mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This PR wraps `InstructionTranslator` run with a try-catch block so as to run the translation validation (TV) if it ends up raising an error. In this context, we run TV so as to catch simplification errors. These may turn `ShapeEnv.divisible` and `ShapeEnv.replacements` incorrect. For example: #101173 describes a SymPy simplification bug that doesn't reach TV, since it's run only in the end of the tracing. Pull Request resolved: https://github.com/pytorch/pytorch/pull/106645 Approved by: https://github.com/ezyang
690 lines
23 KiB
Python
690 lines
23 KiB
Python
import functools
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import random
|
|
import types
|
|
import weakref
|
|
from typing import Any, Callable, Dict, List, Optional, Set
|
|
|
|
import torch
|
|
import torch._logging
|
|
from torch._guards import tracing
|
|
from torch._utils_internal import log_compilation_event, signpost_event
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
)
|
|
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
|
|
from torch.utils._traceback import format_traceback_short
|
|
|
|
from . import config, exc
|
|
from .allowed_functions import is_allowed
|
|
from .backends.registry import CompilerFn
|
|
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
|
|
from .bytecode_transformation import (
|
|
check_inst_exn_tab_entries_valid,
|
|
Instruction,
|
|
is_generator,
|
|
propagate_inst_exn_table_entries,
|
|
transform_code_object,
|
|
)
|
|
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
|
|
from .exc import (
|
|
augment_exc_message,
|
|
BackendCompilerFailed,
|
|
format_error_msg,
|
|
InternalTorchDynamoError,
|
|
TorchRuntimeError,
|
|
unimplemented,
|
|
Unsupported,
|
|
)
|
|
from .guards import CheckFunctionManager, GuardedCode
|
|
from .hooks import Hooks
|
|
from .output_graph import OutputGraph
|
|
from .replay_record import ExecutionRecord
|
|
from .symbolic_convert import InstructionTranslator
|
|
from .utils import (
|
|
CleanupManager,
|
|
CompilationMetrics,
|
|
counters,
|
|
dynamo_timed,
|
|
format_bytecode,
|
|
frame_phase_timing,
|
|
gen_record_file_name,
|
|
guard_failures,
|
|
increment_frame,
|
|
is_guard_failure_reporting_enabled,
|
|
is_namedtuple,
|
|
istype,
|
|
LazyString,
|
|
orig_code_map,
|
|
reset_graph_break_dup_checker,
|
|
setup_compile_debug,
|
|
troubleshooting_url,
|
|
write_record_to_file,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
|
|
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
|
|
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
|
|
|
|
|
|
class Tracker:
|
|
def __init__(self):
|
|
self.seen = []
|
|
self.seen_ids = set()
|
|
|
|
def add(self, strong_obj):
|
|
idx = id(strong_obj)
|
|
if idx not in self.seen_ids:
|
|
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
|
|
self.seen.append(obj)
|
|
self.seen_ids.add(idx)
|
|
|
|
def __contains__(self, item):
|
|
return id(item) in self.seen_ids
|
|
|
|
def clear(self):
|
|
self.seen.clear()
|
|
self.seen_ids.clear()
|
|
|
|
|
|
input_codes = Tracker()
|
|
output_codes = Tracker()
|
|
|
|
|
|
initial_grad_state = None
|
|
initial_deterministic_algorithms_state = None
|
|
initial_torch_function_state = None
|
|
|
|
|
|
@functools.wraps(original_forward_from_src)
|
|
def fx_forward_from_src_skip_result(*args, **kwargs):
|
|
# we monkey patch FX to prevent infinite loop of trying to convert
|
|
# our generated code
|
|
result: types.FunctionType = original_forward_from_src(*args, **kwargs)
|
|
skip_code(result.__code__)
|
|
return result
|
|
|
|
|
|
def wrap_convert_context(fn):
|
|
"""
|
|
Context manager to:
|
|
1) Save/restore torch.is_grad_enabled() state
|
|
2) Save/restore python random state
|
|
3) Save/restore torch random state
|
|
4) Monkey patch torch.fx.graph_module._forward_from_src
|
|
"""
|
|
|
|
@functools.wraps(fn)
|
|
def _fn(*args, **kwargs):
|
|
prior_grad_mode = torch.is_grad_enabled()
|
|
py_rng_state = random.getstate()
|
|
torch_rng_state = torch.random.get_rng_state()
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.cuda.get_rng_state()
|
|
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
|
|
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
|
|
cleanup = setup_compile_debug()
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
cleanup.close()
|
|
torch._C._set_grad_enabled(prior_grad_mode)
|
|
random.setstate(py_rng_state)
|
|
torch.random.set_rng_state(torch_rng_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
