mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
464 lines
14 KiB
C++
464 lines
14 KiB
C++
#include <Python.h>
|
|
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
|
#include <numpy/arrayobject.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "caffe2/core/context.h"
|
|
#ifndef PYCAFFE2_CPU_ONLY
|
|
#include "caffe2/core/context_gpu.h"
|
|
#endif // PYCAFFE2_CPU_ONLY
|
|
#include "caffe2/core/net.h"
|
|
#include "caffe2/core/workspace.h"
|
|
#include "caffe2/proto/caffe2.pb.h"
|
|
#include "glog/logging.h"
|
|
|
|
using std::map;
|
|
using std::string;
|
|
using std::unique_ptr;
|
|
using std::vector;
|
|
using namespace caffe2; // NOLINT
|
|
|
|
// gWorkspaces allows us to define and switch between multiple workspaces in
|
|
// Python.
|
|
static map<string, unique_ptr<Workspace> > gWorkspaces;
|
|
// gWorkspace is the pointer to the current workspace. The ownership is kept
|
|
// by the gWorkspaces map.
|
|
static Workspace* gWorkspace = nullptr;
|
|
static string gCurrentWorkspaceName;
|
|
|
|
namespace {
|
|
|
|
bool SwitchWorkspaceInternal(const string& name, const bool create_if_missing) {
|
|
if (gWorkspaces.count(name)) {
|
|
gCurrentWorkspaceName = name;
|
|
gWorkspace = gWorkspaces[name].get();
|
|
return true;
|
|
} else if (create_if_missing) {
|
|
std::unique_ptr<Workspace> new_workspace(new Workspace());
|
|
gWorkspace = new_workspace.get();
|
|
gWorkspaces.insert(std::make_pair(name, std::move(new_workspace)));
|
|
gCurrentWorkspaceName = name;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline string PyStringToStdString(PyObject* pystring) {
|
|
return string(PyString_AsString(pystring), PyString_Size(pystring));
|
|
}
|
|
|
|
inline PyObject* StdStringToPyString(const string& str) {
|
|
return PyString_FromStringAndSize(str.c_str(), str.size());
|
|
}
|
|
|
|
static_assert(sizeof(int) == sizeof(int32_t),
|
|
"Yangqing made a loose assumption that int will always be int32 "
|
|
"for numpy type mapping");
|
|
|
|
template <typename T> struct NumpyTypeWrapper;
|
|
template<> struct NumpyTypeWrapper<float> {
|
|
static const int type = NPY_FLOAT;
|
|
};
|
|
template<> struct NumpyTypeWrapper<int> {
|
|
static const int type = NPY_INT32;
|
|
};
|
|
|
|
template <typename T, class DeviceContext>
|
|
PyObject* FetchTensor(const Blob& blob) {
|
|
DeviceContext context;
|
|
const Tensor<T, DeviceContext>& tensor =
|
|
blob.Get<Tensor<T, DeviceContext> >();
|
|
CHECK_GT(tensor.size(), 0);
|
|
vector<npy_intp> npy_dims;
|
|
for (const int dim : tensor.dims()) {
|
|
npy_dims.push_back(dim);
|
|
}
|
|
PyObject* array = PyArray_SimpleNew(
|
|
tensor.ndim(), npy_dims.data(), NumpyTypeWrapper<T>::type);
|
|
// Now, copy the data to the tensor.
|
|
// TODO(Yangqing): Is there an easier way to convert PyObject to
|
|
// PyArrayObject?
|
|
context.template Copy<T, DeviceContext, CPUContext>(
|
|
tensor.size(), tensor.data(),
|
|
static_cast<T*>(PyArray_DATA(reinterpret_cast<PyArrayObject*>(array))));
|
|
return array;
|
|
}
|
|
|
|
template <typename T, class DeviceContext>
|
|
PyObject* FeedTensor(const DeviceOption& option, PyArrayObject* original_array,
|
|
Blob* blob) {
|
|
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
|
|
DeviceContext context(option);
|
|
Tensor<T, DeviceContext>* tensor =
|
|
blob->GetMutable<Tensor<T, DeviceContext> >();
|
|
// numpy requires long int as its dims.
