mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65941 OpInfos for: empty_like, zeros_like, ones_like, full_like, randn_like Test Plan: - run tests Reviewed By: dagitses Differential Revision: D31452625 Pulled By: zou3519 fbshipit-source-id: 5e6c45918694853f9252488d62bb7f4ccfa1f1e4
11036 lines
508 KiB
Python
11036 lines
508 KiB
Python
from functools import wraps, partial
|
|
from itertools import product, chain
|
|
import itertools
|
|
import collections
|
|
import copy
|
|
from enum import Enum
|
|
import operator
|
|
import random
|
|
import numbers
|
|
import unittest
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torch._six import inf
|
|
import collections.abc
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
from torch.testing import make_non_contiguous, make_tensor
|
|
from torch.testing._internal.common_dtype import (
|
|
_dispatch_dtypes, floating_types, floating_types_and, complex_types, floating_and_complex_types,
|
|
floating_and_complex_types_and, all_types_and_complex_and, all_types_and, all_types_and_complex, integral_types_and,
|
|
all_types, double_types, empty_types
|
|
)
|
|
from torch.testing._internal.common_device_type import \
|
|
(onlyCUDA, onlyOnCPUAndCUDA, disablecuDNN, skipCUDAIfNoMagma, skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfNoCusolver, skipCPUIfNoLapack, skipCPUIfNoFFT, skipCUDAIfRocm, precisionOverride,
|
|
toleranceOverride, tol)
|
|
from torch.testing._internal.common_cuda import CUDA11OrLater, SM53OrLater, SM60OrLater
|
|
from torch.testing._internal.common_utils import \
|
|
(is_iterable_of_tensors,
|
|
random_symmetric_matrix, random_symmetric_psd_matrix,
|
|
make_fullrank_matrices_with_distinct_singular_values,
|
|
random_symmetric_pd_matrix, make_symmetric_matrices,
|
|
make_symmetric_pd_matrices, random_square_matrix_of_rank,
|
|
random_fullrank_matrix_distinct_singular_value,
|
|
TEST_WITH_ROCM, IS_WINDOWS, IS_MACOS, TEST_SCIPY,
|
|
torch_to_numpy_dtype_dict, TEST_WITH_ASAN,
|
|
GRADCHECK_NONDET_TOL, slowTest,)
|
|
import torch.testing._internal.opinfo_helper as opinfo_helper
|
|
|
|
from setuptools import distutils
|
|
|
|
has_scipy_fft = False
|
|
if TEST_SCIPY:
|
|
import scipy.special
|
|
try:
|
|
import scipy.fft
|
|
has_scipy_fft = True
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
|
|
# Reasonable testing sizes for dimensions
|
|
L = 20
|
|
M = 10
|
|
S = 5
|
|
|
|
# Unique value to distinguish default from anything else
|
|
_NOTHING = object()
|
|
|
|
|
|
class DecorateInfo(object):
|
|
"""Describes which test, or type of tests, should be wrapped in the given
|
|
decorators when testing an operator. Any test that matches all provided
|
|
arguments will be decorated. The decorators will only be applied if the
|
|
active_if argument is True."""
|
|
|
|
__slots__ = ['decorators', 'cls_name', 'test_name', 'device_type', 'dtypes', 'active_if']
|
|
|
|
def __init__(self, decorators, cls_name=None, test_name=None, *,
|
|
device_type=None, dtypes=None, active_if=True):
|
|
self.decorators = list(decorators) if isinstance(decorators, collections.abc.Sequence) else [decorators]
|
|
self.cls_name = cls_name
|
|
self.test_name = test_name
|
|
self.device_type = device_type
|
|
self.dtypes = dtypes
|
|
self.active_if = active_if
|
|
|
|
def is_active(self, cls_name, test_name, device_type, dtype):
|
|
return (
|
|
self.active_if and
|
|
(self.cls_name is None or self.cls_name == cls_name) and
|
|
(self.test_name is None or self.test_name == test_name) and
|
|
(self.device_type is None or self.device_type == device_type) and
|
|
(self.dtypes is None or dtype in self.dtypes)
|
|
)
|
|
|
|
|
|
class SampleInput(object):
|
|
"""Represents sample inputs to a function."""