|
|
|
|
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
|
return _fn
|
|
|
|
|
|
@TorchPatcher.suppress_torch_distributed_warnings
|
|
def has_tensor_in_frame(frame):
|
|
"""Check if the frame has torch.* related bits"""
|
|
# Check if the function was decorated using torch._dynamo.optimize
|
|
if frame.f_code in always_optimize_code_objects:
|
|
return True
|
|
|
|
# Check if there is global import of torch.*
|
|
for co_name in frame.f_code.co_names:
|
|
if co_name in frame.f_globals:
|
|
if is_allowed(frame.f_globals[co_name]):
|
|
return True
|
|
|
|
seen_ids: Dict[int, bool] = dict()
|
|
|
|
def has_tensor(obj):
|
|
"""Recursively check if the obj has a tensor"""
|
|
obj_id = id(obj)
|
|
if obj_id in seen_ids:
|
|
return seen_ids[obj_id]
|
|
seen_ids[obj_id] = False
|
|
|
|
if isinstance(obj, (torch.Tensor, torch.nn.Module)):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (list, tuple)):
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, dict):
|
|
# Some packages like pytest can be updated during runtime. So, make a
|
|
# copy of values to avoid issues like "RuntimeError: dictionary
|
|
# changed size during iteration"
|
|
values = list(obj.values())
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in values)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (str, int, float, type(None), bool)):
|
|
seen_ids[obj_id] = False
|
|
return seen_ids[obj_id]
|
|
elif is_namedtuple(obj):
|
|
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
|
|
return seen_ids[obj_id]
|
|
else:
|
|
# if config.debug:
|
|
# print(
|
|
# f"Assuming that object of type {type(obj)} does not have a tensor"
|
|
# )
|
|
return False
|
|
|
|
# Check if the passed arguments are of type Tensor
|
|
for value in frame.f_locals.values():
|
|
if has_tensor(value):
|
|
return True
|
|
|
|
log.debug(
|
|
"skipping because no torch.* %s \
|
|
%s %s",
|
|
frame.f_code.co_name,
|
|
frame.f_code.co_filename,
|
|
frame.f_code.co_firstlineno,
|
|
)
|
|
|
|
return False
|
|
|
|
|
|
def exception_handler(e, code, frame=None, export=False):
|
|
record_filename = None
|
|
if hasattr(e, "exec_record"):
|
|
record_filename = gen_record_file_name(e, code)
|
|
write_record_to_file(record_filename, e.exec_record)
|
|
e.record_filename = record_filename
|
|
|
|
augment_exc_message(e, export=export)
|
|
|
|
|
|
def is_recompilation(cache_size):
|
|
# cache_size here refers to the number of total cached entries on the code
|
|
# object.
|
|
return cache_size >= 1
|
|
|
|
|
|
FRAME_COUNTER = 0
|
|
|
|
|
|
def convert_frame_assert(
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool = True,
|
|
export: bool = False,
|
|
export_constraints=None,
|
|
):
|
|
"""Fully convert a frame into an FX graph"""
|
|
reset_graph_break_dup_checker()
|
|
|
|
def _convert_frame_assert(
|
|
frame: types.FrameType, cache_size: int, hooks: Hooks, frame_state
|
|
):
|
|
increment_frame()
|
|
global FRAME_COUNTER
|
|
if "_id" not in frame_state:
|
|
frame_state["_id"] = FRAME_COUNTER
|
|
FRAME_COUNTER += 1
|
|
|
|
code = frame.f_code
|
|
|
|
if is_recompilation(cache_size) and (
|
|
recompiles_log.isEnabledFor(logging.DEBUG) or config.error_on_recompile
|
|
):
|
|
if is_guard_failure_reporting_enabled():
|
|
message = (
|
|
f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}",
|
|
f"triggered by the following guard failure: {str(guard_failures[code][-1])}",
|
|
)
|
|
else:
|
|
message = (
|
|
f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}",
|
|
"set env var TORCHDYNAMO_REPORT_GUARD_FAILURES=1 to debug further",
|
|
)
|
|
|
|
if recompiles_log.isEnabledFor(logging.DEBUG):
|
|
recompiles_log.debug(message, stack_info=True)
|
|
|
|
if config.error_on_recompile:
|
|
raise exc.RecompileError(message)
|
|
|
|
input_codes.add(code)
|
|
if code in output_codes:
|
|
return None
|
|
if (
|
|
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
|
|
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
|
|
):
|
|
return None
|
|
if code.co_name == "<genexpr>" and code.co_filename.endswith(
|
|
("transformers/file_utils.py", "transformers/utils/generic.py")
|
|
):
|
|
# not needed, but cleans up torchbench error stats
|
|
return None
|
|
if code.co_name == "__setattr__":
|
|
# setattr could be tricky to handle generally,
|
|
# but also not likely useful to compile- skip the whole frame
|
|
return None
|
|
if code.co_name == "__init__" and code.co_filename.startswith(
|
|
os.path.dirname(torch.optim.__file__)
|
|
):
