Files
pytorch/torch/_dynamo/external_utils.py
Lucas Kabela 5951fcd50a [Dynamo][Better Engineering] Support typing in codegen.py (#158386)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a critical tracing point for dynamo, primarily for `codegen.py` but also `config.py`

Running
```
mypy torch/_dynamo/codegen.py torch/_dynamo/config.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  347 | 1330 | 26.09% | 24 | 50 | 48.00% |
| This PR | 1334 | 1334 | 100.00% | 50 | 50 | 100.00% |
| Delta    | +987 | +4 | +73.91.% | +26 | 0 | +52.00% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158386
Approved by: https://github.com/StrongerXi
2025-07-16 22:09:01 +00:00

252 lines
7.3 KiB
Python

"""
This module contains utility functions that are explicitly allowed to be called during
TorchDynamo compilation. These functions are carefully vetted to ensure they work
correctly within the TorchDynamo tracing and compilation process.
Key functionality groups:
- Compilation State:
Functions for checking compilation state (is_compiling)
- Function Wrapping:
Utilities for wrapping functions (wrap_inline, wrap_numpy) to work with
TorchDynamo compilation
- Autograd Hooks:
Functions and classes for handling autograd hooks and backward passes
(call_hook, FakeBackwardCFunction, etc.)
- Tensor Operations:
Utility functions for tensor operations and transformations
"""
import functools
import warnings
from typing import Any, Callable, Optional, TYPE_CHECKING, TypeVar, Union
from typing_extensions import deprecated, ParamSpec
import torch
import torch.utils._pytree as pytree
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
_P = ParamSpec("_P")
_R = TypeVar("_R")
if TYPE_CHECKING:
# TorchScript does not support `@deprecated`
# This is a workaround to avoid breaking TorchScript
@deprecated(
"`torch._dynamo.external_utils.is_compiling` is deprecated. Use `torch.compiler.is_compiling` instead.",
category=FutureWarning,
)
def is_compiling() -> bool:
return torch.compiler.is_compiling()
else:
def is_compiling() -> bool:
"""
Indicates whether we are tracing/compiling with torch.compile() or torch.export().
"""
# NOTE: With `@torch.compile(backend="eager")`, torch._dynamo.is_compiling() will get traced
# and return true. torch.compiler.is_compiling() is skipped and will return false.
return torch.compiler.is_compiling()
def wrap_inline(fn: Callable[_P, _R]) -> Callable[_P, _R]:
"""
Create an extra frame around fn that is not in skipfiles.
"""
@functools.wraps(fn)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> _R:
return fn(*args, **kwargs)
return inner
def call_hook(
hook: Callable[..., Optional[torch.Tensor]], *args: Any, **kwargs: Any
) -> torch.Tensor:
"""
Used by compiled autograd to handle hook returning None.
"""
result = hook(*args)
if result is None:
return args[0]
elif kwargs.get("hook_type") == "post_acc_grad_hook":
raise RuntimeError("Tensor post accumulate grad hooks should return None.")
return result
def wrap_numpy(f: Callable[_P, _R]) -> Callable[_P, _R]:
r"""Decorator that turns a function from ``np.ndarray``s to ``np.ndarray``s into a function
from ``torch.Tensor``s to ``torch.Tensor``s.