|
|
int ndim = PyArray_NDIM(array);
|
|
npy_intp* npy_dims = PyArray_DIMS(array);
|
|
vector<int> dims;
|
|
for (int i = 0; i < ndim; ++i) {
|
|
dims.push_back(npy_dims[i]);
|
|
}
|
|
tensor->Reshape(dims);
|
|
// Now, copy the data to the tensor.
|
|
context.template Copy<T, CPUContext, DeviceContext>(
|
|
tensor->size(), static_cast<T*>(PyArray_DATA(array)),
|
|
tensor->mutable_data());
|
|
Py_XDECREF(array);
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
extern "C" {
|
|
|
|
PyObject* SwitchWorkspace(PyObject* self, PyObject* args) {
|
|
PyObject* name = nullptr;
|
|
PyObject* create_if_missing = nullptr;
|
|
if (!PyArg_ParseTuple(args, "S|O", &name, &create_if_missing)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"SwitchWorkspace takes in a workspace name, and "
|
|
"an optional boolean value that specifies whether "
|
|
"we want to create the workspace if it is missing.");
|
|
return NULL;
|
|
}
|
|
bool success = SwitchWorkspaceInternal(
|
|
PyStringToStdString(name),
|
|
(create_if_missing != nullptr) && PyObject_IsTrue(create_if_missing));
|
|
if (!success) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Workspace of the given name does not exist, and I am not instructed "
|
|
"to create it either.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* CurrentWorkspace(PyObject* self, PyObject* args) {
|
|
return StdStringToPyString(gCurrentWorkspaceName);
|
|
}
|
|
|
|
PyObject* Workspaces(PyObject* self, PyObject* args) {
|
|
PyObject* list = PyList_New(gWorkspaces.size());
|
|
int i = 0;
|
|
for (auto const & it : gWorkspaces) {
|
|
CHECK_EQ(PyList_SetItem(list, i, StdStringToPyString(it.first)), 0);
|
|
i += 1;
|
|
}
|
|
return list;
|
|
}
|
|
|
|
PyObject* ResetWorkspace(PyObject* self, PyObject* args) {
|
|
PyObject* root_folder = nullptr;
|
|
if (!PyArg_ParseTuple(args, "|S", &root_folder)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"ResetWorkspace takes in either no argument, or a string "
|
|
"specifying the root folder of the workspace.");
|
|
return NULL;
|
|
}
|
|
LOG(INFO) << "Resetting workspace.";
|
|
if (root_folder == nullptr) {
|
|
gWorkspaces[gCurrentWorkspaceName].reset(
|
|
new Workspace());
|
|
} else {
|
|
gWorkspaces[gCurrentWorkspaceName].reset(
|
|
new Workspace(PyStringToStdString(root_folder)));
|
|
}
|
|
gWorkspace = gWorkspaces[gCurrentWorkspaceName].get();
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* RootFolder(PyObject* self, PyObject* args) {
|
|
return StdStringToPyString(gWorkspace->RootFolder());
|
|
}
|
|
|
|
// This function should not be called by the user - only used during the
|
|
// destruction of the module.
|
|
PyObject* OnModuleExit(PyObject* self, PyObject* args) {
|
|
gWorkspaces.clear();
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* Blobs(PyObject* self, PyObject* args) {
|
|
vector<string> blob_strings = gWorkspace->Blobs();
|
|
PyObject* list = PyList_New(blob_strings.size());
|
|
for (int i = 0; i < blob_strings.size(); ++i) {
|
|
CHECK_EQ(PyList_SetItem(list, i, StdStringToPyString(blob_strings[i])), 0);
|
|
}
|
|
return list;
|
|
}
|
|
|
|
PyObject* HasBlob(PyObject* self, PyObject* args) {
|
|
char* name;
|
|
if (!PyArg_ParseTuple(args, "s", &name)) {
|
|
return NULL;
|
|
}
|
|
if (gWorkspace->HasBlob(string(name))) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
PyObject* CreateNet(PyObject* self, PyObject* args) {
|
|
PyObject* proto_string;
|
|
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
|
|
return NULL;
|
|
}
|
|
caffe2::NetDef proto;
|
|
if (!proto.ParseFromString(PyStringToStdString(proto_string))) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot parse input net string.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->CreateNet(proto)) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Cannot create network. See console log for error messages.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* RunNet(PyObject* self, PyObject* args) {
|
|
char* name;
|
|
