"[^a-zA-Z0-9]", "_", name)
|
|
|
|
if not name or not name[0].isalpha():
|
|
name = "sub" + name
|
|
|
|
return name
|
|
|
|
def register_static_attr_and_return_proxy(
|
|
self, attr_prefix: str, attr_value: Any
|
|
) -> fx.Proxy:
|
|
attr_name = get_unique_name_wrt(attr_prefix, self.nn_modules)
|
|
# TODO `nn_modules` has been historically overloaded to store a lot more
|
|
# than just nn module objects, fix that.
|
|
self.nn_modules[attr_name] = attr_value
|
|
proxy = self.create_proxy("get_attr", attr_name, (), {})
|
|
set_example_value(proxy.node, attr_value)
|
|
return proxy
|
|
|
|
def register_attr_or_module(
|
|
self,
|
|
target: Union[torch.nn.Module, torch.Tensor, Any],
|
|
*names: Any,
|
|
**options: Any,
|
|
) -> VariableTracker:
|
|
if is_dynamic_nn_module(target, self.export):
|
|
# Instead of returning UnspecializedNNModuleVariable, call
|
|
# VariableTracker.build so that it is tracked for mutation.
|
|
return VariableTracker.build(self.current_tx, target, **options)
|
|
|
|
options = dict(options)
|
|
assert "source" in options
|
|
source = options["source"]
|
|
assert not isinstance(source, ParamBufferSource)
|
|
|
|
if isinstance(target, torch.Tensor):
|
|
tracer = self.current_tracer
|
|
if not self.is_root_tracer():
|
|
# For higher order ops, we don't want to insert the get_attr in
|
|
# innermost graph. Instead, we want to raise the params/buffers
|
|
# as inputs to the higher-order graph, and register them as
|
|
# get_attrs in the root tracer.
|
|
|
|
# Note that Dynamo will still call lift_tracked_freevar_to_input
|
|
# when these inputs are encountered for the inner graph. The
|
|
# only difference is what happens at the root tracer for
|
|
# nn.Parameters vs free inputs. The free inputs are registered
|
|
# as placeholders in the root graph, whereas the nn.Parameters
|
|
# are registered as get_attr nodes in the root graph.
|
|
tracer = self.root_tracer
|
|
|
|
def wrap_name(module_key: str) -> VariableTracker:
|
|
assert self.param_name_to_source is not None
|
|
self.param_name_to_source[module_key] = source
|
|
|
|
# Check if the attr has already been registered. This can happen
|
|
# when two different sources point to the same tensor.
|
|
assert self.root_tx is not None
|
|
if target in self.root_tx.output.side_effects:
|
|
return self.root_tx.output.side_effects[target]
|
|
|
|
if get_static_address_type(target) == "guarded" and not isinstance(
|
|
source, NumpyTensorSource
|
|
):
|
|
install_guard(source.make_guard(GuardBuilder.ID_MATCH))
|
|
elif not is_constant_source(source):
|
|
install_guard(source.make_guard(GuardBuilder.TENSOR_MATCH))
|
|
|
|
vt = wrap_fx_proxy(
|
|
self.root_tx,
|
|
tracer.create_proxy("get_attr", module_key, (), {}),
|
|
example_value=target,
|
|
**options,
|
|
)
|
|
|
|
# Track the object so to avoid duplicate registration in case of
|
|
# different sources pointing to the same tensor object.
|
|
vt = self.root_tx.output.side_effects.track_object_existing(target, vt)
|
|
|
|
assert "tensor_dict" not in vt.as_proxy().node.meta
|
|
vt.as_proxy().node.meta["tensor_dict"] = _extract_tensor_dict(target)
|
|
|
|
return vt
|
|
|
|
elif isinstance(target, torch.nn.Module):
|
|
assert isinstance(target, torch.nn.Module)
|
|
|
|
if source:
|
|
install_guard(source.make_guard(GuardBuilder.NN_MODULE))
|
|
|
|
def wrap_name(module_key: str) -> VariableTracker:
|
|
return NNModuleVariable(type(target), module_key, target, **options)
|
|
|
|
else:
|
|
# This is Dynamo created graph module, e.g., graph module coming
|
|
# from higher order ops. NNModuleVariable tracker can't be
|
|
# sourceless, so let's return a unspecializedNNModule variable
|
|
# tracker.
|
|
def wrap_name(module_key: str) -> VariableTracker:
|
|
return variables.UnspecializedNNModuleVariable(target, **options)
|
|
|
|
elif isinstance(target, (torch.SymInt, torch.SymFloat)):
|
|
# HACKY CODE REGION BEGIN
|
|
# WE ARE PIGGYBACKING ON EXISTING INFRA TO REGISTER ATTRS
|
|
# This ultimately gets written to self.nn_modules, which is unfortunate
|
|
# Attrs that are tenors and symints and such need to be migrated to have their
|
|
# own storage
|
|
# alas, this is like this for now
|
|
|
|
def wrap_name(module_key: str) -> VariableTracker:
|
|
return SymNodeVariable.create(
|
|
self,
|
|
self.create_proxy("get_attr", module_key, (), {}),
|
|
sym_num=target,
|
|
**options,
|
|
)
|
|
|
|
# HACKY CODE REGION END
|
|
else:
|
|
|
|
def wrap_name(module_key: str) -> VariableTracker:
|
|
self.output.update_co_names(module_key)
|
|
self.global_scope[module_key] = target
|
|
return VariableTracker.build(
|
|
self, # type: ignore[arg-type]
|
|
target,
|
|
ConstantSource(source_name=module_key),
|
|
)
|
|
|
|
for k, v in self.nn_modules.items():
|
|
if v is target:
|
|
# it already exists
|
|
return wrap_name(k)
|
|
|
|
name = OutputGraph.module_key_name(*names)
|
|
name = get_unique_name_wrt(name, self.nn_modules, self.global_scope)
|
|
self.nn_modules[name] = target
|
|
if isinstance(target, torch.nn.Module):
|
|
|
|
def register_leaf_name(leaf_name: str) -> None:
|
|
assert self.param_name_to_source is not None
|
|
new_source = ParamBufferSource(source, leaf_name)
|
|
new_name = f"{name}.{leaf_name}"
|
|
self.param_name_to_source[new_name] = new_source
|
|
if isinstance(source, LocalSource):
|
|
self.dynamo_flat_name_to_original_fqn[
|
|
OutputGraph.module_key_name(new_source.name())
|
|
] = leaf_name
|
|
|
|
# annoying, but there are cases when we do not have parameters
|
|
# see test_nn_moduledict_contains
|
|
if hasattr(target, "_parameters"):
|
|
for leaf_name, _ in target.named_parameters():
|
|
register_leaf_name(leaf_name)
|
|
if hasattr(target, "_buffers"):
|
|
for leaf_name, _ in target.named_buffers():
|
|
register_leaf_name(leaf_name)
|
|
|
|
return wrap_name(name)
|
|
|
|
def handle_aliases_for_stolen_lists(
|
|
self, tx: "InstructionTranslatorBase"
|
|
) -> tuple[list[Instruction], dict[Source, Source]]:
|
|
# If list inputs are stolen, but still needed after the function call, create aliases to keep them alive
|
|
maybe_gm = self.local_scope.get("self")
|
|
stolen_list_names = get_locals_to_steal(maybe_gm)
|
|
if not stolen_list_names:
|
|
return [], {}
|
|
|
|
alias_insts = []
|
|
needs_alias: dict[str, list[VariableTracker]] = {}
|
|
|
|
queue = [
|
|
*tx.stack,
|
|
*tx.symbolic_locals.values(),
|
|
*self.side_effects.store_attr_mutations.keys(),
|
|
]
|
|
|
|
while queue:
|
|
x = queue.pop()
|
|
if isinstance(x, BaseListVariable):
|
|
assert isinstance(x.items, list)
|
|
queue += x.items
|
|
continue
|
|
|
|
if not (
|
|
(
|
|
x not in self.side_effects.store_attr_mutations
|
|
or isinstance(x.mutation_type, AttributeMutationExisting)
|
|
)
|
|
and isinstance(x.source, GetItemSource)
|
|
and isinstance(x.source.base, LocalSource)
|
|
and x.source.base.local_name in stolen_list_names
|
|
):
|
|
continue
|
|
|
|
stolen_name = x.source.base.local_name
|
|
if stolen_name not in needs_alias:
|
|
needs_alias[stolen_name] = []
|
|
needs_alias[stolen_name].append(x)
|
|
|
|
visited = {}
|
|
overridden_sources: dict[Source, Source] = {}
|
|
for arg in self.graphargs:
|
|
if not (
|
|
isinstance(arg._example, list)
|
|
and isinstance(arg.source, LocalSource)
|
|
and arg.source.local_name in needs_alias
|
|
):
|
|
continue
|
|
|
|
# arg is a list that will be cleared by the compiled function
|
|
list_name = arg.source.local_name
|
|
assert list_name in self.code_options["co_varnames"]
|
|
for x in needs_alias[list_name]:
|
|
# Skip if already handled.
|
|
if x.source in overridden_sources:
|
|
continue
|
|
|
|
# A small codegen optimization because we might have different
|
|
# VariableTrackers that share the same source.
|
|
list_idx = x.source.index # type: ignore[attr-defined]
|
|
if list_idx not in visited:
|
|
alias_name = self.new_var(
|
|
f"{list_name}_ref"
|
|
) # self.new_var already adds unique id suffix
|
|
|
|
visited[list_idx] = alias_name
|
|
# bytecode of `alias_name = list_name[list_idx]`
|
|
alias_insts.extend(
|
|
[
|
|
create_instruction("LOAD_FAST", argval=list_name),
|
|
create_load_const(list_idx),
|
|
create_instruction("BINARY_SUBSCR"),
|
|
create_instruction("STORE_FAST", argval=alias_name),
|
|
]
|
|
)
|
|
|
|
# operate on alias, handled by suffix codegen
|
|
old_source = x.source
|
|
overridden_sources[old_source] = LocalSource(visited[list_idx])
|
|
|
|
# NOTE: we need `overridden_sources` because (1) we want to codegen for
|
|
# these list items to use the new local source, but (2) we want to avoid
|
|
# updating `source` in place because that might break invariants in
|
|
# other parts of Dynamo like guards.
|
|
return alias_insts, overridden_sources
|
|
|
|
def _get_stack_values_to_restore(
|
|
self, tx: "InstructionTranslatorBase", stack_pops: int
|
|
) -> tuple[list[VariableTracker], list[str], StackLocalsMetadata]:
|
|
"""
|
|
Gets the stack + locals values belonging to tx that need to be restored.
|
|
|
|
Also prunes dead tx locals and realizes all VTs in the tx's stack.
|
|
|
|
NullVariables in stack/locals will NOT be restored, unless they are the top `stack_pops`
|
|
elements of the stack - it is expected that the next instruction to run will pop the top
|
|
`stack_pops` elements of the stack, so we should codegen NULLs.