|
|
|
|
__slots__ = ['input', 'args', 'kwargs', 'output_process_fn_grad', 'broadcasts_input', 'name']
|
|
|
|
def __init__(self, input, *, args=tuple(), kwargs=None, output_process_fn_grad=lambda x: x, broadcasts_input=False, name=""):
|
|
# input is the first input to the op and must be either a Tensor or TensorList (Sequence[Tensor]).
|
|
# This follows the typical pattern where for Tensor inputs op(t, ...) = t.op(...).
|
|
# op with TensorList inputs do not support method or inplace variants.
|
|
assert isinstance(input, torch.Tensor) or is_iterable_of_tensors(input)
|
|
self.input: Union[torch.Tensor, Sequence[torch.Tensor]] = input
|
|
self.args = args
|
|
self.kwargs = kwargs if kwargs is not None else {}
|
|
self.output_process_fn_grad = output_process_fn_grad
|
|
self.name = name
|
|
|
|
# Specifies if `self.input` is broadcasted or not,
|
|
# given that the operator supports broadcasting.
|
|
# This field is used to verify the behavior for inplace variant.
|
|
#
|
|
# If a SampleInput is marked with `broadcasts_input=True`,
|
|
# it is verified that we get a `RuntimerError` with this sample,
|
|
# and inplace variant. Also inplace grad{grad} tests are skipped,
|
|
# for such inputs (as they will error out otherwise).
|
|
self.broadcasts_input = broadcasts_input
|
|
|
|
def _repr_helper(self, formatter):
|
|
# Helper function to return the details of the SampleInput as `str`
|
|
# It consolidates all the fields of SampleInput and allows,
|
|
# formatting the fields like `input`, `args`, etc with `formatter`
|
|
# callable to customize the representation.
|
|
# Look at `summary` method for example.
|
|
arguments = [
|
|
f'input={formatter(self.input)}',
|
|
f'args={formatter(self.args)}',
|
|
f'kwargs={formatter(self.kwargs)}',
|
|
f'output_process_fn_grad={self.output_process_fn_grad}',
|
|
f'broadcasts_input={self.broadcasts_input}',
|
|
f'name={repr(self.name)}']
|
|
|
|
return f'SampleInput({", ".join(a for a in arguments if a is not None)})'
|
|
|
|
def __repr__(self):
|
|
return self._repr_helper(lambda x: x)
|
|
|
|
def summary(self):
|
|
# Returns the SampleInput details in a more
|
|
# friendly format.
|
|
# It formats `Tensor` and `TensorList`
|
|
# in a more condensed representation.
|
|
def formatter(arg):
|
|
# Format any instance of `Tensor` (standalone, in list, or in dict)
|
|
# by Tensor[TensorShape]
|
|
# Eg. Tensor with shape (3, 4) is formatted as Tensor[3, 4]
|