if (!PyArg_ParseTuple(args, "s", &name)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Incorrect argument. Must pass in a single string.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->RunNet(string(name))) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Cannot run network. See console log for error messages.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* DeleteNet(PyObject* self, PyObject* args) {
|
|
char* name;
|
|
if (!PyArg_ParseTuple(args, "s", &name)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Incorrect argument. Must pass in a single string.");
|
|
return NULL;
|
|
}
|
|
gWorkspace->DeleteNet(string(name));
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* Nets(PyObject* self, PyObject* args) {
|
|
vector<string> net_strings = gWorkspace->Nets();
|
|
PyObject* list = PyList_New(net_strings.size());
|
|
for (int i = 0; i < net_strings.size(); ++i) {
|
|
CHECK_EQ(PyList_SetItem(list, i, StdStringToPyString(net_strings[i])), 0);
|
|
}
|
|
return list;
|
|
}
|
|
|
|
PyObject* RunOperatorOnce(PyObject* self, PyObject* args) {
|
|
PyObject* proto_string;
|
|
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Incorrect argument. Must pass in a single string.");
|
|
return NULL;
|
|
}
|
|
caffe2::OperatorDef proto;
|
|
if (!proto.ParseFromString(PyStringToStdString(proto_string))) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot parse input operator proto.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->RunOperatorOnce(proto)) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Cannot run operator. See console log for error messages.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* RunNetOnce(PyObject* self, PyObject* args) {
|
|
PyObject* proto_string;
|
|
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Incorrect argument. Must pass in a single string.");
|
|
return NULL;
|
|
}
|
|
caffe2::NetDef proto;
|
|
if (!proto.ParseFromString(PyStringToStdString(proto_string))) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot parse input net proto.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->RunNetOnce(proto)) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Cannot run net. See console log for error messages.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* RunPlan(PyObject* self, PyObject* args) {
|
|
PyObject* proto_string;
|
|
if (!PyArg_ParseTuple(args, "S", &proto_string)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Incorrect argument. Must pass in a single string.");
|
|
return NULL;
|
|
}
|
|
caffe2::PlanDef proto;
|
|
if (!proto.ParseFromString(PyStringToStdString(proto_string))) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot parse input plan proto.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->RunPlan(proto)) {
|
|
PyErr_SetString(
|
|
PyExc_RuntimeError,
|
|
"Cannot run plan. See console log for error messages.");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* CreateBlob(PyObject* self, PyObject* args) {
|
|
char* name_char;
|
|
if (!PyArg_ParseTuple(args, "s", &name_char)) {
|
|
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
|
|
return NULL;
|
|
}
|
|
string name(name_char);
|
|
Blob* blob = gWorkspace->CreateBlob(name);
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
#define RETURN_TENSOR_IF_FORMAT(dtype, context) \
|
|
if (blob.IsType<caffe2::Tensor<dtype, context> >()) { \
|
|
return FetchTensor<dtype, context>(blob); \
|
|
}
|
|
|
|
PyObject* FetchBlob(PyObject* self, PyObject* args) {
|
|
char* name;
|
|
if (!PyArg_ParseTuple(args, "s", &name)) {
|
|
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
|
|
return NULL;
|
|
}
|
|
if (!gWorkspace->HasBlob(string(name))) {
|
|
PyErr_SetString(PyExc_ValueError, "Requested blob does not exist.");
|
|
return NULL;
|
|
}
|
|
const caffe2::Blob& blob = *(gWorkspace->GetBlob(string(name)));
|
|
// We only support a subset of exporting capabilities.
|
|
RETURN_TENSOR_IF_FORMAT(float, CPUContext)
|
|
RETURN_TENSOR_IF_FORMAT(int, CPUContext)
|
|
#ifndef PYCAFFE2_CPU_ONLY
|
|
RETURN_TENSOR_IF_FORMAT(float, CUDAContext)
|
|
RETURN_TENSOR_IF_FORMAT(int, CUDAContext)
|
|
#endif // PYCAFFE2_CPU_ONLY
|
|
|
|
// If all branches failed, we should throw an error.
