Files
pytorch/tools/autograd/gen_python_functions.py
Tongzhou Wang d8b2e5d091 Add python only default init expression; Implement stft, hann/hamming/bartlett window. (#4095)
* implement stft

* addressed comments; implemented window functions; added support for python only default initialization
2017-12-18 12:28:23 -05:00

244 lines
8.5 KiB
Python

from .nested_dict import nested_dict
from tools.shared.module_loader import import_module
CodeTemplate = import_module('code_template', 'aten/src/ATen/code_template.py').CodeTemplate
PY_VARIABLE_METHOD_VARARGS = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
${prototypes}
});
${unpack_self}
PyObject* parsed_args[${max_args}];
auto r = parser.parse(args, kwargs, parsed_args);
${dispatch}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
""")
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
${unpack_self}
return wrap(${dispatch_name}(${actuals}));
END_HANDLE_TH_ERRORS
}
""")
PY_VARIABLE_CASE = CodeTemplate("""\
${cond} (r.idx == ${i}) {
return wrap(${dispatch_name}(${actuals}));
""")
PY_VARIABLE_CASE_WITH_UNPACK = CodeTemplate("""\
${cond} (r.idx == ${i}) {
${unpack_args}
return wrap(${dispatch_name}(${actuals}));
""")
PY_VARIABLE_DISPATCH = CodeTemplate("""\
inline ${return_type} ${dispatch_name}(${formal_args}) {
${AutoNoGIL}
${AutoGPU}
return ${dispatch_call}(${dispatch_args});
}
""")
PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
{"${name}", (PyCFunction)${pycname}, ${flags}, NULL},""")
UNPACK_ARG = CodeTemplate("""\
${formal_arg} = ${actual};""")
UNPACK_SELF = "auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;"
# XXX: if you got here because of an assertion failure, it doesn't mean
# it's enough to just extend the list here. Before you do this, make sure
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
SUPPORTED_RETURN_TYPES = {
'Tensor', 'std::tuple<Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,Tensor>',
'std::vector<Tensor>',
'Scalar', 'bool', 'int64_t', 'void*'
}
def create_python_bindings(
python_functions, py_methods, py_method_defs, py_method_dispatch,
is_class):
"""python_variable_methods.cpp
Generates Python bindings to Variable methods
"""
unpack_methods = {
'const Tensor &': 'tensor',
'SparseTensor': 'tensor',
'Tensor &': 'tensor',
'Generator *': 'generator',
'Storage &': 'storage',
'int64_t': 'toInt64',
'bool': 'toBool',
'double': 'toDouble',
}
unpack_with_default_methods = {
'IntList': 'setDefaultIntlist',
'Scalar': 'scalarWithDefault',
'int64_t': 'toInt64WithDefault',
'bool': 'setDefaultBool',
'double': 'setDefaultDouble',
}
def first_tensor_arg(arguments):
for arg in arguments:
if arg['simple_type'] in {'Tensor', 'TensorList'}:
return arg['name']
return None
def auto_gpu(option):
tensor_arg = first_tensor_arg(option['arguments'])
if tensor_arg is None:
return ''
return 'AutoGPU auto_gpu({});'.format(tensor_arg)
def emit_dispatch(i, function):
env = {}
simple_return_type = function['return_type'].replace(' &', '')
assert simple_return_type in SUPPORTED_RETURN_TYPES, \
function['name'] + ' returns unsupported type: ' + simple_return_type
actuals = []
unpack_args = False
formal_args = []
arg_idx = 0
for arg in function['arguments']:
name = arg['name']
if 'Tensor' in function['method_of'] and name == 'self':
formal_args.append('Tensor & {}'.format(name))
actuals.append('self_')
continue
typename = arg['type']
if typename.startswith('IntList['):
typename = 'IntList'
if typename.startswith('LongTensor'):
typename = 'Tensor'
if arg.get('python_default_init'):
unpack_args = True