|
|
# optimizer support is still incomplete see
|
|
# test_state_dict in test/dynamo/test_optimizers.py
|
|
return None
|
|
|
|
# Check if the frame is generated by an exec builtin call
|
|
# TODO - Running exec generated frame seems propagates f_globals to the
|
|
# next frames.
|
|
if code.co_name == "<module>" and code.co_filename == "<string>":
|
|
return None
|
|
|
|
if (
|
|
code.co_name == "<lambda>"
|
|
and code.co_filename == "<string>"
|
|
and not bool(frame.f_builtins)
|
|
):
|
|
# namedtuple subclass constructor. Empty builtins cause issue with
|
|
# len keyword in LIST_LEN guard.
|
|
return None
|
|
|
|
if is_generator(code):
|
|
unimplemented("generator")
|
|
if cache_size >= config.cache_size_limit:
|
|
|
|
def format_func_info(code):
|
|
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
|
|
|
|
def format_guard_failures(code):
|
|
# For the common case, it's sufficient to see just the most recent failure.
|
|
# We could add a verbose mode if needed
|
|
return f" reasons: {str(guard_failures[code][-1])}\n"
|
|
|
|
if config.report_guard_failures:
|
|
assert code in guard_failures, "TODO(whc) any other recompile reasons?"
|
|
|
|
log.warning(
|
|
"torch._dynamo hit config.cache_size_limit (%s)\n"
|
|
" function: %s\n"
|
|
" reasons: %s\n"
|
|
"to diagnose recompilation issues, see %s.",
|
|
config.cache_size_limit,
|
|
format_func_info(code),
|
|
format_guard_failures(code),
|
|
troubleshooting_url,
|
|
)
|
|
else:
|
|
log.warning(
|
|
"torch._dynamo hit config.cache_size_limit (%s)\n"
|
|
" function: %s\n"
|
|
"to diagnose recompilation issues, set env variable TORCHDYNAMO_REPORT_GUARD_FAILURES=1"
|
|
" and also see %s.",
|
|
config.cache_size_limit,
|
|
format_func_info(code),
|
|
troubleshooting_url,
|
|
)
|
|
unimplemented("cache_size_limit reached")
|
|
|
|
if not has_tensor_in_frame(frame):
|
|
return None
|
|
|
|
global initial_grad_state
|
|
initial_grad_state = torch.is_grad_enabled()
|
|
|
|
global initial_deterministic_algorithms_state
|
|
initial_deterministic_algorithms_state = (
|
|
torch.are_deterministic_algorithms_enabled()
|
|
)
|
|
|
|
global initial_torch_function_state
|
|
initial_torch_function_state = torch._C._is_torch_function_enabled()
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"_convert_frame_assert._compile",
|
|
{
|
|
"co_name": code.co_name,
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
"cache_size": cache_size,
|
|
},
|
|
)
|
|
|
|
return _compile(
|
|
frame.f_code,
|
|
frame.f_globals,
|
|
frame.f_locals,
|
|
frame.f_builtins,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
hooks,
|
|
cache_size,
|
|
frame,
|
|
frame_state=frame_state,
|
|
)
|
|
|
|
_convert_frame_assert._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
return wrap_convert_context(_convert_frame_assert)
|
|
|
|
|
|
def _compile(
|
|
code: types.CodeType,
|
|
globals: Dict[str, object],
|
|
locals: Dict[str, object],
|
|
builtins: Dict[str, object],
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool,
|
|
export: bool,
|
|
export_constraints,
|
|
hooks: Hooks,
|
|
cache_size: int,
|
|
frame: Optional[types.FrameType] = None,
|
|
frame_state=None,
|
|
) -> Optional[GuardedCode]:
|
|
from torch.fx.experimental.validator import (
|
|
translation_validation_enabled,
|
|
ValidationException,
|
|
)
|
|
|
|
output: Optional[OutputGraph] = None
|
|
# This is shared across restarts
|
|