|
if isinstance(arg, torch.Tensor):
|
|
shape = str(tuple(arg.shape)).replace('(', '').replace(')', '')
|
|
return f"Tensor[{shape}]"
|
|
elif isinstance(arg, dict):
|
|
return {k: formatter(v) for k, v in arg.items()}
|
|
elif is_iterable_of_tensors(arg):
|
|
return "TensorList[" + ", ".join(map(formatter, arg)) + "]"
|
|
elif isinstance(arg, (list, tuple)): # Handle list, tuple
|
|
return "(" + ",".join(map(formatter, arg)) + ")"
|
|
|
|
return repr(arg)
|
|
|
|
return self._repr_helper(formatter)
|
|
|
|
# Returns the NumPy version of the sample input object in the form of a tuple: (input, args, kwargs)
|
|
def numpy(self):
|
|
# Converts tensors to ndarrays by calling .detach().cpu().numpy() on them
|
|
# Numbers, strings, and bool are preserved as is
|
|
# Lists, tuples and dicts are handled by calling this function recursively
|
|
def to_numpy(x):
|
|
def _np(t):
|
|
return t.detach().cpu().numpy()
|
|
|
|
if isinstance(x, torch.Tensor):
|
|
return _np(x)
|
|
elif isinstance(x, list):
|
|
return list(map(to_numpy, x))
|
|
elif isinstance(x, tuple):
|
|
return tuple(map(to_numpy, x))
|
|
elif isinstance(x, dict):
|
|
return {k: to_numpy(v) for k, v in x.items()}
|
|
elif isinstance(x, torch.dtype):
|
|
return torch_to_numpy_dtype_dict[x]
|
|
elif isinstance(x, (numbers.Number, bool, str)):
|
|
return x
|
|
|
|
raise ValueError("Unknown type {0}!".format(type(x)))
|
|
|
|
sample_np_input, np_args, np_kwargs = to_numpy(self.input), to_numpy(self.args), to_numpy(self.kwargs)
|
|
return (sample_np_input, np_args, np_kwargs)
|
|
|
|
|
|
class AliasInfo(object):
|
|
"""Class holds alias information. For example, torch.abs ->
|
|
torch.absolute, torch.Tensor.absolute, torch.Tensor.absolute_
|
|
"""
|
|
|
|
def __init__(self, alias_name):
|
|
self.name = alias_name
|
|
self.op = _getattr_qual(torch, alias_name)
|
|
self.method_variant = getattr(torch.Tensor, alias_name, None)
|
|
self.inplace_variant = getattr(torch.Tensor, alias_name + "_", None)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.op(*args, **kwargs)
|
|
|
|
|
|
# Extension of getattr to support qualified names
|
|
# e.g. _getattr_qual(torch, 'linalg.norm') -> torch.linalg.norm
|
|
def _getattr_qual(obj, name, default=_NOTHING):
|
|
try:
|
|
for path in name.split('.'):
|
|
obj = getattr(obj, path)
|
|
return obj
|
|
except AttributeError:
|
|
if default is not _NOTHING:
|
|
return default
|
|
else:
|
|
raise
|
|
|
|
# Note [OpInfos]
|
|
# ~~~~~~~~~~~~~~
|
|
#
|
|
# This note was written shortly after the PyTorch 1.9 release.
|
|
# If you notice it's out-of-date or think it could be improved then please
|
|
# file an issue.
|
|
#
|
|
# See also: the OpInfo tracker (https://github.com/pytorch/pytorch/issues/54261)
|
|
# See also: "Writing Test Templates" in common_device_type.py to learn how to
|
|
# parametrize a test template using OpInfos.
|
|
#
|
|
# An OpInfo is a collection of metadata related to a PyTorch operator. This
|
|
# metadata is used to generate tests that validate properties of the operator,
|
|
# like if it implements the correct gradient formula.
|
|
#
|
|
# WHY OPINFOS?
|
|
# ~~~~~~~~~~~~
|
|
#
|
|
# OpInfos are principally intended to do two things:
|
|
#
|
|
# 1) to simplify testing an operator
|
|
# 2) to allow systems (like autograd, torchscript, fx, nnc...) to test
|
|
# against every PyTorch operator
|
|
#
|
|
# Both these goals are still a work in progress. Not every operator has an
|
|
# OpInfo, and some operator tests still have to be written manually.
|
|
#
|
|
# The utility of OpInfos can also be motivated from a different perspective.
|
|
# PyTorch is a complicated framework with many interrelated systems, too
|
|
# many for any one person to keep track of. An OpInfo can be thought of as the
|
|
# interface between an operator implementer and those other systems. Instead of
|
|
# requiring the implementer of torch.foo understand how to test its forward
|
|
# mode AD or NNC support that's typically handled automatically just by
|
|
# defining an OpInfo. This is a helpful perspective to have, because it's often
|
|
# surprising to OpInfo writers that just implementing an OpInfo typically can't
|
|
# verify an operator is actually implemented correctly. "If an OpInfo doesn't
|
|
# validate my op works as expected, what's the point of it?" But the point of
|
|
# it is that it lets engineers focus on testing their operator logic instead
|
|
# of having to write tests for how the operator interacts with each of
|
|
# PyTorch's many systems. And, OK, sometimes it validates your op works
|
|
# the way you want and all you have to do is write an OpInfo and you're done
|
|
# testing... more on that below.
|
|
#
|
|
# WHAT'S AN OPINFO?
|
|
# ~~~~~~~~~~~~~~~~~
|
|
#
|
|
# So what is an OpInfo? It's a Python class that describes an operator's properties,
|
|
# like which dtypes it supports on the CPU and whether it has any aliases.
|
|
# These properties can be divided into three categories:
|
|
#
|
|
# 1) Metadata describing the operator, like the operator's name and if it
|
|
# "supports" the out kwarg.
|
|
# 2) Test directives, like "skips" that tell the test suite to skip some
|
|
# tests.
|
|
# 3) A "sample inputs" function that generates valid inputs for the operator.
|
|
#
|
|
# OpInfo attributes are described in more detail below.
|
|
#
|
|
# THE SAMPLE INPUTS FUNCTION
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# The "sample inputs" function merits special elaboration. This function is
|
|
# crucial to testing with OpInfos. A typical OpInfo test has to treat the operator
|
|
# as a black box. There's no structure for the test to understand or exploit.
|
|
# Without "sample inputs" it wouldn't even know how to call the OpInfo's
|
|
# operator. The sample input function saves the day by providing different
|
|
# "SampleInputs" that can be used to call the operator. A sample input
|
|
# function should have the following signature:
|
|
#
|
|
# def sample_inputs_foo(op_info, device, dtype, requires_grad, **kwargs):
|
|
#
|
|
# And should return a list of SampleInputs (see the class description above).
|
|
# Each SampleInput defines an "input", "args", "kwargs",
|
|
# an "output_process_fn_grad" function, the "broadcasts_input" bool and
|
|
# a "name".
|
|
#
|
|
# The "input" is the first argument to the operator, or the tensor that
|
|
# the method or inplace variants of the operator should be called on, and
|
|
# should be on the requested device, of the requested dtype, and its
|
|
# requires_grad attribute should be set to the requires_grad argument.
|
|
#
|
|
# "args" should contain positional arguments, and "kwargs" keyword arguments.
|
|
#
|
|
# "output_process_fn_grad" has an interesting name. It's a function that maps
|
|
# the operator's output (when given the input, args, and kwargs) to the
|
|
# portion of the output to gradcheck. For example, consider an operator
|
|
# like torch.linalg.slogdet
|
|
# (https://pytorch.org/docs/master/generated/torch.linalg.slogdet.html).
|
|
# This operator returns a tuple of two tensors, but the first tensor
|
|
# cannot be backwarded through. Its "output_process_fn_grad" filters
|
|
# this output tuple to just the second argument, which we can call backward
|
|
# on. Functions that produce a single tensor can ignore this argument.
|
|
#
|
|
# "broadcasts_input" is a bool indicated if the SampleInput causes the operator
|
|
# to broadcast the "input" argument. This is important for tests to understand
|
|
# because inplace variants of operations throw a runtime error if they
|
|
# would broadcast their input arguments, so tests that work with inplace
|
|
# variants filter SampleInputs that broadcast their input.
|
|
#
|
|
# "name" is a string that's just used for debugging. It appears when printing
|
|
# the SampleInput.
|
|
#
|
|
# OPINFO FILE ORGANIZATION
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# All OpInfos are currently defined in this file. Most OpInfo tests are defined