assert typename in unpack_with_default_methods, \
'`{}` type is not supported in python_default_init'.format(typename)
unpack_with_default = unpack_with_default_methods.get(typename)
default_expr = arg.get('python_default_init')
expr = 'r.{}({}, {})'.format(unpack_with_default, arg_idx, default_expr)
else:
unpack = unpack_methods.get(typename, typename.lower())
expr = 'r.{}({})'.format(unpack, arg_idx)
if typename == 'Storage &':
expr = '*' + expr
if typename == 'SparseTensor':
expr = 'SparseTensor({})'.format(expr)
actuals.append(expr)
dispatch_type = typename
if dispatch_type == 'Tensor':
dispatch_type = 'const Tensor &'
elif dispatch_type == 'Tensor &':
dispatch_type = 'Tensor'
formal_args.append('{} {}'.format(dispatch_type, name))
arg_idx += 1
env['i'] = i
env['unpack_args'] = []
env['formal_args'] = formal_args
if unpack_args:
unpack_statements_no_default = []
unpack_statements_with_default = []
actual_names = []
for arg, formal_arg, actual in zip(function['arguments'], formal_args, actuals):
name = arg['name']
actual_names.append(name)
unpack_expr = UNPACK_ARG.substitute(formal_arg=formal_arg, actual=actual)
if arg.get('python_default_init'):
unpack_statements_with_default.append(unpack_expr)
else:
unpack_statements_no_default.append(unpack_expr)
env['unpack_args'] = unpack_statements_no_default + unpack_statements_with_default
env['actuals'] = actual_names
code_template = PY_VARIABLE_CASE_WITH_UNPACK
else:
env['actuals'] = actuals
code_template = PY_VARIABLE_CASE
if 'call_args' in function:
env['dispatch_args'] = function['call_args']
else:
env['dispatch_args'] = [arg['name'] for arg in function['arguments']]
if 'Tensor' in function['method_of']:
env['dispatch_args'] = [arg for arg in env['dispatch_args'] if arg != 'self']
env['dispatch_call'] = 'self.{}'.format(function['name'])
else:
env['dispatch_call'] = 'at::{}'.format(function['name'])
env['AutoNoGIL'] = 'AutoNoGIL no_gil;'
env['AutoGPU'] = auto_gpu(function)
env['cond'] = 'if' if i == 0 else '} else if'
env = nested_dict(env, function)
py_method_dispatch.append(PY_VARIABLE_DISPATCH.substitute(env))
return code_template.substitute(env)
def process_function(name, functions):
env = {
'name': name,
'dispatch_name': 'dispatch_{}'.format(name),
'pycname': 'THPVariable_{}'.format(name),
'prototypes': [],
'max_args': max(len(o['arguments']) for o in functions),
'unpack_self': [],
'dispatch': [],
}
is_method = 'Tensor' in functions[0]['method_of']
if is_method:
env['unpack_self'] = [UNPACK_SELF]
for o in functions:
prototype = o['prototype']
if is_method:
prototype = prototype.replace('Tensor self, ', '')
prototype = prototype.replace('Tensor self', '')
if not is_class:
# Use 'input' instead of 'self' for NN functions
prototype = prototype.replace('Tensor self', 'Tensor input')
prototype = prototype.replace('SparseTensor', 'Tensor')
if 'deprecated' in o:
prototype += '|deprecated'
env['prototypes'].append('"{}",'.format(prototype))
for i, option in enumerate(functions):
env['dispatch'].append(emit_dispatch(i, nested_dict(env, option)))
env['dispatch'].append('}')
if len(functions) == 1 and len(functions[0]['args']) == 1 and is_method:
tmpl = PY_VARIABLE_METHOD_NOARGS
env['actuals'] = ['self_']
env['flags'] = 'METH_NOARGS'
else:
tmpl = PY_VARIABLE_METHOD_VARARGS
env['flags'] = 'METH_VARARGS | METH_KEYWORDS'
if is_class and not is_method:
env['flags'] += ' | METH_STATIC'
py_methods.append(tmpl.substitute(env))
py_method_defs.append(PY_VARIABLE_METHOD_DEF.substitute(env))
for name in sorted(python_functions.keys()):
process_function(name, python_functions[name])