|
|
|
|
Returns:
|
|
- stack_values: stack and locals values that need to be restored
|
|
- restore_vars: names of locals corresponding to the locals part of `stack_values`
|
|
- meta: locations of NULLs and ContextWrappingVariables in the stack/locals
|
|
(ignores the top `stack_pops` values on the stack)
|
|
"""
|
|
tx.prune_dead_locals()
|
|
|
|
stack_values = []
|
|
meta = StackLocalsMetadata()
|
|
|
|
# realize any unrealized tensor VTs in case they
|
|
# need to be added to self.nn_modules as attributes
|
|
for i, value in enumerate(tx.stack):
|
|
variables.LazyVariableTracker.realize_all(value)
|
|
# ignore top `stack_pops` values on the stack
|
|
if len(tx.stack) - i <= stack_pops:
|
|
stack_values.append(value)
|
|
continue
|
|
if isinstance(value, NullVariable):
|
|
meta.stack_null_idxes.append(i)
|
|
else:
|
|
stack_values.append(value)
|
|
if isinstance(value, ContextWrappingVariable):
|
|
target_values = (
|
|
() if value.target_values is None else tuple(value.target_values)
|
|
)
|
|
# NOTE: track index in stack after NULLs have been removed
|
|
meta.stack_ctx_args.append((len(stack_values) - 1, target_values))
|
|
meta.stack_ctx_idxes_orig.append(i)
|
|
|
|
# Add all the local vars to the "stack" so restore at the end
|
|
restore_vars: list[str] = []
|
|
val_to_names: dict[VariableTracker, list[str]] = {}
|
|
# NB: Typically (i.e., for graph compile from RETURN_VALUE),
|
|
# symbolic_locals will be empty at this point, as prune_dead_locals
|
|
# will clear out all of symbolic_locals because RETURN_VALUE is the
|
|
# last instruction and no more locals are used. The fanciness here
|
|
# is only needed for partial graphs.
|
|
# NOTE: All cell and free variables are represented as CellVariable,
|
|
# so checks for NULLs and context managers in the case of codegen'ing resume
|
|
# functions will not be performed on them. This is expected behavior.
|
|
for k, v in tx.symbolic_locals.items():
|
|
# Note! this explicitly uses .local_name for matching
|
|
# Failure to do so will cause spurious registrations in val_to_names.
|
|
# This will in turn result in spurious variables showing up in the graph.
|
|
# This was very tricky to debug. For an example, dump the graph at call_user_compiler
|
|
# while running test_subgraphs.py
|
|
if isinstance(v.source, LocalSource) and v.source.local_name == k:
|
|
continue # no need to restore initial state
|
|
if isinstance(v, CellVariable) and v.local_name == k:
|
|
continue # no need to restore initial state
|
|
# Do not load variable if it is NULL.
|
|
if sys.version_info >= (3, 12):
|
|
# Continuation function will load the NULL for v.
|
|
if type.__instancecheck__(NullVariable, v):
|
|
meta.locals_null_keys.append(k)
|
|
continue
|
|
else:
|
|
# A variable should never be NULL in < 3.12
|
|
assert not type.__instancecheck__(NullVariable, v)
|
|
if isinstance(v, ContextWrappingVariable):
|
|
target_values = (
|
|
() if v.target_values is None else tuple(v.target_values)
|
|
)
|
|
meta.locals_ctx_args.append((k, target_values))
|
|
if v not in val_to_names:
|
|
val_to_names[v] = []
|
|
val_to_names[v].append(k)
|
|
for v in val_to_names.keys():
|
|
restore_vars.extend(val_to_names[v])
|
|
stack_values.extend([v] * len(val_to_names[v]))
|
|
|
|
return stack_values, restore_vars, meta
|
|
|
|
def compile_subgraph(
|
|
self,
|
|
tx: "InstructionTranslatorBase",
|
|
reason: GraphCompileReason,
|
|
partial_convert: bool = False,
|
|
stack_pops: int = 0,
|
|
) -> list[StackLocalsMetadata]:
|
|
"""
|
|
Compiles the current subgraph, with inputs w.r.t. self.root_tx, and codegens:
|
|
- Call the compiled subgraph
|
|
- Apply side effects
|
|
- Codegen stack and locals
|
|
- Store the locals
|
|
|
|
Python does not allow NULL to be an arg to a function, so we do not codegen NULLs on the stack,
|
|
unless the value is one of the top `stack_pops` values on the stack (these values are expected to be
|
|
popped immediately after this generated code. The prologue of the resume function is expected to restore
|
|
any dropped NULLs.
|
|
|
|
Returns stack indices and locals keys where we dropped NULLs, and where we found inactive context manager objects.
|
|
"""
|
|
|
|
assert self.root_tx is not None
|
|
|
|
# FIXME temporary assert to make sure we're not accidentally compiling nested graph breaks
|
|
# before we're done the full implementation
|
|
assert self.root_tx is tx
|
|
|
|
# bytecode tracing has finished. Pop the context manager for dynamo_timed
|
|
self.mark_bytecode_tracing_stop()
|
|
|
|
self.partial_convert = partial_convert
|
|
self.compile_subgraph_reason = reason
|
|
self.should_exit = True
|
|
|
|
log.debug("COMPILING GRAPH due to %s", reason)
|
|
|
|
# prefix instructions (Python 3.11+)
|
|
prefix_insts: list[Instruction] = []
|
|
if sys.version_info >= (3, 11):
|
|
for inst in tx.prefix_insts:
|
|
if inst.opname == "MAKE_CELL":
|
|
prefix_insts.append(
|
|
create_instruction("MAKE_CELL", argval=inst.argval)
|
|
)
|
|
elif inst.opname == "COPY_FREE_VARS":
|
|
prefix_insts.append(
|
|
create_instruction(
|
|
"COPY_FREE_VARS", arg=len(tx.code_options["co_freevars"])
|
|
)
|
|
)
|
|
else:
|
|
prefix_insts.append(copy.copy(inst))
|
|
self.add_output_instructions(prefix_insts)
|
|
|
|
assert not (self.pregraph_bytecode and self.export), (
|
|
"export does not support pregraph_bytecode"
|
|
)
|
|
self.add_output_instructions(self.pregraph_bytecode)
|
|
|
|
alias_insts, overridden_sources = self.handle_aliases_for_stolen_lists(
|
|
self.root_tx
|
|
)
|
|
self.add_output_instructions(alias_insts)
|
|
|
|
# Exit from all context manager variables to make sure global state is restored
|
|
for block in reversed(self.root_tx.block_stack):
|
|
block.exit(self.root_tx, is_graph_break=reason.graph_break)
|
|
|
|
self.cleanup_graph()
|
|
|
|
# stack values and restore vars for each frame are pushed in reverse order
|
|
# i.e. last element corresponds to root frame, first element corresponds to current frame
|
|
all_stack_values = []
|
|
all_restore_vars = []
|
|
all_stack_locals_metas = []
|
|
cur_tx: Optional[InstructionTranslatorBase] = tx
|
|
while True:
|
|
assert cur_tx is not None
|
|
# this should have been checked by the caller
|
|
assert all(block.can_restore() for block in cur_tx.block_stack)
|
|
stack_values, restore_vars, meta = self._get_stack_values_to_restore(
|
|
cur_tx, stack_pops
|
|
)
|
|
all_stack_values.append(stack_values)
|
|
all_restore_vars.append(restore_vars)
|
|
all_stack_locals_metas.append(meta)
|
|
if cur_tx is self.root_tx:
|
|
break
|
|
cur_tx = tx.parent
|
|
|
|
# Use nn.Module "proxies" in the constructed GraphModule so that
|
|
# the resulting GM does not hold additional strong references to the original modules.
|
|
# This prevents a strong ref cycle where Dynamo created code holds on to references
|
|
# to modules that also have Dynamo code cache invalidation checks.
|
|
# When cache invalidation runs, the generated GM will be invalidated, which also deletes
|
|
# the proxies.
|
|
nn_modules_proxies = {
|
|
name: nn_module_proxy(mod) for name, mod in self.nn_modules.items()
|
|
}
|
|
root = FakeRootModule(nn_modules_proxies)
|
|
|
|
from .decorators import disable
|
|
|
|
# to handle random calls
|
|
if len(self.random_calls) > 0:
|
|
random_calls_instructions = []
|
|
self.random_values_var = self.new_var("random_values")
|
|
rand_fn = disable(
|
|
_get_gen_rand_values_fn(self.random_calls),
|
|
reason="do not trace into Dynamo rng recovery function",
|
|
)
|
|
rand_fn_name = self.install_global("__gen_rand_values", rand_fn)
|
|
codegen = PyCodegen(
|
|
self.root_tx, root, overridden_sources=overridden_sources
|
|
)
|
|
random_calls_instructions.extend(
|
|
codegen.load_function_name(rand_fn_name, True)
|
|
)
|
|
random_calls_instructions.extend(create_call_function(0, False))
|
|
random_calls_instructions.append(
|
|
codegen.create_store(self.random_values_var),
|
|
)
|
|
self.add_output_instructions(random_calls_instructions)
|
|
|
|
# call compiled fx graph
|
|
graph_output_var = None
|
|
stored_graph_output_var = False
|
|
root_stack_values = all_stack_values[-1]
|
|
if (
|
|
self.root_tx is tx
|
|
and root_stack_values
|
|
and all(
|
|
not isinstance(
|
|
v,
|
|
(
|
|
UnspecializedPythonVariable,
|
|
NumpyNdarrayVariable,
|
|
TensorWithTFOverrideVariable,
|
|
),
|
|
)
|
|
and not (isinstance(v, SymNodeVariable) and v.python_type() is float)
|
|
for v in root_stack_values
|
|
)
|
|
and all(isinstance(x, TensorVariable) for x in root_stack_values)
|
|
and len(set(root_stack_values)) == len(root_stack_values)
|
|
and self.side_effects.is_empty()
|
|
and not tx.debug_locals
|
|
and not self.backward_state
|
|
and not all_stack_locals_metas[-1].stack_null_idxes
|
|
and not all_stack_locals_metas[-1].locals_null_keys
|
|
):
|
|
# optimization to generate better code in a common case
|
|
self.add_output_instructions(
|
|
self.compile_and_call_fx_graph(
|
|
tx, list(reversed(root_stack_values)), root
|
|
)
|
|
+ [create_instruction("UNPACK_SEQUENCE", arg=len(root_stack_values))]
|
|
)
|
|
else:
|
|
graph_output_var = self.new_var("graph_out")
|
|
# load stack values in a flat manner for now - will likely change later.
|
|
stack_values_flat = [
|
|
val for vals in reversed(all_stack_values) for val in vals
|
|
]
|
|
pass1 = PyCodegen(
|
|
self.root_tx,
|
|
root,
|
|
graph_output_var,
|
|
overridden_sources=overridden_sources,
|
|
)
|
|
self.codegen_suffix(tx, stack_values_flat, pass1)
|
|
|
|
# Use `pass1.uses` to selectively cache multi-user variables into a
|
|
# temporary local source. This (a). speeds up loading VTs with long
|
|
# chained source, and (b). avoids redundantly saving single-user VT
|
|
# into a temporary local.
|
|
tempvars = {} # type: ignore[var-annotated]
|
|
for val, count in pass1.uses.items():
|
|
# If it's already a local source, no need to cache it
|
|
if count > 1 and not istype(val, (SyntheticLocalSource, LocalSource)):
|
|
tempvars[val] = None
|
|
pass2 = PyCodegen(
|
|
self.root_tx,
|
|
root,
|
|
graph_output_var,
|
|
tempvars=tempvars,
|
|
overridden_sources=overridden_sources,
|
|
)
|
|
self.codegen_suffix(tx, stack_values_flat, pass2)
|
|
|
|
output = []
|
|
if count_calls(self.graph) != 0 or len(pass2.graph_outputs) != 0:
|
|
output.extend(
|
|
self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
|
|
)
|
|
|
|
if len(pass2.graph_outputs) != 0:
|
|
output.append(pass2.create_store(graph_output_var))
|
|
stored_graph_output_var = True
|
|
else:
|
|
output.append(create_instruction("POP_TOP"))
|
|
else:
|
|
# NB: Important to run compiler collective even when there is
|
|
# a graph break
|
|
self.run_compiler_collective()
|
|
self.add_output_instructions(output + pass2.get_instructions())
|
|
|
|
# restore all the live local vars of the root
|
|
local_restore_cg = PyCodegen(
|
|
self.root_tx, overridden_sources=overridden_sources
|
|
)
|
|
# TODO this local restoration should be removed when fully implementing nested graph breaks
|
|
self.add_output_instructions(
|
|
[
|
|
local_restore_cg.create_store(var)
|
|
for var in reversed(all_restore_vars[-1])
|
|
]
|
|
)
|
|
|
|
if graph_output_var and stored_graph_output_var:
|
|
self.add_output_instructions(
|
|
[local_restore_cg.create_delete(graph_output_var)]
|
|
)
|
|
|
|
if self.export:
|
|
from torch.export._trace import _ExportModuleSpecTrackerDict
|
|
|
|
potential_side_effects = []
|
|
for var in self.side_effects._get_modified_vars():
|
|
if hasattr(var, "mutation_type"):
|
|
mut_type = var.mutation_type
|
|
# Make sure to skip codegen specific mutations
|
|
if isinstance(
|
|
mut_type, (AttributeMutationExisting, ValueMutationExisting)
|
|
):
|
|
# export uses tracepoint pass to dump submodule inp/out spec
|
|
# into global state, so we filter it here
|
|
if not (
|
|
isinstance(var, UserDefinedDictVariable)
|
|
and isinstance(var.value, _ExportModuleSpecTrackerDict)
|
|
):
|
|
potential_side_effects.append(var)
|
|
|
|
side_effect_refs = [
|
|
_get_source_debug_name(var.source) for var in potential_side_effects
|
|
]
|
|
|
|
if len(side_effect_refs):
|
|
warnings.warn(
|
|
f"While exporting, we found certain side effects happened in the model.forward. "
|
|
f"Here are the list of potential sources you can double check: {side_effect_refs}"
|
|
)
|
|
|
|
return all_stack_locals_metas
|
|
|
|
def codegen_suffix(
|
|
self,
|
|
tx: "InstructionTranslatorBase",
|
|
stack_values: list[VariableTracker],
|
|
cg: PyCodegen,
|
|
) -> None:
|
|
# NOTE: `codegen_save_tempvars` must run first to update `source` fields
|
|
# for variables with `AttributeMutationNew`, as they don't implement
|
|
# `reconstruct` themselves.
|
|
self.side_effects.codegen_save_tempvars(cg)
|
|
if self.backward_state:
|
|
assert not self.export
|
|
for name, val in self.backward_state.items():
|
|
cg(val)
|
|
assert self.backward_state_var is not None
|
|
cg.append_output(cg.create_load(self.backward_state_var))
|
|
cg.store_attr(name)
|
|
self.side_effects.codegen_hooks(cg)
|
|
|
|
# Return variables used for logging at the end
|
|
for debug_var, args in tx.debug_locals:
|
|
cg.add_push_null(lambda: cg(debug_var))
|
|
for arg in args:
|
|
cg(arg)
|
|
cg.extend_output(create_call_function(len(args), False))
|
|
cg.extend_output([create_instruction("POP_TOP")])
|
|
|
|
cg.restore_stack(stack_values, value_from_source=not tx.export)
|
|
self.side_effects.codegen_update_mutated(cg)
|
|
|
|
def cleanup_graph(self) -> None:
|
|
"""
|
|
Remove "creation_timestamp" from node meta
|
|
|
|
Remove this pattern from the graph:
|
|
torch._C._set_grad_enabled(False)
|
|
torch._C._set_grad_enabled(True)
|
|
"""
|
|
assert self.should_exit
|
|
nodes = list(self.graph.nodes)
|
|
for node in nodes:
|
|
node.meta.pop("creation_timestamp", None)
|
|
|
|
grad_enabled = torch.is_grad_enabled()
|
|
for node1, node2 in zip(nodes, nodes[1:]):
|
|
if (
|
|
node1.target is torch._C._set_grad_enabled
|
|
and tuple(node1.args) == (not grad_enabled,)
|
|
and not node1._erased
|
|
):
|
|
grad_enabled = node1.args[0]
|
|
if (
|
|
node2.target is torch._C._set_grad_enabled
|
|
and tuple(node2.args) == (not grad_enabled,)
|
|
and not node2._erased
|
|
):
|
|
grad_enabled = node2.args[0]
|
|
self.graph.erase_node(node1)
|
|
self.graph.erase_node(node2)
|
|
|
|
def get_graph_sizes_structured(self) -> dict[str, list[Union[int, str]]]:
|
|
ret: dict[str, list[Union[int, str]]] = {}
|
|
for node in self.graph.nodes:
|
|
example_value = node.meta.get("example_value", None)
|
|
if isinstance(example_value, torch._subclasses.FakeTensor):
|
|
size = example_value.size()
|
|
ret[node.name] = [s if isinstance(s, int) else repr(s) for s in size]
|
|
return ret
|
|
|
|
def get_graph_sizes(self, name: str) -> str:
|
|
graph_sizes_str = "TRACED GRAPH TENSOR SIZES\n"
|
|
graph_sizes_str += f"===== {name} =====\n"
|
|
for node in self.graph.nodes:
|
|
example_value = node.meta.get("example_value", None)
|
|
if isinstance(example_value, torch._subclasses.FakeTensor):
|
|
size = example_value.size()
|
|
graph_sizes_str += f"{node.name}: {tuple(size)}\n"
|
|
concrete_size = []
|
|
has_symint = False
|
|
for sz in size:
|
|
if isinstance(sz, int):
|
|
concrete_size.append(sz)
|
|
elif isinstance(sz, torch.SymInt):
|
|
has_symint = True
|
|
concrete_size.append(sz.node.hint)
|
|
else:
|
|
break
|
|
else:
|
|
if has_symint:
|
|
graph_sizes_str += (
|
|
f"{node.name} (concrete): {tuple(concrete_size)}\n"
|
|
)
|
|
return graph_sizes_str
|
|
|
|
@contextlib.contextmanager
|
|
def restore_global_state(self) -> Any:
|
|
"""
|
|
Momentarily restores the global state to what it was prior to tracing the current output
|
|
"""
|
|
prior_global_state = self.tracing_context.global_context.copy_graphstate()
|
|
current_global_state: dict[str, tuple[Any, bool]] = {}
|
|
self.save_global_state(out=current_global_state)
|
|
try:
|
|
# Set to state prior to tracing the graph
|
|
self.tracing_context.global_context.restore_graphstate(prior_global_state)
|
|
yield
|
|
finally:
|
|
# Reset to state at the current time (e.g. before calling the user compiler)
|
|
self.tracing_context.global_context.restore_graphstate(
|
|
GlobalContextCheckpointState(current_global_state)
|
|
)
|
|
|
|
def run_compiler_collective(self) -> None:
|
|
tx = self.root_tx
|
|
assert tx is not None
|
|
if (ds := tx.distributed_state) is not None and ds.all_states is None:
|
|
compile_pg = ds.compile_pg
|
|
log.info("compiler_collective %s", ds.local_state)
|
|
torch._logging.trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "compiler_collective",
|
|
"encoding": "string",
|
|
},
|
|
payload_fn=lambda: ds.local_state.render(),
|
|
)
|
|
device_types = compile_pg._device_types
|
|
assert len(device_types) == 1, (
|
|
"Expect only one device type but got {}".format("+".join(device_types))
|
|
)
|
|
with (
|
|
get_interface_for_device(device_types.pop()).device( # type: ignore[attr-defined]
|
|
compile_pg.rank() % torch.accelerator.device_count()
|
|
),
|
|
dynamo_timed("compiler_collective", log_pt2_compile_event=True),
|
|
):
|
|
all_states: list[Any] = [None] * compile_pg.size()
|
|
dist.all_gather_object(all_states, ds.local_state, group=compile_pg)
|
|
ds.all_states = all_states
|
|
# Clear speculation log, because are tracing may diverge due to
|
|
# this information from the compiler collective
|
|
tx.speculation_log.clear()
|
|
raise exc.CompileCollectiveRestartAnalysis
|
|
|
|
def compile_and_call_fx_graph(
|
|
self,
|
|
tx: "InstructionTranslatorBase",
|
|
rv: list[VariableTracker],
|
|
root: FakeRootModule,
|
|
) -> list[Instruction]:
|
|
"""
|
|
Generate code from self.graph and return the Instruction()s to
|
|
call that generated code.
|
|
|
|
Code is generated w.r.t. self.root_tx.
|
|
tx is only used for preserving GraphModule metadata
|
|
"""
|
|
with torch._guards.TracingContext.clear_frame():
|
|
from .decorators import disable
|
|
|
|
assert self.should_exit
|
|
|
|
self.run_compiler_collective()
|
|
|
|
name = unique_id("__compiled_fn", with_uuid=True)
|
|
|
|
assert isinstance(rv, list)
|
|
assert isinstance(root, FakeRootModule)
|
|
|
|
output_node = self.create_node(
|
|
"output",
|
|
"output",
|
|
(self.current_tracer.create_arg(tuple(x.as_proxy() for x in rv)),),
|
|
{},
|
|
)
|
|
sub_gms = self.dedup_pass()
|
|
root.add_nn_modules(sub_gms) # type: ignore[arg-type]
|
|
|
|
self.current_tracer._maybe_preserve_original_meta(tx, output_node)
|
|
if not config.do_not_emit_runtime_asserts:
|
|
# There is a rare scenario where codegen_suffix adds a new entry
|
|
# to self.nn_modules while `root` knows only about the
|
|
# nn_modules at the time of its creation. This causes failures
|
|
# while creating the graph module because self.graph and root
|
|
# are out of sync. This only happens for `get_attr` nodes, so
|
|
# here we clean up the get_attr nodes that are unused.
|
|
self.remove_unused_get_attr_nodes()
|
|
insert_deferred_runtime_asserts(
|
|
fx.GraphModule(root, self.graph),
|
|
self.shape_env,
|
|
name,
|
|
export=self.export,
|
|
)
|
|
# NB: deferred runtime asserts can keep graphargs live, so make sure
|
|
# those are inserted before pruning
|
|
self.remove_unused_graphargs()
|
|
ncalls = count_calls(self.graph)
|
|
counters["stats"]["calls_captured"] += ncalls
|
|
|
|
self.remove_tensorify_specialized_graphargs()
|
|
|
|
# free a bit of memory
|
|
self.real_value_cache.clear()
|
|
|
|
gm = _make_graph_module(root, self.graph)
|
|
|
|
# Saved tensors hooks are not used by the graph.
|
|
# GraphModule by default only copies used in the graph submodules.
|
|
# Copying them into the result graph manually.
|
|
if self.saved_tensors_hooks_subgraph_names:
|
|
for subgraph_name in self.saved_tensors_hooks_subgraph_names:
|
|
setattr(gm, subgraph_name, getattr(root, subgraph_name))
|
|
|
|
for register_finalizer in self.register_finalizer_fns:
|
|
register_finalizer(gm)
|
|
|
|
gm._backend_id = name
|
|
gm.compile_subgraph_reason = self.compile_subgraph_reason
|
|
gm.meta["dynamo_flat_name_to_original_fqn"] = (
|
|
self.dynamo_flat_name_to_original_fqn.copy()
|
|
)
|
|
gm.meta["dynamo_compile_id"] = self.dynamo_compile_id
|
|
|
|
graph_code_log.debug(
|
|
"%s",
|
|
lazy_format_graph_code(
|
|
name, gm, include_stride=True, include_device=True, colored=True
|
|
),
|
|
)
|
|
torch._logging.trace_structured(
|
|
"dynamo_output_graph",
|
|
lambda: {"sizes": self.get_graph_sizes_structured()},
|
|
payload_fn=lambda: gm.print_readable(
|
|
print_output=False, include_stride=True, include_device=True
|
|
),
|
|
)
|
|
self.call_cleanup_hooks()
|
|
old_fake_mode = self.tracing_context.fake_mode
|
|
assert old_fake_mode is not None
|
|
if not self.export:
|
|
import torch._functorch.config as _config
|
|
|
|
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
|
|
# TODO(voz): The way export uses gm, and fake tensors, is not supported with us resetting
|
|
backend_fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=old_fake_mode.shape_env,
|
|
)
|
|
# TODO(voz): Ostensibily, this should be scoped and
|
|
# restore back to old_fake_mode, but doing so currently violates
|
|
# a lot of fake_tensor ownership assumptions and runs afoul of detect_fake_mode
|
|
self.tracing_context.fake_mode = backend_fake_mode
|
|
|
|
with self.restore_global_state():
|
|
compiled_fn = self.call_user_compiler(gm, self.example_inputs())
|
|
|
|
from torch.fx._lazy_graph_module import _LazyGraphModule
|
|
|
|
if isinstance(compiled_fn, _LazyGraphModule) or (
|
|
isinstance(getattr(compiled_fn, "__self__", None), _LazyGraphModule)
|
|
and compiled_fn.__name__ == "_lazy_forward" # type: ignore[attr-defined]
|
|
):