|
|
# in test_ops.py, but some system-specific tests are defined in those
|
|
# systems' test files, and subclass-specific tests are defined in the test
|
|
# file that corresponds to that subclass (see the below).
|
|
# Expect a reorganization in the future.
|
|
#
|
|
# WHAT'S TESTED?
|
|
# ~~~~~~~~~~~~~~
|
|
#
|
|
# Every OpInfo in the op_db sequence has the following properties validated in
|
|
# test_ops.py:
|
|
#
|
|
# - that its supported dtypes are specified correctly
|
|
# - that it supports the out= argument properly (if it allows out=),
|
|
# see https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
|
|
# - that it works with the conjugate view bit properly
|
|
# - that its function, method, and inplace variants perform the same operation
|
|
# (that is, that torch.add, torch.Tensor.add, and torch.Tensor.add_ all
|
|
# do the same thing).
|
|
# - that its inplace variant preserves the input's storage
|
|
# - that its gradient formula is implemented correctly, and that it supports
|
|
# gradgrad and complex grad and gradgrad and forward mode AD properly for
|
|
# the op's function and inplace variants (method variants are skipped
|
|
# to reduce test time).
|
|
# - that the operation performs the same operation when traced or scripted
|
|
# using the jit
|
|
# - that the operation is autodifferentiated by the jit as expected
|
|
# - that the operator's aliases, if any, perform the same operation and that
|
|
# the jit understands the alias
|
|
#
|
|
# Additional OpInfo tests are in test_jit_fuser_te.py, test_fx_experimental.py,
|
|
# and test_fx.py. These tests validate that operators work with NNC and FX
|
|
# as expected.
|
|
#
|
|
# For performance, some of the above tests may only run on the first
|
|
# SampleInput returned by an OpInfo's sample input function.
|
|
#
|
|
# In addition to these tests, some subclasses (discussed in the next section)
|
|
# define additional tests.
|
|
#
|
|
# Critically, as mentioned above, what's not tested is that the operator
|
|
# works as expected. When implementing an OpInfo an engineer must still
|
|
# typically write one or more tests validating the operator's behavior.
|
|
#
|
|
# OPINFO (SUB)CLASSES
|
|
# ~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# In addition to the OpInfo base class there are several specialized OpInfo
|
|
# subclasses. For example, the UnaryUfuncInfo subclass is used for
|
|
# unary elementwise operations. These operations have a common structure
|
|
# that test_unary_ufuncs.py exploits with additional automated testing.
|
|
# The automated testing in test_unary_ufuncs.py is so thorough, comparing
|
|
# the operator to a NumPy reference function on a plethora of values, that
|
|
# just implementing an OpInfo for a unary elementwise operation is often
|
|
# sufficient testing.
|
|
#
|
|
# The ForeachFuncInfo is another OpInfo subclass that is hyper-specialized to a
|
|
# very unique class of operations. These OpInfos aren't included in the
|
|
# op_db sequence and have their own tests.
|
|
#
|
|
# Other OpInfo subclasses, like SpectralFuncInfo, are just for convenience
|
|
# when writing OpInfos.
|
|
#
|
|
# TESTING A NEW OPERATOR
|
|
# ~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# If you're adding a new operator to the torch, torch.fft, torch.linalg,
|
|
# or torch.special namespaces then you should add an OpInfo for it. As
|
|
# mentioned a couple times above, implementing an OpInfo is not usually
|
|
# sufficient testing (unless the operator is a unary elementwise operator).
|
|
# The OpInfo will only test the properties described in the "WHAT'S TESTED"
|
|
# section. It DOES NOT verify that the operator is implemented correctly.
|
|
#
|
|
# We are currently reviewing if operators in the torch.nn.functional namespace
|
|
# will be added as OpInfos, but you are encouraged to add an OpInfo for
|
|
# such operators, too.
|
|
#
|
|
# TIPS FOR WRITING AN OPINFO AND OPINFO TESTS
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# Writing an OpInfo can be a little daunting. Since the point of an OpInfo is to