mutated_closure_cell_contents: Set[str] = set()
|
|
fail_reason: Optional[str] = None
|
|
|
|
def transform(instructions, code_options):
|
|
nonlocal output
|
|
tracer = InstructionTranslator(
|
|
instructions,
|
|
code,
|
|
locals,
|
|
globals,
|
|
builtins,
|
|
code_options,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
mutated_closure_cell_contents,
|
|
frame_state=frame_state,
|
|
)
|
|
|
|
try:
|
|
with tracing(tracer.output.tracing_context):
|
|
tracer.run()
|
|
except (exc.RestartAnalysis, exc.SkipFrame):
|
|
raise
|
|
except Exception:
|
|
if translation_validation_enabled():
|
|
fakes = tracer.output.tracked_fakes
|
|
tracer.output.shape_env.produce_guards(
|
|
[a.fake for a in fakes],
|
|
[a.source for a in fakes],
|
|
)
|
|
raise
|
|
|
|
output = tracer.output
|
|
assert output is not None
|
|
assert output.output_instructions
|
|
instructions[:] = output.output_instructions
|
|
code_options.update(output.code_options)
|
|
|
|
if config.dead_code_elimination:
|
|
propagate_inst_exn_table_entries(instructions)
|
|
check_inst_exn_tab_entries_valid(instructions)
|
|
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
|
|
|
|
@dynamo_timed(phase_name="entire_frame_compile")
|
|
def compile_inner(
|
|
code: types.CodeType,
|
|
one_graph: bool,
|
|
hooks: Hooks,
|
|
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
|
) -> Optional[GuardedCode]:
|
|
nonlocal output
|
|
for attempt in itertools.count():
|
|
try:
|
|
out_code = transform_code_object(code, transform)
|
|
orig_code_map[out_code] = code
|
|
break
|
|
except exc.RestartAnalysis as e:
|
|
log.info(
|
|
"Restarting analysis due to %s",
|
|
LazyString(format_traceback_short, e.__traceback__),
|
|
)
|
|
if attempt > 100:
|
|
unimplemented("100+ RestartAnalysis() calls")
|
|
except exc.SkipFrame as e:
|
|
log.debug(
|
|
"Skipping frame %s %s \
|
|
%s %s",
|
|
e,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
)
|
|
if one_graph:
|
|
log.debug("No graph captured with one_graph=True")
|
|
return None
|
|
output_codes.add(out_code)
|
|
|
|
def log_bytecode(prefix, name, filename, line_no, code):
|
|
if bytecode_log.isEnabledFor(logging.DEBUG):
|
|
bytecode_log.debug(
|
|
format_bytecode(prefix, name, filename, line_no, code)
|
|
)
|
|
|
|
log_bytecode(
|
|
"ORIGINAL BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
code,
|
|
)
|
|
log_bytecode(
|
|
"MODIFIED BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
out_code,
|
|
)
|
|
|
|
assert output is not None
|
|
|
|
# Skipping Dynamo on a frame without any extracted graph.
|
|
# This does not affect eager functionality. But this is necessary
|
|
# for export for cases where Dynamo-reconstructed bytecode can create
|
|
# new function frames, confusing export in thinking that there
|
|
# are extra graphs now.
|
|
|
|
if output.export and output.is_empty_graph():
|
|
return None
|
|
|
|
assert output.guards is not None
|
|
CleanupManager.instance[out_code] = output.cleanups
|
|
check_fn = CheckFunctionManager(
|
|
output,
|
|
hooks.guard_fail_fn if hooks else None,
|
|
)
|
|
|
|
guarded_code = GuardedCode(out_code, check_fn.check_fn)
|
|
|
|
if guards_log.isEnabledFor(logging.DEBUG):
|
|
guard_str = "GUARDS:\n"
|
|
guard_str += "\n".join(
|
|
[
|
|
f" {code}"
|
|
for guard in sorted(output.guards)
|
|
if guard.code_list is not None
|
|
for code in guard.code_list
|
|
]
|
|
)
|
|
guards_log.debug(guard_str)