|
|
# Since dynamo will run the forward method for the GraphModule shortly
|
|
# anyways, it does not hurt to do the real recompilation here if
|
|
# this is a _LazyGraphModule. This makes it easier for dynamo to
|
|
# optimize a _LazyGraphModule.
|
|
|
|
lazy_gm = (
|
|
compiled_fn
|
|
if isinstance(compiled_fn, _LazyGraphModule)
|
|
else compiled_fn.__self__ # type: ignore[attr-defined]
|
|
)
|
|
|
|
_LazyGraphModule.force_recompile(lazy_gm)
|
|
|
|
if not isinstance(compiled_fn, _LazyGraphModule):
|
|
# replace compiled_fn with the real forward method
|
|
compiled_fn = lazy_gm.forward
|
|
|
|
if self.package is not None:
|
|
self.package.add_backend_id(name, compiled_fn)
|
|
|
|
compiled_fn = disable(
|
|
compiled_fn, reason="do not trace Dynamo-compiled graph"
|
|
)
|
|
|
|
counters["stats"]["unique_graphs"] += 1
|
|
assert old_fake_mode.shape_env is not None
|
|
if specializations := old_fake_mode.shape_env.specializations:
|
|
specialization_guards = []
|
|
specialization_cache: dict[Specialization, Callable[[Any], Any]] = {}
|
|
sources = [a.source for a in self.graphargs]
|
|
for specialization in specializations:
|
|
source_index = sources.index(specialization.source)
|
|
check_fn_source = inspect.getsource(specialization.check_fn).strip()
|
|
# Required because the LABDA_GUARD API requires a root guard manager
|
|
unused_root_guard_manager = RootGuardManager()
|
|
check_fn = guards.LAMBDA_GUARD( # type: ignore[attr-defined]
|
|
unused_root_guard_manager,
|
|
specialization.check_fn,
|
|
[check_fn_source],
|
|
)
|
|
|
|
log.debug(
|
|
"Compiling backend specialized graph with specialization=%s",
|
|
check_fn_source,
|
|
)
|
|
|
|
specialization_guards.append(
|
|
(
|
|
functools.partial(
|
|
lambda idx, args, check_fn=check_fn: check_fn(
|
|
args[idx]
|
|
),
|
|
source_index,
|
|
),
|
|
specialization,
|
|
)
|
|
)
|
|
|
|
@torch._dynamo.disable(reason="do not trace Dynamo-compiled graph") # type: ignore[misc]
|
|
def specialized_dispatch(*args: Any, **kwargs: Any) -> Any:
|
|
for check_fn, specialization in specialization_guards:
|
|
if check_fn(args):
|
|
if specialization in specialization_cache:
|
|
return specialization_cache[specialization](
|
|
*args, **kwargs
|
|
)
|
|
|
|
with self.shape_env.patch_source_specialization(
|
|
specialization.source, specialization.check_fn
|
|
):
|
|
# Modify gm so AOTAutogradCache key changes per specialization
|
|
gm.meta["specialization"] = specialization
|
|
example_inputs: list[Tensor] = list(args)
|
|
with tracing(self.tracing_context):
|
|
specialization_cache[specialization] = (
|
|
self.call_user_compiler(gm, example_inputs)
|
|
)
|
|
|
|
return specialization_cache[specialization](*args, **kwargs)
|
|
return compiled_fn(*args, **kwargs)
|
|
|
|
# This is safe because we pre-process name to be unique
|
|
self.install_global_unsafe(name, specialized_dispatch)
|
|
else:
|
|
# This is safe because we pre-process name to be unique
|
|
self.install_global_unsafe(name, compiled_fn)
|
|
|
|
assert self.root_tx is not None
|
|
cg = PyCodegen(self.root_tx)
|
|
cg.make_call_generated_code(name)
|
|
return cg.get_instructions()
|
|
|
|
@property
|
|
def placeholders(self) -> list[fx.Node]:
|
|
return self.graph.find_nodes(op="placeholder")
|
|
|
|
@property
|
|
def graphargs(self) -> list[GraphArg]:
|
|
return [node.meta["grapharg"] for node in self.placeholders]
|
|
|
|
def call_user_compiler(
|
|
self, gm: fx.GraphModule, example_inputs: list[Tensor]
|
|
) -> CompiledFn:
|
|
with dynamo_timed(
|
|
"OutputGraph.call_user_compiler",
|
|
phase_name="backend_compile",
|
|
log_pt2_compile_event=True,
|
|
log_waitcounter=True,
|
|
waitcounter_name_override="compile_aot_autograd",
|
|
dynamo_compile_column_us="aot_autograd_cumulative_compile_time_us",
|
|
):
|
|
return self._call_user_compiler(gm, example_inputs)
|
|
|
|
def _call_user_compiler(
|
|
self, gm: fx.GraphModule, example_inputs: list[Tensor]
|
|
) -> CompiledFn:
|
|
assert self.compiler_fn is not None
|
|
tot = 0
|
|
placeholders = []
|
|
for node in gm.graph.nodes:
|
|
if node.op in ("call_function", "call_method", "call_module"):
|
|
tot += 1
|
|
if node.op == "placeholder":
|
|
placeholders.append(node)
|
|
increment_op_count(tot)
|
|
for pl in placeholders:
|
|
if not hasattr(pl, "_dynamo_source"):
|
|
arg = pl.meta["grapharg"]
|
|
# TODO: Why isn't this stored in meta :think:
|
|
# NOTE: can't move these into meta: https://github.com/pytorch/pytorch/issues/141640
|
|
pl._dynamo_source = arg.source
|
|
|
|
# NOTE: can't move these into meta: https://github.com/pytorch/pytorch/issues/141640
|
|
gm._param_name_to_source = self.param_name_to_source # type: ignore[assignment]
|
|
gm._source_to_user_stacks = self.source_to_user_stacks # type: ignore[assignment]
|
|
|
|
name = (
|
|
self.compiler_fn.__name__
|
|
if hasattr(self.compiler_fn, "__name__")
|
|
else "<unknown compiler_fn>"
|
|
)
|
|
try:
|
|
_step_logger()(logging.INFO, f"calling compiler function {name}")
|
|
compiler_fn = self.compiler_fn
|
|
if config.verify_correctness:
|
|
compiler_fn = WrapperBackend(compiler_fn)
|
|
compiled_fn = compiler_fn(gm, example_inputs)
|
|
_step_logger()(logging.INFO, f"done compiler function {name}")
|
|
assert callable(compiled_fn), "compiler_fn did not return callable"
|
|
except (TensorifyScalarRestartAnalysis, ShortenTraceback):
|
|
raise
|
|
except exceptions_allowed_to_be_fallback as e:
|
|
if self.has_user_defined_allowed_in_graph:
|
|
raise BackendCompilerFailed(
|
|
self.compiler_fn, e, inspect.currentframe()
|
|
).with_traceback(e.__traceback__) from None
|
|
unimplemented_v2_with_warning(
|
|
e,
|
|
self.root_tx.f_code,
|
|
gb_type="Backend compiler exception",
|
|
context=f"Backend: {name}\nException:{str(e)}\nTraceback:\n{self.root_tx.format_frame_summary()}",
|
|
explanation=f"Backend compiler `{name}` failed with {str(e)}. Adding a graph break.",
|
|
hints=[
|
|
"Report an issue to the backend compiler repo.",
|
|
],
|
|
)
|
|
except SkipFrame as e:
|
|
# The backend compiler has requested that we skip the frame, instead of
|
|
# aborting execution.
|
|
raise e
|
|
except Exception as e:
|
|
raise BackendCompilerFailed(
|
|
self.compiler_fn, e, inspect.currentframe()
|
|
).with_traceback(e.__traceback__) from None
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"OutputGraph.call_user_compiler",
|
|
{
|
|
**self.co_fields,
|
|
"op_count": tot,
|
|
"node_count": len(gm.graph.nodes),
|
|
"input_count": len(placeholders),
|
|
},
|
|
)
|
|
|
|
return compiled_fn
|
|
|
|
def dedup_pass(self) -> dict[str, torch.fx.GraphModule]:
|
|
if torch._dynamo.config.use_graph_deduplication:
|
|
return apply_graph_deduplication(self)
|
|
else:
|
|
return {}
|
|
|
|
def install_subgraph(self, name: str, sub_gm: torch.fx.GraphModule) -> str:
|
|
next_name = get_unique_name_wrt(name, self.nn_modules, requires_suffix=True)
|
|
sub_gm.__name__ = next_name # type: ignore[assignment]
|
|
sub_gm.torchdynamo_force_dynamic = False # type: ignore[assignment]
|
|
# This graph module is not present in the user space, so it can't be
|
|
# accessed by a source. Set source=None.
|
|
self.register_attr_or_module(sub_gm, next_name, source=None)
|
|
return next_name
|
|
|
|
def example_inputs(self) -> list[torch.Tensor]:
|
|
result = [arg.example for arg in self.graphargs]
|
|
return result
|
|
|
|
def remove_unused_get_attr_nodes(self) -> None:
|
|
for node in sorted(self.graph.find_nodes(op="get_attr"), reverse=True):
|
|
if len(list(node.users)) == 0:
|
|
self.remove_node(node)
|
|
|
|
def remove_unused_graphargs(self) -> None:
|
|
# NB: It's OK to drop GraphArg for symbols that ended up being
|
|
# specialized iff they are not used in runtime assertions. You don't
|
|
# even have to make a guard for it, because ShapeEnv produce_guards
|
|
# operates on tracked_fakes, which never gets pruned.
|
|
# That being said, you'll get marginally better generated
|
|
# guard code if you promote the guard into a Dynamo guard (since that
|
|
# allows for the guard to be done using C++ guards.) If we get
|
|
# ShapeEnv guards to go into C++ guards, this will stop being a thing
|
|
# though!
|
|
|
|
assert self.should_exit
|
|
|
|
# Miniature DCE pass, but only for obviously trivial operations
|
|
def is_static_true(b_node: fx.node.Argument) -> bool:
|
|
if b_node is True:
|
|
return True
|
|
if not isinstance(b_node, fx.Node):
|
|
return False
|
|
b = b_node.meta.get("example_value")
|
|
if b is None:
|
|
return False
|
|
if b is True:
|
|
return True
|
|
if (
|
|
isinstance(b, torch.SymBool)
|
|
and (r := b.node.maybe_as_bool()) is not None
|
|
):
|
|
return r
|
|
# TODO: We can also technically remove all cases when the input
|
|
# doesn't have unbacked inputs, since it's all in the ShapeEnv
|
|
return False
|
|
|
|
def is_symnode_arg(a: fx.node.Argument) -> bool:
|
|
from torch.fx.experimental.sym_node import SymTypes
|
|
|
|
if isinstance(a, (int, float, bool)):
|
|
return True
|
|
if isinstance(a, fx.Node):
|
|
return isinstance(a.meta.get("example_value"), SymTypes)
|
|
return False
|
|
|
|
# NB: We assume that you cannot do mutations on int/float/bool,
|
|
# because they are immutable types, and therefore is always safe to
|
|
# DCE.
|
|
def is_symnode_compute_node(node: fx.Node) -> bool:
|
|
from torch.fx.experimental.sym_node import SymTypes
|
|
|
|
if node.op != "call_function":
|
|
return False
|
|
# TODO: I don't think it's possible to have a bare int/float here?
|
|
if not isinstance(node.meta.get("example_value"), SymTypes):
|
|
return False
|
|
# TODO: This will bail here if you ever end up with a more complicated
|
|
# computation function, like sum(list_of_ints), even though it
|
|
# should be DCE'able
|
|
if not all(is_symnode_arg(a) for a in node.args):
|
|
return False
|
|
if not all(is_symnode_arg(a) for a in node.kwargs.values()):
|
|
return False
|
|
return True
|
|
|
|
from torch.fx.experimental.symbolic_shapes import is_accessor_node
|
|
|
|
for node in reversed(list(self.graph.nodes)):
|
|
if len(list(node.users)) == 0:
|
|
if (
|
|
node.op == "get_attr"
|
|
or (node.op == "call_function" and node.target is operator.getitem)
|
|
or (
|
|
node.op == "call_function"
|
|
and node.target is torch._check
|
|
and is_static_true(node.args[0])
|
|
)
|
|
or is_symnode_compute_node(node)
|
|
or is_accessor_node(node)
|
|
):
|
|
self.remove_node(node)
|
|
|
|
def placeholder_binds_symbol(node: fx.Node) -> Optional[sympy.Symbol]:
|
|
arg = node.meta["grapharg"]
|
|
example = arg.example
|
|
if isinstance(example, torch.SymInt) and isinstance(
|
|
example.node.expr, sympy.Symbol
|
|
):
|
|
return example.node.expr
|
|
return None
|
|
|
|
def remove_unused(node: fx.Node) -> None:
|
|
log.debug("REMOVE UNUSED GRAPHARG %s", node.meta["grapharg"].source.name())
|
|
# I'm not really sure why you need to delete these from the
|
|
# node since the node is going to get removed
|
|
del node.meta["grapharg"]
|
|
self.remove_node(node)
|
|
self.real_value_cache.pop(node, None)
|
|
|
|
used_symbols: set[sympy.Symbol] = set()
|
|
|
|
def update_used_symbols(
|
|
used_symbols: set[sympy.Symbol], fake: Union[torch.SymInt, torch.Tensor]
|
|
) -> None:
|
|
used_symbols |= free_symbols(fake)
|
|
|
|
recheck_placeholders = []
|
|
for node in self.placeholders:
|
|
binds_symbol = placeholder_binds_symbol(node) is not None
|
|
# Don't delete symbol bindings yet
|
|
if binds_symbol:
|
|
if not node.users:
|
|
recheck_placeholders.append(node)
|
|
else:
|
|
if not node.users and not isinstance(
|
|
node.meta["grapharg"], BackwardStateGraphArg
|
|
):
|
|
remove_unused(node)
|
|
else:
|
|
# Register the free symbols as uses
|
|
arg = node.meta["grapharg"]
|
|
if isinstance(arg, BackwardStateGraphArg):
|
|
continue
|
|
if isinstance(node.meta["grapharg"].example, torch.ScriptObject):
|
|
real_script_obj = node.meta["grapharg"].example
|
|
fake_script_obj = node.meta["grapharg"].example_strong_ref
|
|
if not torch._library.fake_class_registry.tracing_with_real(
|
|
real_script_obj
|
|
):
|
|
flat_dict = dict(real_script_obj.__obj_flatten__()) # type: ignore[attr-defined]
|
|
for attr in flat_dict.keys():
|
|
fake_attr_val = getattr(
|
|
fake_script_obj.wrapped_obj, attr
|
|
)
|
|
pytree.tree_map_only(
|
|
(torch.SymInt, torch.Tensor),
|
|
lambda t: update_used_symbols(used_symbols, t),
|
|
fake_attr_val,
|
|
)
|
|
continue
|
|
fake = (
|
|
arg.fake_tensor if arg.fake_tensor is not None else arg.example
|
|
)
|
|
update_used_symbols(used_symbols, fake)
|
|
|
|
# After removing unused graphargs, prune unused binds_symbol
|
|
for node in recheck_placeholders:
|
|
symbol = placeholder_binds_symbol(node)
|
|
if symbol is not None:
|
|
if symbol not in used_symbols:
|
|
remove_unused(node)
|
|
else:
|
|
# Make sure we delete later occurrences of the same symbol
|
|
used_symbols.remove(symbol)
|
|
|
|
def remove_tensorify_specialized_graphargs(self) -> None:
|
|
# This is a pretty interesting function. Basically we have this problem
|
|
# where our compiler tends to choke when we have unused inputs. The way
|
|
# we support dynamic float arguments is by doing a joint fx pass and
|
|
# tensorifying away as many symfloats as we can. For the remaining symfloats
|
|
# we have no choice but to specialize... HOWEVER at that point in time
|
|
# we can no longer remove graph inputs. So our sledgehammer solution is to
|
|
# save the state of what inputs we should have specialized in dynamo and
|
|
# restart analysis. This function incorporates this "view from the future"
|
|
# state and specializes inputs that we know we won't be able to tensorify
|
|
# away in the joint pass. In principle we shouldn't choke on unused inputs
|
|
# and so this shouldn't be necessary. In practice CUDA graphs choke on
|
|
# unused inputs so we need this for now.
|
|
|
|
# Import here to prevent circular import
|
|
from torch._dynamo.symbolic_convert import TensorifyState
|
|
|
|
for node in self.graph.nodes:
|
|
example_value = node.meta.get("example_value")
|
|
if (
|
|
isinstance(example_value, FakeTensor)
|
|
and example_value.item_memo is not None
|
|
and hasattr(example_value.item_memo.node._expr, "name")
|
|
and all(u.target == "item" for u in node.users)
|
|
and TensorifyState.should_specialize(
|
|
# We use _expr instead of expr b/c we want the symbol not the replacement
|
|
example_value.item_memo.node._expr.name
|
|
)
|
|
):
|
|
for u in list(node.users):
|
|
u.replace_all_uses_with(guard_scalar(example_value.item_memo))
|
|
self.remove_node(u)
|
|
self.remove_node(node)
|
|
|
|
def add_output_instructions(self, prefix: list[Instruction]) -> None:
|
|
"""
|
|
We call this on the creation of a new compiled subgraph that is inserted
|
|
before user code.
|
|
"""
|
|
self.output_instructions.extend(prefix)
|
|
self.should_exit = True
|
|
|
|
def install_global_unsafe(self, name: str, value: Any) -> None:
|
|
"""
|
|
WARNING: prefer the safer `install_global_by_id/install_global`.
|
|
torch.compile instances should be independent of each other;
|
|
one footgun is to have one instance depend on the existence of
|
|
a global installed by another instance. This can happen if we mangle
|
|
a global the same way across both instances.
|
|
"""
|
|
assert name not in self.installed_globals
|
|
self.installed_globals.add(name)
|
|
self.cleanups.append(CleanupHook.create(self.global_scope, name, value))
|
|
|
|
def install_global_by_id(self, prefix: str, value: Any) -> str:
|
|
"""
|
|
Installs a global if it hasn't been installed already.
|
|
This is determined by (prefix, id(value)) pair.
|
|
|
|
Returns the name of the newly installed global.
|
|
"""
|
|
# NB: need self.compile_id to distinguish this global
|
|
# from another global created in a different torch.compile instance
|
|
name = f"{prefix}_{id(value)}_c{self.compile_id}"
|
|
if name in self.installed_globals:
|
|
return name
|
|
self.install_global_unsafe(name, value)
|
|
return name
|
|
|
|
def install_global(self, prefix: str, value: Any) -> str:
|
|
"""
|
|
Installs a global, generating a unique name for it.
|
|
|
|
Returns the name of the newly installed global.
|
|
"""
|
|
# NB: unique_id is unique, even across torch.compile instances
|
|
name = unique_id(prefix)
|
|
self.install_global_unsafe(name, value)
|
|
return name
|
|
|
|
def cleanup(self) -> None:
|
|
# There is a reference cycle between tracer and OutputGraph, causing
|
|
# some of the tensor objects to be held alive for longer than necessary.
|
|
self.root_tx = None # type: ignore[assignment]
|
|
self.nn_modules.clear()
|
|
self.param_name_to_source = None
|
|
|
|
for node in self.graph.nodes:
|
|
if "grapharg" in node.meta:
|
|
del node.meta["grapharg"]
|
|
self.real_value_cache.clear()
|
|
self.input_name_to_proxy.clear()
|
|
self.side_effects.clear()
|
|
self.variable_tracker_cache.clear()
|
|
self.register_finalizer_fns.clear()
|
|
self.dynamo_flat_name_to_original_fqn.clear()
|
|
self.tracing_context.clear()
|
|
self.input_source_to_var.clear()
|
|
self.unspec_variable_map.clear()
|
|
self.backward_state.clear()
|
|
|
|
def add_graph_finalizer(
|
|
self, register_finalizer: Callable[[fx.GraphModule], None]
|
|
) -> None:
|
|
self.register_finalizer_fns.append(register_finalizer)
|
|
|
|
def example_value_from_input_node(self, node: torch.fx.Node) -> Any:
|
|
"""Extract the non-fake example tensor"""
|
|
if node.op == "placeholder":
|
|
return node.meta["grapharg"].example
|
|
assert node.op == "get_attr"
|
|
return self.nn_modules[node.target] # type: ignore[index]
|
|
|
|
|
|
err_epilogue = (
|
|
"With the current config, we will graph break "
|
|
"(and fall back to eager-mode PyTorch) on all ops "
|
|
"that have do not have the 'pt2_compliant_tag'. "
|
|
"Please see the following doc for how to mark this op as PT2 compliant "
|
|
"https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html"
|
|
)
|
|
|
|
|
|
def check_pt2_compliant_op(
|
|
output_graph: OutputGraph, kind: str, target: Any, args: Any, kwargs: Any
|
|
) -> None:
|
|
if kind != "call_function":
|
|
return
|
|
|
|
def encountered_compliant_op(target: torch._ops.OpOverload) -> None:
|
|
if target.namespace in {"prim", "prims", "aten"}:
|
|
return
|
|
output_graph.compliant_custom_ops.add(target)
|
|
|
|
def encountered_non_compliant_op(target: torch._ops.OpOverload, msg: str) -> None:
|
|
output_graph.non_compliant_ops.add(target)
|
|
if config.only_allow_pt2_compliant_ops:
|
|
unimplemented_v2(
|
|
gb_type="Encountered non-PT2-compliant op",
|
|
context="",
|
|
explanation=msg + " " + err_epilogue,
|
|
hints=[],
|
|
)
|
|
|
|
if isinstance(target, torch._ops.OpOverload):
|
|
if torch.Tag.pt2_compliant_tag in target.tags:
|
|
encountered_compliant_op(target)
|
|
return
|
|
encountered_non_compliant_op(
|
|
target,
|
|
f"Encountered the torch.ops.OpOverload {target} that is not PT2 compliant.",
|
|
)
|
|
return
|
|
|
|
if isinstance(target, torch._ops.OpOverloadPacket):
|
|
overloads = tuple(target.overloads())
|
|
# Optimization: Overload resolution is expensive.
|
|
# If there's only one overload, we know what it will resolve to.
|
|
if len(overloads) == 1:
|
|
op = getattr(target, overloads[0])
|
|
if torch.Tag.pt2_compliant_tag in op.tags:
|
|
encountered_compliant_op(op)
|
|
return
|
|
encountered_non_compliant_op(
|
|
op,
|
|
f"Encountered the non-overloaded "
|
|
f"torch.ops.OpOverloadPacket {target} "
|
|
f"that is not PT2 compliant. ",
|
|
)
|
|
return
|
|
|
|
args, kwargs = torch._dynamo.utils.get_fake_values_from_nodes(
|
|
output_graph.current_tx, (args, kwargs), False
|
|
)
|
|
try:
|
|
overload = torch._C._jit_resolve_packet(
|
|
target._qualified_op_name, *args, **kwargs
|
|
)
|
|
except RuntimeError as e:
|
|
unimplemented_v2(
|
|
gb_type="Error when attempting to resolve op packet",
|
|
context="",
|
|
explanation=str(e),
|
|
hints=[],
|
|
)
|
|
|
|
op = getattr(target, overload)
|
|
if torch.Tag.pt2_compliant_tag in op.tags:
|
|
encountered_compliant_op(op)
|
|
else:
|
|
encountered_non_compliant_op(
|
|
op,
|
|
f"Encountered the torch.ops.OpOverloadPacket {target} "
|
|
f"which resolves to the overload ({overload}) that is "
|
|
f"not PT2 compliant.",
|
|
)
|
|
|
|
|
|
_compile_id_counter = itertools.count()
|
|
|
|
P = ParamSpec("P")
|
|
R = TypeVar("R")
|
|
|
|
|
|
class LazyProxy:
|
|
def __init__(
|
|
self,
|
|
tracer: "SubgraphTracer",
|
|
fn: Callable[P, R],
|
|
*args: P.args,
|
|
**kwargs: P.kwargs,
|
|
) -> None:
|
|
self.tracer = tracer
|
|
self.fn = fn
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
|
|
def __call__(self) -> Any:
|
|
return self.fn(*self.args, **self.kwargs)
|
|
|
|
|
|
class SubgraphTracer(fx.Tracer):
|
|
"""
|
|
Holds an FX graph that is being traced. OutputGraph owns a SubgraphTracer
|
|
and the separation of responsibilities is that SubgraphTracer is
|
|
responsible for building the graph while OutputGraph is responsible for
|
|
compiling and executing the graph.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
output_graph: "OutputGraph",
|
|
parent: Optional["SubgraphTracer"] = None,
|
|
is_export: bool = False,
|
|
source_target: Optional[Target] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.output_graph = weakref.proxy(output_graph)
|
|
self.graph = torch.fx.Graph()