"""
if not np:
return f
@functools.wraps(f)
def wrap(*args: _P.args, **kwargs: _P.kwargs) -> pytree.PyTree:
args, kwargs = pytree.tree_map_only(
torch.Tensor, lambda x: x.numpy(), (args, kwargs)
)
out = f(*args, **kwargs)
return pytree.tree_map_only(np.ndarray, lambda x: torch.as_tensor(x), out)
return wrap
class FakeBackwardCFunction:
def __init__(
self,
real: torch.autograd.function.BackwardCFunction,
saved_tensors: list[torch.Tensor],
) -> None:
self.real = real
self.saved_tensors = saved_tensors
def __getattr__(self, name: str) -> Any:
if name == "saved_variables":
warnings.warn(
"'saved_variables' is deprecated; use 'saved_tensors'",
DeprecationWarning,
)
return self.saved_tensors
return getattr(self.real, name)
def call_backward(
backward_c_function: torch.autograd.function.BackwardCFunction,
saved_tensors: list[torch.Tensor],
*args: Any,
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
fake = FakeBackwardCFunction(backward_c_function, saved_tensors)
grads = fake._forward_cls.backward(fake, *args) # type: ignore[attr-defined]
if not isinstance(grads, tuple):
grads = (grads,)
return grads
def normalize_as_list(x: Any) -> list[Any]:
if isinstance(x, tuple):
return list(x)
elif isinstance(x, list):
return x
return [x]
def untyped_storage_size(x: torch.Tensor) -> int:
return x.untyped_storage().size()
class FakeCompiledAutogradEngine:
@staticmethod
def queue_callback(
final_callbacks: list[Callable[[], None]], cb: Callable[[], None]
) -> None:
final_callbacks.append(cb)
@staticmethod
def exec_final_callbacks(final_callbacks: list[Callable[[], None]]) -> None:
i = 0
while i < len(final_callbacks):
cb = final_callbacks[i]
cb()
i += 1
final_callbacks.clear()
@staticmethod
def _exec_final_callbacks_stub() -> None:
pass
def call_hook_from_backward_state(
*args: Any, bw_state: Any, hook_name: str, **kwargs: Any
) -> Any:
return getattr(bw_state, hook_name)(*args, **kwargs)
def call_module_hooks_from_backward_state(
_: Any, result: Any, *args: Any, bw_state: Any, hooks_name: str, module_name: str
) -> Any:
module = getattr(bw_state, module_name)
hooks = getattr(bw_state, hooks_name)
for hook in hooks:
new_result = hook(module, result, *args)
if new_result is not None:
result = new_result
return result
# used for torch._dynamo.disable(recursive=False)
def get_nonrecursive_disable_wrapper(fn: Callable[_P, _R]) -> Callable[_P, _R]:
# wrap function to get the right error message
# this function is in external_utils so that convert_frame doesn't skip it.
@functools.wraps(fn)
def nonrecursive_disable_wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
return fn(*args, **kwargs)
return nonrecursive_disable_wrapper
def wrap_dunder_call_ctx_manager(self: Any, func: Callable[_P, _R]) -> Callable[_P, _R]:
"""
Apply self as a ctx manager around a call to func
"""
@functools.wraps(func)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> _R:
with self:
return func(*args, **kwargs)
return inner
# Use only on ints marked dynamic via torch.empty(0, integer)
# Currently only way to mark ints as dynamic: https://github.com/pytorch/pytorch/issues/129623
def unwrap_maybe_dynamic_int(x: Union[torch.Tensor, int]) -> int:
if isinstance(x, torch.Tensor):
# x.size() is expected to be [0, dynamic_int]
return x.size(1)
return x
def call_accumulate_grad(
variable: torch.Tensor, grad: torch.Tensor, has_post_hooks: bool
) -> None:
updated_grad = torch._dynamo.compiled_autograd.ops.AccumulateGrad( # type: ignore[attr-defined]
[grad], variable, variable.grad, has_post_hooks
)
variable.grad = updated_grad[0]
def wrap_inline_with_set_fullgraph(
fn: Callable[_P, _R], fullgraph: bool
) -> Callable[_P, _R]:
# NB: need multiple definitions in order to prevent `fullgraph` from
# being a freevar of wrapper
if fullgraph:
@functools.wraps(fn)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
with torch._dynamo.set_fullgraph(True):
return fn(*args, **kwargs)
else:
@functools.wraps(fn)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
with torch._dynamo.set_fullgraph(False):
return fn(*args, **kwargs)
return wrapper