|
|
|
|
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
|
|
# We should not run the guard_export_fn when Dynamo does not
|
|
# generate any graph. This can happen in export when TorchDynamo
|
|
# generated bytecode has some reconstruction logic for mutated
|
|
# variables which can trigger TorchDynamo on the children frames but
|
|
# they are benign and do not generate any new graphs.
|
|
hooks.guard_export_fn(output.guards)
|
|
|
|
output.local_scope.clear()
|
|
return guarded_code
|
|
|
|
try:
|
|
guarded_code = compile_inner(code, one_graph, hooks, transform)
|
|
return guarded_code
|
|
except (
|
|
Unsupported,
|
|
TorchRuntimeError,
|
|
BackendCompilerFailed,
|
|
AssertionError,
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
ValidationException,
|
|
) as e:
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
raise
|
|
except Exception as e:
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
raise InternalTorchDynamoError(str(e)).with_traceback(e.__traceback__) from None
|
|
finally:
|
|
from .utils import curr_frame
|
|
|
|
frame_key = str(curr_frame)
|
|
if (
|
|
fail_reason is None
|
|
and output is not None
|
|
and frame_key in frame_phase_timing
|
|
):
|
|
guard_count = len(output.guards)
|
|
graph_op_count = output.count_calls()
|
|
graph_node_count = len(output.graph.nodes)
|
|
graph_input_count = len(output.placeholders)
|
|
entire_frame_compile_time = frame_phase_timing[frame_key].get(
|
|
"entire_frame_compile", None
|
|
)
|
|
backend_compile_time = frame_phase_timing[frame_key].get(
|
|
"backend_compile", None
|
|
)
|
|
else:
|
|
guard_count = None
|
|
graph_op_count = None
|
|
graph_node_count = None
|
|
graph_input_count = None
|
|
entire_frame_compile_time = None
|
|
backend_compile_time = None
|
|
metrics = CompilationMetrics(
|
|
frame_key,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
cache_size,
|
|
guard_count,
|
|
graph_op_count,
|
|
graph_node_count,
|
|
graph_input_count,
|
|
entire_frame_compile_time,
|
|
backend_compile_time,
|
|
fail_reason,
|
|
)
|
|
log_compilation_event(metrics)
|
|
|
|
|
|
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks):
|
|
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
|
|
inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
|
|
|
|
def _convert_frame(
|
|
frame: types.FrameType, cache_size: int, hooks: Hooks, frame_state
|
|
):
|
|
counters["frames"]["total"] += 1
|
|
try:
|
|
result = inner_convert(frame, cache_size, hooks, frame_state)
|
|
counters["frames"]["ok"] += 1
|
|
return result
|
|
except Exception as e:
|
|
# These two exception types are "soft" failure, in the sense that
|
|
# we know this is due to something we didn't implement all the
|
|
# way, scare the user less about it. That being said, if you
|
|
# are trying to understand why a graph break happened, it's still
|
|
# important to have this information, so offer it.
|
|
#
|
|
# NB: NotImplementedError used to be on this list, but actually
|
|
# it is impossible for it to reach here, as it is converted into
|
|
# InternalTorchDynamoError. This behavior seemed reasonable
|
|
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
|
|
# someone wanted these to also get suppressed. If so, you'll
|
|
# need to make these exceptions not get wrapped
|
|
soft_fail = isinstance(e, Unsupported)
|
|
if not config.suppress_errors and not soft_fail:
|
|
raise
|
|
|
|
# Suppress the error. NB: It's very important to do the
|
|
# suppression logging HERE, where the actual suppression
|
|
# happens. Previously it was somewhere else and so it was
|
|
# possible to accidentally not log at all.
|
|
record_filename = getattr(e, "record_filename", None)
|
|
code = frame.f_code
|
|
error_msg = format_error_msg(e, code, record_filename, frame)
|
|
|
|
if soft_fail:
|
|
log.info(error_msg, exc_info=True)
|
|
else:
|
|
log.warning(error_msg, exc_info=True)
|
|
return None
|
|
|
|
_convert_frame._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
return _convert_frame
|
|
|
|
|
|
# TODO mlazos: add support for same args, or record them
|
|
def replay(filename):
|
|
from .backends.debugging import eager
|
|
|
|
original_replay_val = config.replay_record_enabled
|
|
config.replay_record_enabled = False
|
|
with open(filename, "rb") as in_file:
|
|
record = ExecutionRecord.load(in_file)
|
|
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
|
|
|
|
try:
|
|
_compile(
|
|
record.code,
|
|
record.globals,
|
|
record.locals,
|
|
record.builtins,
|
|
compiler_fn=eager,
|
|
one_graph=False,
|
|
export=False,
|
|
export_constraints=None,
|
|
hooks=Hooks(),
|
|
cache_size=0,
|
|
frame=None,
|
|
)
|
|
except Exception:
|
|
pass
|
|
finally:
|
|
config.replay_record_enabled = original_replay_val
|