|
|
|
|
# See note [Export inputs must be explicitly passed in]
|
|
self.is_export = is_export
|
|
# Map from graph input name to its placeholder proxy object, where the
|
|
# map's keys give all current placeholder node names and can be used to
|
|
# create unique node names
|
|
self.input_name_to_proxy: dict[str, fx.Proxy] = {}
|
|
# Node => computed real value (see utils.get_real_value)
|
|
self.real_value_cache: dict[fx.Node, torch.Tensor] = {}
|
|
|
|
# SubgraphTracers can be nested. See NOTE [HigherOrderOperator tracing design]
|
|
self.parent = parent
|
|
self.source_target = source_target
|
|
# A dict mapping previously free variables (Proxy objects)
|
|
# to new Proxy objects that wrap inputs to this subgraph.
|
|
#
|
|
# This dict maps proxies in outer graphs to placeholders in current graph.
|
|
# It serves two purposes:
|
|
# - Proxies are associated with VariableTrackers. If we see
|
|
# the same VariableTracker twice (and it is a free variable),
|
|
# then we want to use the same Proxy in the current subgraph to
|
|
# record the tracing.
|
|
# - If we are tracing a HigherOrderOperator's body_fn, then we
|
|
# need to keep track of what free variables were lifted so we can
|
|
# rewrite the HigherOrderOperator call using the traced body_fn.
|
|
# Dicts maintain the order of args for the HigherOrderOperator call.
|
|
self.lifted_freevars: dict[fx.Proxy, fx.Proxy] = {}
|
|
|
|
# map basic symbols (unbacked and unbacked) to their bound proxies.
|
|
# There are only two cases where bound_symbols will be recorded:
|
|
# 1. when we create_graph_input for a backed SymInt that's basic symbol
|
|
# 2. when we track_unbacked_symbols for intermediate results that contain unbacked symints.
|
|
self.bound_symbols: dict[sympy.Symbol, Union[torch.fx.Proxy, LazyProxy]] = {}
|
|
|
|
self.prev_inst = None
|
|
# True if this tracer is currently tracing into torch.utils.checkpoint
|
|
# as part of speculate_subgraph.
|
|
self.under_activation_checkpoint = False
|
|
# True if we want to allow externally visible side-effects (doesn't throw error on their existence)
|
|
# during this tracer's tracing of torch.utils.checkpoint (via speculate_subgraph).
|
|
# Only safe if we know for sure that *NOT* replaying these side-effects during
|
|
# backward recomputation of the checkpoint region doesn't affect its correctness.
|
|
self.allow_side_effects_under_checkpoint = False
|
|
# True if we want to allow externally visible side-effects (doesn't throw error on their existence)
|
|
# during this tracer's tracing. This is currently only used by experimental AC out-of-tree
|
|
# via torch._dynamo.utils._disable_side_effect_safety_checks_for_current_subtracer.
|
|
# Note: Externally visible side-effects are allowed if this flag OR the above flag is True.
|
|
self.unsafe_allow_externally_visible_side_effects = False
|
|
|
|
# True if this tracer is currently tracing (reconstructing) into a Python generator
|
|
self.is_reconstructing_generator = False
|
|
|
|
self.debug_level: int = parent.debug_level + 1 if parent is not None else 0
|
|
|
|
self._cur_code = None
|
|
self._orig_gm_meta: Optional[list[Any]] = None
|
|
self._orig_gm_lineno_map: Optional[dict[int, Optional[int]]] = None
|
|
self._orig_gm_firstlineno: Optional[int] = None
|
|
# Each SubgraphTracer is associated with a source target, which indicates
|
|
# which operator this subgraph is attached to. We compute a source_fn_stack
|
|
# based on the source target. For the root tracer, it's set to [].
|
|
# This is useful for debugging and transforming the exported graph.
|
|
if self.parent is None:
|
|
self.source_fn_stack: list[Any] = []
|
|
else:
|
|
self.source_fn_stack = self.parent.source_fn_stack + [
|
|
(self.graph._target_to_str(source_target), source_target)
|
|
]
|
|
|
|
# This is used to create a unique name for the placeholder
|
|
self._used_names: OrderedSet[str] = OrderedSet()
|
|
# Stores the versions of the input tensors at the time they are inserted
|
|
# as placeholders in the graph. This is used to track input mutation.
|
|
self._input_versions_at_beginning: list[int] = []
|
|
if torch.is_inference_mode_enabled():
|
|
raise RuntimeError(
|
|
"Inference mode is supposed to be disabled during compilation. Please open an issue."
|
|
)
|
|
|
|
# preserve original meta if it is available
|
|
def _maybe_preserve_original_meta(
|
|
self, tx: "InstructionTranslatorBase", node: fx.Node
|
|
) -> None:
|
|
if (
|
|
self._orig_gm_meta
|
|
and self._orig_gm_lineno_map
|
|
and self._orig_gm_firstlineno
|
|
):
|
|
lineno = tx.current_instruction.starts_line
|
|
node_idx = None
|
|
if lineno is not None:
|
|
node_idx = self._orig_gm_lineno_map.get(
|
|
lineno - self._orig_gm_firstlineno, None
|
|
)
|
|
if node_idx is not None:
|
|
meta = self._orig_gm_meta[node_idx]
|
|
for field in fx.proxy._COPY_META_FIELDS:
|
|
if field in meta:
|
|
node.meta[field] = meta[field]
|
|
if "stack_trace" in meta:
|
|
node.meta["stack_trace"] = meta["stack_trace"]
|
|
|
|
def create_proxy(
|
|
self,
|
|
kind: str,
|
|
target: Any,
|
|
args: Any,
|
|
kwargs: Any,
|
|
name: Optional[str] = None,
|
|
type_expr: Optional[Any] = None,
|
|
proxy_factory_fn: Optional[Callable[[fx.Node], fx.Proxy]] = None,
|
|
) -> fx.Proxy:
|
|
# NOTE: [Nested SubgraphTracer and free_variable handling]
|
|
# --------------------------------------------------------
|
|
# Read NOTE [HigherOrderOperator tracing design] first.
|
|
#
|
|
# Let's say we're in the middle of introspecting the body of a possibly
|
|
# nested HigherOrderOperator, and we see a free variable.
|
|
#
|
|
# There are two cases:
|
|
# 1. We see a free variable that is already tracked by Dynamo.
|
|
# 2. We see a free variable that has not been tracked by Dynamo
|
|
#
|
|
# In case 1, we call `maybe_lift_tracked_freevar_to_input` (below)
|
|
# which will lift the freevar to be an input of this subgraph
|
|
# and also recursively lift it to be an input on the parent(s).
|
|
#
|
|
# In case 2, before the call to `create_proxy`, the InstructionTranslator
|
|
# will see the freevar when it gets loaded by Python bytecode.
|
|
# E.g. for Python 3.11 the bytecodes that may do this are LOAD_DEREF or
|
|
# LOAD_GLOBAL.
|
|
# There, the InstructionTranslator asks Dynamo to begin tracking the
|
|
# freevar by building a new Variable.
|
|
# Building a new Variable automatically lifts the freevar to be an
|
|
# input of the root SubgraphTracer.
|
|
#
|
|
# The implications for the code below are:
|
|
# - We will always be in Case 1 when we get to this code.
|
|
# - Any "free variable" we encounter here is guaranteed to already be
|
|
# bound, that is, it is either a graph input of the root graph, or
|
|
# some local variable of the root graph or a subgraph.
|
|
# - The additional work we need to do here is *only* that we need to
|
|
# lift this free variable into inputs (recursively) of each nested
|
|
# higher-order-op subgraph until we hit the subgraph where the free
|
|
# variable is bound
|
|
if self.parent is not None:
|
|
flat_args, tree_spec = pytree.tree_flatten((args, kwargs))
|
|
new_flat_args = []
|
|
for arg in flat_args:
|
|
maybe_new_arg = self.maybe_lift_tracked_freevar_to_input(arg)
|
|
new_flat_args.append(maybe_new_arg)
|
|
|
|
args, kwargs = pytree.tree_unflatten(new_flat_args, tree_spec)
|
|
|
|
rv = super().create_proxy(
|
|
kind,
|
|
target,
|
|
args,
|
|
kwargs,
|
|
name,
|
|
type_expr,
|
|
proxy_factory_fn, # type: ignore[arg-type]
|
|
)
|
|
|
|
# append stack trace to fx node
|
|
tx = self.output_graph.current_tx
|
|
|
|
# log detailed location of line of code in 3.11
|
|
if sys.version_info >= (3, 11) and kind in (
|
|
"call_function",
|
|
"call_method",
|
|
"call_module",
|
|
):
|
|
cur_inst = tx.current_instruction
|
|
if (
|
|
cur_inst is not self.prev_inst
|
|
and cur_inst.positions is not None
|
|
and cur_inst.positions.lineno is not None
|
|
):
|
|
tx_code = tx.f_code
|
|
header = tx.get_line_of_code_header(lineno=cur_inst.positions.lineno)
|
|
|
|
def get_trace_call_log_str() -> str:
|
|
line = get_instruction_source_311(tx_code, cur_inst).rstrip()
|
|
return f"TRACE FX call {rv.node.name} from {header}\n{line}"
|
|
|
|
trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
|
|
self.prev_inst = cur_inst
|
|
|
|
# update reference to original meta if we're tracing a new code object
|
|
is_retracing = False
|
|
if tx.f_code is not self._cur_code:
|
|
orig_graphmodule_maybe = code_context.get_context(tx.f_code).get(
|
|
"orig_graphmodule", lambda: None
|
|
)()
|
|
if isinstance(orig_graphmodule_maybe, torch.fx.GraphModule):
|
|
is_retracing = True
|
|
self._orig_gm_meta = [
|
|
nd.meta for nd in orig_graphmodule_maybe.graph.nodes
|
|
]
|
|
self._orig_gm_lineno_map = orig_graphmodule_maybe._lineno_map
|
|
self._orig_gm_firstlineno = (
|
|
orig_graphmodule_maybe.forward.__code__.co_firstlineno
|
|
)
|
|
else:
|
|
self._orig_gm_meta = None
|
|
self._orig_gm_lineno_map = None
|
|
self._orig_gm_firstlineno = None
|
|
nn_module_stack = tx.nn_module_stack
|
|
if nn_module_stack:
|
|
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
|
|
|
if kind in {"call_function", "call_method"}:
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(rv.node.name, target)
|
|
]
|
|
elif kind == "call_module":
|
|
if self.parent is not None:
|
|
# TODO can remove once inline_inbuilt_nn_modules is always True
|
|
unimplemented_v2(
|
|
gb_type="Invoking an nn.Module inside a higher order operator",
|
|
context=f"Higher order op name: {self.source_target}",
|
|
explanation="This is not supported.",
|
|
hints=[],
|
|
)
|
|
# For modules we store the class
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(
|
|
rv.node.name,
|
|
next(
|
|
ty
|
|
for k, (_, ty) in rv.node.meta["nn_module_stack"].items()
|
|
if k.split("@")[0] == target
|
|
),
|
|
)
|
|
]
|
|
|
|
self._maybe_preserve_original_meta(tx, rv.node)
|
|
|
|
if not is_retracing:
|
|
if "nn_module_stack" not in rv.node.meta:
|
|
nn_module_stack = tx.nn_module_stack
|
|
if nn_module_stack:
|
|
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
|
|
|
if "source_fn_stack" not in rv.node.meta:
|
|
if kind in {"call_function", "call_method"}:
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(rv.node.name, target)
|
|
]
|
|
elif kind == "call_module":
|
|
if self.parent is not None:
|
|
# TODO can remove once inline_inbuilt_nn_modules is always True
|
|
unimplemented_v2(
|
|
gb_type="Invoking an nn.Module inside a HigherOrderOperator",
|
|
context="",
|
|
explanation="This is not supported.",
|
|
hints=[],
|
|
)
|
|
# For modules we store the class
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(
|
|
rv.node.name,
|
|
rv.node.meta["nn_module_stack"][target][1],
|
|
)
|
|
]
|
|
|
|
if "stack_trace" not in rv.node.meta:
|
|
frame_summaries: list[traceback.FrameSummary] = []
|
|
while tx:
|
|
# Avoid frame summaries from inside the torch/nn/modules. This ensures that we keep the stack trace of
|
|
# the user code.
|
|
if not tx.is_co_filename_from_nn_modules():
|
|
frame_summaries.append(tx.frame_summary())
|
|
tx = getattr(tx, "parent", None)
|
|
# Reverse the frame_summaries, such that the innermost frame is at the last
|
|
frame_summaries.reverse()
|
|
|
|
# official from_list stub doesn't have new-style type
|
|
msgs = traceback.StackSummary.from_list(frame_summaries).format()
|
|
rv.node.stack_trace = "".join(msgs)
|
|
|
|
if (
|
|
torch._dynamo.config.use_graph_deduplication
|
|
or torch._dynamo.config.track_nodes_for_deduplication
|
|
):
|
|
self.output_graph.region_tracker.track_node(
|
|
self.output_graph.current_tx, rv.node
|
|
)
|
|
return rv
|
|
|
|
def create_node(
|
|
self,
|
|
op: str,
|
|
target: Target,
|
|
args: Any = None,
|
|
kwargs: Any = None,
|
|
name: Optional[str] = None,
|
|
type_expr: Optional[Any] = None,
|
|
) -> fx.Node:
|
|
check_pt2_compliant_op(self.output_graph, op, target, args, kwargs)
|
|
if self.parent is not None:
|
|
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
|
for arg in flat_args:
|
|
if not isinstance(arg, torch.fx.Node):
|
|
continue
|
|
assert arg.graph == self.graph, (
|
|
"create_node using arg not from this SubgraphTracer"
|
|
)
|
|
|
|
node = super().create_node(op, target, args, kwargs, name, type_expr)
|
|
node.meta["creation_timestamp"] = self.output_graph.timestamp
|
|
self._used_names.add(node.name)
|
|
return node
|
|
|
|
# Note: we did not override erase_node since
|
|
# we call self.graph.erase_node elsewhere
|
|
def remove_node(self, node: fx.Node) -> None:
|
|
if len(node.users) > 0:
|
|
user_graph_nodes: list[torch.fx.Node] = []
|
|
for user in node.users.keys():
|
|
# For the case where user.graph == self.graph, that is a real bug and will raise
|
|
# properly.
|
|
if user.graph != self.graph:
|
|
# This is a nested graph, which needs to be deleted.
|
|
# If we do not do this, we will raise on attempting to remove this.
|
|
# As we only get here during restoration cleanup, this is sound.
|
|
user_graph_nodes.extend(reversed(list(user.graph.nodes)))
|
|
for other_graph_node in user_graph_nodes:
|
|
other_graph_node.graph.erase_node(other_graph_node)
|
|
self.graph.erase_node(node)
|
|
self.input_name_to_proxy.pop(node.name, None)