|
|
# be consumed by a variety of systems it can be hard to understand how to
|
|
# deal with test failures or how to set the OpInfo metadata properly.
|
|
#
|
|
# Before adding an OpInfo it helps to look at other OpInfos. A sample inputs
|
|
# function must be defined, and the operator's dtypes must be specified.
|
|
# Once that's done you should run the operator's tests in test_ops.py
|
|
# (these can be filtered using the "-k" argument in pytest). Tests that
|
|
# fail should provide an error message that describes what to change about
|
|
# your OpInfo. You don't need to worry about changing an OpInfo's default
|
|
# values unless a test yells at you.
|
|
#
|
|
# Similarly, if you're writing a test that consumes OpInfos then it's critical
|
|
# your test provides a clear error message describing what to do when it
|
|
# fails. You should not assume the OpInfo implementer is familiar with your
|
|
# system.
|
|
#
|
|
# If you see a confusing error message while developing an OpInfo then please
|
|
# file an issue describing what happened.
|
|
#
|
|
# This trial-and-error approach can be frustrating to writing an OpInfo can
|
|
# be frustrating, but it's probably necessary as long as OpInfos don't require
|
|
# learning about all the systems that consume them. One thing that can help
|
|
# is the get_supported_dtypes() function defined in opinfo_helper.py. This
|
|
# function can be used to programmatically specify the dtypes an operator
|
|
# supports, and is especially useful if writing an OpInfo on a machine
|
|
# without a CUDA device. See its documentation for more details.
|
|
#
|
|
# THE FUTURE OF OPINFOS AND OPINFO TESTING
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# In the future we expect OpInfo coverage to improve, particularly for the
|
|
# torch, torch.fft, torch.linalg, and torch.special namespaces, and possibly
|
|
# for the torch.nn.functional namespace, too. In addition an analogous class,
|
|
# ModuleInfo, will be developed to improve module testing.
|
|
#
|
|
# We also expect at least two new OpInfo subclasses: BinaryUfuncInfo and
|
|
# ReductionInfo. Both will have new automated tests for correctness, too,
|
|
# which might make testing binary elementwise operations and reductions as
|
|
# simple as testing unary elementwise operations today.
|
|
|
|
# Classes and methods for the operator database
|
|
class OpInfo(object):
|
|
"""Operator information and helper functions for acquiring it."""
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref=None, # An optional reference function that accepts ndarrays (AKA "NumPy arrays").
|
|
# If given, the op will be compared with its reference on each of its sample inputs.
|
|
# the following metadata describes the operator, its variants,
|
|
# and its aliases, if any
|
|
aliases=None, # iterable of aliases, e.g. ("absolute",) for torch.abs
|
|
variant_test_name='', # additional string to include in the test name
|
|
# this is useful when an op needs multiple OpInfos,
|
|
# like divide does, often because it's really several
|
|
# different ops behind the scenes
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
method_variant=_NOTHING, # explicitly specifies the method variant of the operator
|
|
# if _NOTHING (default), the method variant will be autopopulated
|
|
# if None, then the OpInfo specifies no method variant
|
|
inplace_variant=_NOTHING, # explicitly specifies the inplace variant of the operator
|
|
# if _NOTHING (default), the method variant will be autopopulated
|
|
# if None, then the OpInfo specifies no method variant
|
|
|
|
# the following metadata are test directives for skipping or
|
|
# modifying tests and a pointer to the op's sample inputs function
|
|
# this function lets the OpInfo generate valid inputs
|
|
skips=tuple(), # information about which tests to skip
|
|
decorators=tuple(), # decorators to apply to generated tests
|
|
sample_inputs_func=None, # function to generate sample inputs
|
|
|
|
# the following metadata relates to dtype support and is tested for correctness in test_ops.py
|
|
dtypes=floating_types(), # dtypes this function is expected to work with
|
|
# the following dtypesIf... options override the dtypes value
|
|
# on their respective device types
|
|
dtypesIfCPU=None, # dtypes this function is expected to work with on CPU
|
|
dtypesIfCUDA=None, # dtypes this function is expected to work with on CUDA
|
|
dtypesIfROCM=None, # dtypes this function is expected to work with on ROCM
|
|
backward_dtypes=None, # backward dtypes this function is expected to work with
|
|
backward_dtypesIfCPU=None, # backward dtypes this function is expected to work with on CPU
|
|
backward_dtypesIfCUDA=None, # backward dtypes this function is expected to work with on CUDA
|
|
backward_dtypesIfROCM=None, # backward dtypes this function is expected to work with on ROCM
|
|
default_test_dtypes=None, # dtypes to test with by default. Tests are instantiated with