|
|
LOG(ERROR) << "Blob" << string(name) << " has unsupported data type: "
|
|
<< blob.TypeName();
|
|
PyErr_SetString(PyExc_TypeError, "Unsupported data type.");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
PyObject* FeedBlob(PyObject* self, PyObject* args) {
|
|
char* name_char;
|
|
PyArrayObject* array = nullptr;
|
|
PyObject* device_option_string = nullptr;
|
|
if (!PyArg_ParseTuple(args, "sO!|O", &name_char, &PyArray_Type, &array,
|
|
&device_option_string)) {
|
|
PyErr_SetString(PyExc_ValueError, "Incorrect arguments.");
|
|
return NULL;
|
|
}
|
|
string name(name_char);
|
|
DeviceOption option;
|
|
if (device_option_string != nullptr) {
|
|
// If we have a device option passed in, read it.
|
|
if (!option.ParseFromString(PyStringToStdString(device_option_string))) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot parse device option string.");
|
|
return NULL;
|
|
}
|
|
}
|
|
Blob* blob = gWorkspace->CreateBlob(name);
|
|
int data_type = PyArray_TYPE(array);
|
|
|
|
// Since there is really no polymorphism, we will have to do so...
|
|
switch (option.device_type()) {
|
|
case CPU:
|
|
switch (data_type) {
|
|
case NPY_INT:
|
|
return FeedTensor<int, CPUContext>(option, array, blob);
|
|
case NPY_FLOAT:
|
|
return FeedTensor<float, CPUContext>(option, array, blob);
|
|
default:
|
|
PyErr_SetString(PyExc_TypeError, "Unsupported numpy data type.");
|
|
return NULL;
|
|
}
|
|
#ifndef PYCAFFE2_CPU_ONLY
|
|
case CUDA:
|
|
switch (data_type) {
|
|
case NPY_INT:
|
|
return FeedTensor<int, CUDAContext>(option, array, blob);
|
|
case NPY_FLOAT:
|
|
return FeedTensor<float, CUDAContext>(option, array, blob);
|
|
default:
|
|
PyErr_SetString(PyExc_TypeError, "Unsupported numpy data type.");
|
|
return NULL;
|
|
}
|
|
#endif // PYCAFFE2_CPU_ONLY
|
|
default:
|
|
PyErr_SetString(PyExc_TypeError, "Unknown device type.");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// A simple macro to avoid writing repeated symbols.
|
|
#define _PYNAME(name) {#name, name, METH_VARARGS}
|
|
|
|
static PyMethodDef gPycaffe2Methods[] = {
|
|
// TODO(Yangqing): write the methods string.
|
|
// Note(Yangqing): For any function that we are going to override in the
|
|
// python file, we prepend "cc_" here.
|
|
_PYNAME(SwitchWorkspace),
|
|
_PYNAME(CurrentWorkspace),
|
|
_PYNAME(Workspaces),
|
|
{"cc_ResetWorkspace", ResetWorkspace, METH_VARARGS},
|
|
_PYNAME(RootFolder),
|
|
_PYNAME(OnModuleExit),
|
|
_PYNAME(Blobs),
|
|
_PYNAME(HasBlob),
|
|
{"cc_CreateNet", CreateNet, METH_VARARGS},
|
|
_PYNAME(RunNet),
|
|
_PYNAME(DeleteNet),
|
|
_PYNAME(Nets),
|
|
{"cc_RunOperatorOnce", RunOperatorOnce, METH_VARARGS},
|
|
{"cc_RunNetOnce", RunNetOnce, METH_VARARGS},
|
|
{"cc_RunPlan", RunPlan, METH_VARARGS},
|
|
_PYNAME(CreateBlob),
|
|
_PYNAME(FetchBlob),
|
|
{"cc_FeedBlob", FeedBlob, METH_VARARGS},
|
|
{NULL, NULL}, // end of python methods.
|
|
};
|
|
#undef _PYNAME
|
|
|
|
#ifdef PYCAFFE2_CPU_ONLY
|
|
void initlibcaffe2_python_nogpu(void) {
|
|
(void) Py_InitModule("libcaffe2_python_nogpu", gPycaffe2Methods);
|
|
#else
|
|
void initlibcaffe2_python(void) {
|
|
(void) Py_InitModule("libcaffe2_python", gPycaffe2Methods);
|
|
#endif
|
|
import_array(); // for numpy
|
|
// We will create a default workspace for us to run stuff.
|
|
SwitchWorkspaceInternal("default", true);
|
|
gCurrentWorkspaceName = "default";
|
|
}
|
|
|
|
} // extern "C"
|
|
|