|
|
|
|
# when before=True, we will insert this input before the most recent
|
|
# inserted proxy. This is a hack to get around an ordering problem,
|
|
# where we first insert a tensor argument, and then insert bindings
|
|
# for SymInts that may occur in the tensor argument.
|
|
# Remove this if https://github.com/pytorch/pytorch/issues/99007 gets
|
|
# fixed.
|
|
def create_graph_input(
|
|
self,
|
|
name: str,
|
|
type_expr: Any,
|
|
example_value: Any,
|
|
before: bool = False,
|
|
source: Optional[Source] = None,
|
|
) -> fx.Proxy:
|
|
if isinstance(example_value, torch.Tensor):
|
|
self._input_versions_at_beginning.append(example_value._version)
|
|
log.debug(
|
|
"create_graph_input %s %s %s at debug_level %s before=%s",
|
|
name,
|
|
source.name() if source is not None else "(none)",
|
|
example_value,
|
|
self.debug_level,
|
|
before,
|
|
)
|
|
if source is None:
|
|
assert self.parent is not None, (
|
|
f"you are required to provide a source for inputs {name} example_val {example_value} on the root tracer"
|
|
)
|
|
|
|
# Note [Export inputs must be explicitly passed in]
|
|
# In eager, we are generally OK with adding graph inputs whenever we
|
|
# want, because we take care of writing the bytecode that knows how
|
|
# to source all the inputs.
|
|
#
|
|
# In export, this is bad, because you want a self-contained export
|
|
# object which only depends on the inputs you explicitly passed to it.
|
|
# So we are a bit more strict about what sources can become inputs
|
|
# in export
|
|
if self.is_export and self.parent is None:
|
|
assert source is not None
|
|
if not is_from_local_source(source, only_allow_input=True):
|
|
self.output_graph.source_to_user_stacks.setdefault(source, []).append(
|
|
TracingContext.extract_stack()
|
|
)
|
|
|
|
# _used_names contains the names of all the nodes in the graph,
|
|
# including intermediates. This ensures that we do not have a name
|
|
# collision.
|
|
name = get_unique_name_wrt(name, self._used_names)
|
|
if self.input_name_to_proxy:
|
|
prev_name = next(reversed(self.input_name_to_proxy))
|
|
node = self.input_name_to_proxy[prev_name].node
|
|
if before:
|
|
ctx = self.graph.inserting_before(node)
|
|
else:
|
|
ctx = self.graph.inserting_after(node)
|
|
else:
|
|
ctx = self.graph.inserting_before(None)
|
|
with ctx:
|
|
proxy = self.create_proxy("placeholder", name, (), {}, type_expr=type_expr)
|
|
set_example_value(proxy.node, example_value)
|
|
if self.input_name_to_proxy and before:
|
|
k, v = self.input_name_to_proxy.popitem()
|
|
self.input_name_to_proxy[name] = proxy
|
|
self.input_name_to_proxy[k] = v
|
|
else:
|
|
self.input_name_to_proxy[name] = proxy
|
|
|
|
# For placeholder nodes, `name` is passed as a str to the target,
|
|
# and then torch.fx decides the node.name. So, record the `target`
|
|
# name as well in the _used_names to prevent any collision.
|
|
self._used_names.add(name)
|
|
|
|
# NOTE: [Auto lift basic free symbols when create_graph_input]
|
|
# Whenever we call create_graph_input, we try to also lift the basic symbols in example values
|
|
# as graph input.
|
|
# This applies to both top-level graph and subgraphs in higher order ops.
|
|
# It has several cases:
|
|
# 1. When create_graph_input for a tensor that has symbolic shapes,
|
|
# we look for basic symbols in its size and stride, we check if the symbol is bound
|
|
# in current graph (i.e. bound_symbols), it it's not bound, we'll create a placeholder
|
|
# for it then recursively check its parent, creates ph if not bound.
|
|
# Every tracer maintains a mapping (i.e. lifted_freevars)
|
|
# that maps from parent proxy to proxy in current tracer for the symbol.
|
|
# 2. When create_graph_input for a tensor with unbacked symbolic shapes,
|
|
# Backed symbols all come from inputs's symbolic shape. But unbacked symbols
|
|
# can be created while tracing. So we use track_unbacked_symbols will intercept
|
|
# at wrap_fx_proxy, and try to bind the unbacked symbols immediately after they're
|
|
# created.
|
|
# 3. subgraph will also lifted basic symbols in compound exprs of tensor shape.
|
|
# For example, if an input to subgraph takes size [s1+s2//8], we'll look for the
|
|
# the free symbols in the sizes and lift as inputs similar to 1 in _lift_symbols_in_symint)
|
|
# 4. When create_graph_input for a SymInt, if the symint is a basic symbol, we'll track it
|
|
# in bound_symbols so that we don't lift the same basic symbol twice. When the symint is a
|
|
# compound expr, we'll just create the proxy for the compouned expr but not lift its basic symbols.
|
|
# Also see NOTE: [Export inputs must be explicitly passed in]
|
|
is_strict_export = self.is_export
|
|
is_non_strict_export = torch.compiler.is_compiling()
|
|
if not is_strict_export and not is_non_strict_export:
|
|
if isinstance(example_value, torch.Tensor):
|
|
self._lift_basic_symbols(example_value, source)
|
|
elif isinstance(example_value, (list, tuple)):
|
|
for i, e in enumerate(example_value):
|
|
if not isinstance(e, torch.Tensor):
|
|
continue
|
|
|
|
e_source = None
|
|
if source:
|
|
e_source = GetItemSource(
|
|
base=source, index=i, index_is_slice=False
|
|
)
|
|
|
|
self._lift_basic_symbols(e, e_source)
|
|
|
|
# Bound the symbol to ph if example_value is a SymInt with basic symbol.
|
|
if isinstance(example_value, torch.SymInt) and isinstance(
|
|
example_value.node.expr, sympy.Symbol
|
|
):
|
|
self.bound_symbols[example_value.node.expr] = proxy
|
|
return proxy
|
|
|
|
# See NOTE: [Nested SubgraphTracer and free_variable handling] for more details
|
|
def lift_tracked_freevar_to_input(
|
|
self, proxy: fx.Proxy
|
|
) -> Union[LazyProxy, fx.Proxy]:
|
|
# You're doing something wrong if we are the root SubgraphTracer because
|
|
# Dynamo adds tensors to graph inputs before creating a proxy for them.
|
|
assert self.parent is not None, (
|
|
"lift_tracked_freevar_to_input should not be called on root SubgraphTracer"
|
|
)
|
|
|
|
example_value = proxy.node.meta["example_value"]
|
|
|
|
# To avoid lifting the same symbol twice, we check whether basic symbols has been tracked.
|
|
# For example, the basic symbols may have already been lifted for current subgraph when
|
|
# we automatically lift basic symbols in the sizes/strides of a tensor t.
|
|
# Suppose parent graph calls sz = t.size()[0], it creates
|
|
# a proxy in parent and the subgraph accesses sz via closure. sz's proxy is not tracked
|
|
# in current sub-tracer so we may lift the same symbol twice.
|
|
if (
|
|
isinstance(example_value, torch.SymInt)
|
|
and example_value.node.expr in self.bound_symbols
|
|
):
|
|
return self.bound_symbols[example_value.node.expr]
|
|
|
|
# Proxies are associated with VariableTracker.
|
|
# It is possible that we've already lifted the Proxy to be an input.
|
|
# If that is the case, just return the already lifted Proxy.
|
|
if proxy in self.lifted_freevars:
|
|
return self.lifted_freevars[proxy]
|
|
|
|
# We first lift proxy to parent's graph then lift to current grpah's input
|
|
# so that when we bind symints of the sizes in current graph, those symints
|
|
# would already be lifted as inputs to parent graph.
|
|
if proxy.tracer != self.parent:
|
|
self.parent.lift_tracked_freevar_to_input(proxy)
|
|
|
|
example_value = proxy.node.meta["example_value"]
|
|
new_proxy = self.create_graph_input(
|
|
proxy.node.name, type(example_value), example_value
|
|
)
|
|
self.lifted_freevars[proxy] = new_proxy
|
|
return new_proxy
|
|
|
|
def maybe_lift_tracked_freevar_to_input(self, arg: Any) -> Any:
|
|
"""
|
|
If arg is a free variable, then lift it to be an input.
|
|
Returns the new lifted arg (if arg was a freevar), else the
|
|
original arg.
|
|
"""
|
|
if not isinstance(arg, torch.fx.Proxy):
|
|
# Note: arg can be a python built-in slice type e.g.
|
|
# x[:max_seq] is represented as get_item(t, (slice(None, max_seq, None)))
|
|
# we need to also look into the slice variable itself to lift the
|
|
# proxies there.
|
|
if isinstance(arg, slice):
|
|
return slice(
|
|
*(
|
|
self.maybe_lift_tracked_freevar_to_input(sub_arg)
|
|
for sub_arg in (arg.start, arg.stop, arg.step)
|
|
)
|
|
)
|
|
else:
|
|
return arg
|
|
elif arg.tracer == self:
|
|
return arg
|
|
return self.lift_tracked_freevar_to_input(arg)
|
|
|
|
# See NOTE: [Auto lift basic free symbols when create_graph_input] for overall design
|
|
# You MUST call this API every time when creating a proxy in wrap_fx_proxy for a call
|
|
# that produced unbacked symints or tensors with unbacked symint shapes.
|
|
# This function is used to track the unbacked symints with its proxies created during
|
|
# dynamo tracing so that subgraph knows how to bind a symbol input with parent's proxy.
|
|
# LazyProxy are created for tensor shapes that're unbacked so that we don't create proxies
|
|
# for symbols that're not going to be used.
|
|
def track_unbacked_symbols(
|
|
self, example_value: Any, e_proxy: Union[LazyProxy, torch.fx.Proxy]
|
|
) -> None:
|
|
# When binding the symbols in an exmaple_value, we bind the symbols
|
|
# to the proxy's associated Tracer instead of current tracer.
|
|
# This is because:
|
|
# 1. We may be calling wrap_tensors during speculate_subgraph because
|
|
# the variables are lazily realized. The proxy are top-level phs but
|
|
# current tracer is a subtracer.
|
|
# 2. For autograd.Function, we trace the backward graph with a new tracer
|
|
# whose parent is the forward tracer, but we're using all the proxies created
|
|
# in forward tracer to trace the backward.
|
|
# For example, forward calls save_for_backward for a input tensor t.
|
|
# Backward calls t.tolist(). In this case, all the proxies that backward tracer
|
|
# sees are from parent tracer (i.e. the forward tracer). (e.g. t[0].item())
|
|
# See test_validate_outputs_unbacked for repro on 2.
|
|
tracer = e_proxy.tracer
|
|
assert isinstance(tracer, SubgraphTracer)
|
|
|
|
def need_bind(s: Any) -> bool:
|
|
from torch.fx.experimental.symbolic_shapes import is_symbolic
|
|
|
|
return (
|
|
is_symbolic(s)
|
|
and isinstance(s.node.expr, sympy.Symbol)
|
|
and s.node.shape_env.is_unbacked_symint(s.node.expr)
|
|
and s.node.expr not in self.bound_symbols
|
|
)
|
|
|
|
def _proxy_with_example_value(
|
|
example_value: Any, *args: Any, **kwargs: Any
|
|
) -> fx.Proxy:
|
|
proxy = tracer.create_proxy(*args, **kwargs)
|
|
set_example_value(proxy.node, example_value)
|
|
return proxy
|
|
|
|
if isinstance(example_value, torch.Tensor):
|
|
for i, s in enumerate(example_value.size()):
|
|
if need_bind(s):
|
|
log.debug(
|
|
"_track_unbacked_symbols %s for %s.size()[%s] at debug_level %s",
|
|
s,
|
|
e_proxy,
|
|
i,
|
|
tracer.debug_level,
|
|
)
|
|
lazy_proxy = LazyProxy(
|
|
tracer,
|
|
_proxy_with_example_value,
|
|
s,
|
|
"call_function",
|
|
torch.ops.aten.sym_size.int,
|
|
(e_proxy, i),
|
|
{},
|
|
type_expr=type(s),
|
|
)
|
|
self.track_unbacked_symbols(s, lazy_proxy)
|
|
|
|
if example_value.layout is torch.strided:
|
|
for i, s in enumerate(example_value.stride()):
|
|
if need_bind(s):
|
|
log.debug(
|
|
"_track_unbacked_symbols %s for %s.stride()[%s] at debug_level %s",
|
|
s,
|
|
e_proxy,
|
|
i,
|
|
tracer.debug_level,
|
|
)
|
|
lazy_proxy = LazyProxy(
|
|
tracer,
|
|
_proxy_with_example_value,
|
|
s,
|
|
"call_function",
|
|
torch.ops.aten.sym_stride.int,
|
|
(e_proxy, i),
|
|
{},
|
|
type_expr=type(s),
|
|
)
|
|
self.track_unbacked_symbols(s, lazy_proxy)
|
|
|
|
elif example_value.layout is torch.sparse_coo:
|
|
self.track_unbacked_symbols(example_value._indices(), e_proxy)
|
|
self.track_unbacked_symbols(example_value._values(), e_proxy)
|
|
elif example_value.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
|
self.track_unbacked_symbols(example_value.crow_indices(), e_proxy)
|
|
self.track_unbacked_symbols(example_value.col_indices(), e_proxy)
|
|
elif example_value.layout in {torch.sparse_csc, torch.sparse_bsc}:
|
|
self.track_unbacked_symbols(example_value.ccol_indices(), e_proxy)
|
|
self.track_unbacked_symbols(example_value.row_indices(), e_proxy)
|
|
if is_traceable_wrapper_subclass(example_value):
|
|
attrs, ctx = example_value.__tensor_flatten__()
|
|
for attr in attrs:
|
|
inner_t = getattr(example_value, attr)
|
|
self.track_unbacked_symbols(inner_t, getattr(e_proxy, attr))
|
|
elif isinstance(example_value, torch.SymInt):