|
|
# these dtypes for the op unless otherwise specified.
|
|
# This is helpful in reducing the test matrix.
|
|
# the following metadata describes the operators out= support
|
|
supports_out=True, # whether the op supports the out kwarg
|
|
# defaults to True, if the op does not allow the out kwarg or
|
|
# supports it incorrectly then test_out in test_ops.py should fail
|
|
safe_casts_outputs=False, # whether op allows safe casting when writing to out arguments
|
|
|
|
# the following metadata relates to autograd support
|
|
supports_autograd=True, # whether the operation supports backward mode AD
|
|
# if true, gradient correctness is tested in test_ops.py
|
|
# using the op's sample inputs
|
|
supports_gradgrad=None, # whether the op supports second order gradients
|
|
# if true, gradgrad correctness is tested in test_ops.py
|
|
# defaults to support_autograd's value
|
|
supports_inplace_autograd=None, # whether the operation supports inplace autograd
|
|
# if true, tested in test_ops.py
|
|
# defaults to supports_autograd's value
|
|
supports_forward_ad=False, # Whether the operation support forward mode AD
|
|
# If the value is True, we check that the gradients are correct
|
|
# If the value is False, we test that forward grad is not implemented
|
|
gradcheck_wrapper=lambda op, *args, **kwargs: op(*args, **kwargs), # wrapper function for gradcheck
|
|
check_batched_grad=None, # whether to check batched grad when doing gradcheck
|
|
# defaults to support_autograd's value
|
|
check_batched_gradgrad=None, # whether to check batched grad grad when doing gradgradcheck
|
|
# default's to support_gradgrad's value
|
|
gradcheck_nondet_tol=0.0, # tolerance for nondeterminism while performing gradcheck
|
|
gradcheck_fast_mode=None, # Whether to use the fast implmentation for gradcheck/gradgradcheck.
|
|
# When set to None, defers to the default value provided by the wrapper
|
|
# function around gradcheck (testing._internal.common_utils.gradcheck)
|
|
|
|
# the following metadata relates to JIT support and is tested for correctness in test_ops.py
|
|
aten_name=None, # name of the corresponding aten:: operator
|
|
assert_autodiffed=False, # if a op's aten::node is expected to be symbolically autodiffed
|
|
autodiff_nonfusible_nodes=None, # a list of strings with node names that are expected to be in a
|
|
# DifferentiableGraph when autodiffed. Ex: ['aten::add', 'aten::mm'],
|
|
# default is populated to be ['aten::(name of Python operator)']
|
|
autodiff_fusible_nodes=None, # a list of strings with node names that are expected to be in FusionGroups
|
|
# inside of DifferentiableGraphs when this operation is autodiffed.
|
|
# Ex: ['aten::add', 'aten::mm'], defaults to an empty list
|
|
# Note: currently no ops use fusible nodes
|
|
|
|
# the following metadata relates to sparse support and is used in test_sparse.py
|
|
supports_sparse=False, # whether the op supports sparse inputs
|
|
|
|
supports_scripting=True, # only run tracing tests
|
|
# the following metadata relates to complex support and is checked in test_ops.py
|
|
test_conjugated_samples=True,
|
|
test_neg_view=True,
|
|
assert_jit_shape_analysis=False, # assert that jit shape analysis fully propagates shape
|
|
):
|
|
|
|
dtypes_args = (dtypes, dtypesIfCPU, dtypesIfCUDA, dtypesIfROCM)
|
|
# Validates the dtypes are generated from the dispatch-related functions
|
|
for dtype_list in dtypes_args:
|
|
assert isinstance(dtype_list, (_dispatch_dtypes, type(None)))
|
|
|
|
self.name = name
|
|
self.ref = ref
|
|
self.aten_name = aten_name if aten_name is not None else name
|
|
self.variant_test_name = variant_test_name
|
|
|
|
# Attribute to verify dynamic_dtypes are used.
|
|
self.dynamic_dtypes = any(map(lambda dtypes: isinstance(
|
|
dtypes, opinfo_helper._dynamic_dispatch_dtypes), dtypes_args))
|
|
|
|
if self.dynamic_dtypes:
|
|
# Make sure `dtyesIfCUDA` is dynamic, if dynamic dispatch is used for CPU
|
|
# This is because, below we set dtypesIfCUDA to dtypes if they are None.
|
|
assert isinstance(dtypesIfCUDA, opinfo_helper._dynamic_dispatch_dtypes), \
|
|
(f"To use dynamic dypes for operator {name}, "
|
|
"acquire the dtypes dynamically for argument `dtypesIfCUDA`."