|
|
# Only bind unbacked symbols. backed symbols are lifted as inputs.
|
|
if need_bind(example_value):
|
|
expr = example_value.node.expr
|
|
tracer.bound_symbols[expr] = e_proxy
|
|
|
|
# See Note [Auto lift basic free symbols when create_graph_input]
|
|
def _lift_basic_symbols(
|
|
self, example_value: Union[torch.SymInt, torch.Tensor], src: Optional[Source]
|
|
) -> None:
|
|
# The before arg is for inserting symints in the sizes/strides of a tensor
|
|
# before the tensor. This ordering ensures that when we look at the tensor's
|
|
# symbols, they're already lifted/tracked. E.g. this assumption is used
|
|
# in insert_deferred_runtime_asserts.
|
|
def _lift_symbols_in_symint(
|
|
s: Union[int, torch.SymInt],
|
|
source: Optional[Source],
|
|
before: bool = False,
|
|
) -> None:
|
|
if not is_symbolic(s):
|
|
return
|
|
|
|
assert isinstance(s, torch.SymInt)
|
|
self_to_be_bound = self.lookup_unbound_symbols(s)
|
|
if len(self_to_be_bound) == 0:
|
|
return
|
|
|
|
# For subgraph
|
|
if self.parent is not None:
|
|
# Recursively lift symbols in symint until top-level.
|
|
self.parent._lift_basic_symbols(s, source)
|
|
for s0 in self_to_be_bound:
|
|
parent_proxy = self.parent.bound_symbols[s0]
|
|
example_val = parent_proxy.node.meta["example_value"] # type: ignore[union-attr]
|
|
assert isinstance(example_val, torch.SymInt)
|
|
ph = self.create_graph_input(
|
|
str(s0),
|
|
type(example_val),
|
|
example_val,
|
|
before=before,
|
|
source=source,
|
|
)
|
|
log.debug(
|
|
"_lift_symbols_in_symint %s from %s at debug_level %s",
|
|
s0,
|
|
source.name() if source is not None else "subgraph inputs",
|
|
self.debug_level,
|
|
)
|
|
self.lifted_freevars[parent_proxy] = ph # type: ignore[index]
|
|
# For root_tracer:
|
|
else:
|
|
assert len(self_to_be_bound) == 1, (
|
|
f"For root tracer, we only expect to bind basic symbols (compound symbols "
|
|
f"should be cached before) but got unbound symbols {self_to_be_bound} in {s}"
|
|
)
|
|
assert source is not None, (
|
|
f"Source of '{s}' is None when lifting it to input of top-level. If it's an unbacked symbol, "
|
|
"this could be because it's not tracked with lazy_bind_unbacked_symbols. "
|
|
f"Otherwise, should provide a source when create_graph_input for `{s}` at root tracer."
|
|
)
|
|
s0 = next(iter(self_to_be_bound))
|
|
ph = self.create_graph_input(
|
|
str(s0),
|
|
type(s),
|
|
s,
|
|
before=before,
|
|
source=source,
|
|
)
|
|
log.debug(
|
|
"_lift_symbols_in_symint %s from %s at debug_level %s",
|
|
s,
|
|
source.name() if source is not None else "subgraph inputs",
|
|
self.debug_level,
|
|
)
|
|
ph.node.meta["grapharg"] = GraphArg(
|
|
source,
|
|
s,
|
|
pass_arg_as_tensor=False,
|
|
fake_tensor=None,
|
|
is_tensor=False,
|
|
)
|
|
|
|
if isinstance(example_value, torch.Tensor):
|
|
for i, s in enumerate(example_value.size()):
|
|
_lift_symbols_in_symint(
|
|
s,
|
|
(
|
|
TensorPropertySource(src, TensorProperty.SIZE, i)
|
|
if src is not None
|
|
else None
|
|
),
|
|
before=True,
|
|
)
|
|
if example_value.layout is torch.strided:
|
|
for i, s in enumerate(example_value.stride()):
|
|
_lift_symbols_in_symint(
|
|
s,
|
|
(
|
|
TensorPropertySource(src, TensorProperty.STRIDE, i)
|
|
if src is not None
|
|
else None
|
|
),
|
|
before=True,
|
|
)
|
|
_lift_symbols_in_symint(
|
|
example_value.storage_offset(),
|
|
(
|
|
TensorPropertySource(src, TensorProperty.STORAGE_OFFSET)
|
|
if src is not None
|
|
else None
|
|
),
|
|
before=True,
|
|
)
|
|
elif example_value.layout is torch.sparse_coo:
|
|
self._lift_basic_symbols(example_value._indices(), src)
|
|
self._lift_basic_symbols(example_value._values(), src)
|
|
elif example_value.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
|
self._lift_basic_symbols(example_value.crow_indices(), src)
|
|
self._lift_basic_symbols(example_value.col_indices(), src)
|
|
elif example_value.layout in {torch.sparse_csc, torch.sparse_bsc}:
|
|
self._lift_basic_symbols(example_value.ccol_indices(), src)
|
|
self._lift_basic_symbols(example_value.row_indices(), src)
|
|
if is_traceable_wrapper_subclass(example_value):
|
|
attrs, ctx = example_value.__tensor_flatten__()
|
|
for attr in attrs:
|
|
inner_t = getattr(example_value, attr)
|
|
self._lift_basic_symbols(
|
|
inner_t, AttrSource(src, attr) if src is not None else None
|
|
)
|
|
elif isinstance(example_value, torch.SymInt):
|
|
_lift_symbols_in_symint(
|
|
example_value,
|
|
src,
|
|
)
|
|
|
|
# Lookup the proxy in current tracer for each symbol in expressions of s,
|
|
# See Note [Auto lift basic free symbols when create_graph_input]
|
|
def lookup_unbound_symbols(self, s: torch.SymInt) -> list[sympy.Symbol]:
|
|
free_symbols = s.node.expr.free_symbols
|
|
if len(free_symbols) == 0:
|
|
return []
|
|
|
|
to_be_bound = []
|
|
for s0 in free_symbols:
|
|
if s0 not in self.bound_symbols:
|
|
to_be_bound.append(s0)
|
|
continue
|
|
|
|
proxy = self.bound_symbols[s0]
|
|
if isinstance(proxy, LazyProxy):
|
|
proxy = proxy()
|
|
self.bound_symbols[s0] = proxy
|
|
assert isinstance(proxy, torch.fx.Proxy) and proxy.tracer is self, (
|
|
f"The proxy of symbol {s0} doesn't belong to current tracer."
|
|
)
|
|
# Sort the symbols so that we can have a deterministic lifting order
|
|
return sorted(to_be_bound, key=lambda s: s.name)
|
|
|
|
def has_input_mutation(self) -> MutationInfo:
|
|
input_versions_at_beginning = self._input_versions_at_beginning
|
|
input_nodes = []
|
|
|
|
input_versions_at_end = []
|
|
for node in self.graph.nodes:
|
|
if node.op == "placeholder":
|
|
example_value = node.meta["example_value"]
|
|
if isinstance(example_value, torch.Tensor):
|
|
input_versions_at_end.append(example_value._version)
|
|
input_nodes.append(node)
|
|
else:
|
|
break
|
|
|
|
mutated_inputs = [
|
|
i
|
|
for i, (v1, v2) in enumerate(
|
|
zip(input_versions_at_beginning, input_versions_at_end)
|
|
)
|
|
if v1 != v2
|
|
]
|
|
|
|
if len(mutated_inputs):
|
|
mutated_nodes = [input_nodes[i] for i in mutated_inputs]
|
|
msg = f"Input mutation detected at {mutated_nodes}"
|
|
return MutationInfo(True, msg)
|
|
|
|
return MutationInfo(False, "")
|
|
|
|
def has_aliasing(self) -> AliasingInfo:
|
|
from torch._higher_order_ops.utils import _collect_fake_inputs
|
|
|
|
input_storages: dict[StorageWeakRef, torch.fx.Node] = dict()
|
|
|
|
for node in self.graph.nodes:
|
|
if node.op == "placeholder":
|
|
example_value = _collect_fake_inputs([node])[0]
|
|
if isinstance(example_value, torch.Tensor):
|
|
storage = StorageWeakRef(example_value._typed_storage())
|
|
if storage in input_storages:
|
|
# input-input aliasing
|
|
msg = f"Input-to-input aliasing detected at nodes {input_storages[storage]} and {node}"
|
|
return AliasingInfo(True, msg)
|
|
input_storages[storage] = node
|
|
else:
|
|
break
|
|
|
|
output_storages: dict[StorageWeakRef, torch.fx.Node] = dict()
|
|
out_nodes = self.graph.find_nodes(op="output")[0]
|
|
for out_node in pytree.tree_leaves(out_nodes.args[0]):
|
|
if out_node:
|
|
example_value = _collect_fake_inputs([out_node])[0]
|
|
assert not isinstance(example_value, list)
|
|
if isinstance(example_value, torch.Tensor):
|
|
storage = StorageWeakRef(example_value._typed_storage())
|
|
if storage in output_storages:
|
|
# output-output aliasing
|
|
msg = f"Output-to-output aliasing detected at nodes {output_storages[storage]} and {out_node}"
|
|
return AliasingInfo(True, msg)
|
|
output_storages[storage] = out_node
|
|
|
|
intersected_storages = input_storages.keys() & output_storages.keys()
|
|
if len(intersected_storages) > 0:
|
|
# input-output aliasing
|
|
aliased = [
|
|
(input_storages[s], output_storages[s]) for s in intersected_storages
|
|
]
|
|
aliased = ", ".join([f"{i} and {o}" for i, o in aliased])
|
|
msg = f"Input-to-output aliasing detected at nodes {aliased}"
|
|
return AliasingInfo(True, msg)
|
|
|
|
return AliasingInfo(False, "")
|
|
|
|
|
|
# NOTE: [HigherOrderOperator tracing design]
|
|
# Ignoring HigherOrderOperators for a moment,
|
|
# OutputGraph represents the graph being built by Dynamo that may be compiled
|
|
# and executed. It holds a root SubgraphTracer where the FX graph is built.
|
|
#
|
|
# HigherOrderOperators are operators that take functions as their arguments.
|
|
# When Dynamo encounters a HigherOrderOperator, then it attempts to introspect
|
|
# the function passed to it (call this the "body function"), capture it into a
|
|
# GraphModule, and rewrite the call to the HigherOrderOperator to use the
|
|
# GraphModule.
|
|
#
|
|
# The way we handle the capture of body functions is through having
|
|
# (possibly nested) SubgraphTracers, one per body function.
|
|
#
|
|
# Mechanically, we do the introspection by:
|
|
# - Creating a new SubgraphTracer via OutputGraph.subtracer
|
|
# - Executing the body function.
|
|
# This constructs the graph of the body function in the new SubgraphTracer
|
|
# while modifying the state of the OutputGraph. For example:
|
|
# - the OutputGraph can receive new GraphArgs (if we discover any new
|
|
# untracked Tensors)
|
|
# - side effects from the body function get accumulated into
|
|
# OutputGraph.side_effects
|
|
# - guards produced by the body function get accumulated into OutputGraph.guards
|
|
#
|
|
# The traced function has some special properties that make it easier for us
|
|
# to transform later down the line:
|
|
# - we lift all free variables to being inputs.
|
|
#
|
|
# If the introspection fails (due to the existence of graph breaks), then
|
|
# we roll back the current OutputGraph state and graph break on the
|
|
# HigherOrderOperator.
|