|
|
"This is to ensure that CUDA dtypes are acquired correctly as they"
|
|
"differ from CPU dtypes occasionally")
|
|
|
|
self.dtypes = set(dtypes)
|
|
|
|
# NOTE: backward dtypes must be acquired before forward dtypes
|
|
# since they fallback to explicit (not implicit!) specifications of
|
|
# forward dtypes
|
|
self.backward_dtypes = set(backward_dtypes) if backward_dtypes is not None else self.dtypes
|
|
self.backward_dtypesIfCPU = set(backward_dtypesIfCPU) if backward_dtypesIfCPU is not None else (
|
|
backward_dtypes if backward_dtypes is not None
|
|
else dtypesIfCPU if dtypesIfCPU is not None
|
|
else dtypes)
|
|
self.backward_dtypesIfCUDA = set(backward_dtypesIfCUDA) if backward_dtypesIfCUDA is not None else (
|
|
backward_dtypes if backward_dtypes is not None
|
|
else dtypesIfCUDA if dtypesIfCUDA is not None
|
|
else dtypes)
|
|
self.backward_dtypesIfROCM = set(backward_dtypesIfROCM) if backward_dtypesIfROCM is not None else (
|
|
backward_dtypesIfCUDA if backward_dtypesIfCUDA is not None
|
|
else backward_dtypes if backward_dtypes is not None
|
|
else dtypesIfROCM if dtypesIfROCM is not None
|
|
else dtypesIfCUDA if dtypesIfCUDA is not None
|
|
else dtypes)
|
|
|
|
self.dtypesIfCPU = set(dtypesIfCPU) if dtypesIfCPU is not None else self.dtypes
|
|
self.dtypesIfCUDA = set(dtypesIfCUDA) if dtypesIfCUDA is not None else self.dtypes
|
|
self.dtypesIfROCM = set(dtypesIfROCM) if dtypesIfROCM is not None else self.dtypesIfCUDA
|
|
|
|
self._default_test_dtypes = set(default_test_dtypes) if default_test_dtypes is not None else None
|
|
|
|
# NOTE: if the op is unspecified it is assumed to be under the torch namespace
|
|
self.op = op if op else _getattr_qual(torch, self.name)
|
|
method_variant = getattr(torch.Tensor, name, None) if method_variant is _NOTHING else method_variant
|
|
# attributes like real, imag are not callable
|
|
self.method_variant = method_variant if callable(method_variant) else None
|
|
inplace_name = name + "_"
|
|
self.inplace_variant = getattr(torch.Tensor, inplace_name, None) \
|
|
if inplace_variant is _NOTHING else inplace_variant
|
|
self.operator_variant = getattr(operator, name, None)
|
|
|
|
self.supports_out = supports_out
|
|
self.safe_casts_outputs = safe_casts_outputs
|
|
|
|
self.decorators = (*decorators, *skips)
|
|
self.sample_inputs_func = sample_inputs_func
|
|
|
|
self.assert_autodiffed = assert_autodiffed
|
|
self.autodiff_fusible_nodes = autodiff_fusible_nodes if autodiff_fusible_nodes else []
|
|
if autodiff_nonfusible_nodes is None:
|
|
self.autodiff_nonfusible_nodes = ['aten::' + self.name]
|
|
else:
|
|
self.autodiff_nonfusible_nodes = autodiff_nonfusible_nodes
|
|
|
|
# Autograd support
|
|
|
|
# Autograd flags that don't depend on backward AD
|
|
self.supports_autograd = supports_autograd
|
|
self.supports_forward_ad = supports_forward_ad
|
|
self.gradcheck_fast_mode = gradcheck_fast_mode
|
|
self.gradcheck_wrapper = gradcheck_wrapper
|
|
self.gradcheck_nondet_tol = gradcheck_nondet_tol
|
|
|
|
# Autograd flags that depend on backward AD only
|
|
# - If setting has been explicitly set, raise error if inconsistent
|
|
if supports_gradgrad is None:
|
|
supports_gradgrad = supports_autograd
|
|
else:
|
|
assert not (supports_gradgrad and not supports_autograd), (
|
|
"supports_gradgrad refines the part of autograd is supported, so it should "
|
|
"not be set if supports_autograd is False")
|
|
if check_batched_grad is None:
|
|
check_batched_grad = supports_autograd
|
|
else:
|
|
assert not (check_batched_grad and not supports_autograd), (
|
|
"check_batched_grad refines the part of autograd that will be checked (by gradcheck), so "
|
|
"it should not be set if supports_autograd is False")
|
|
if check_batched_gradgrad is None:
|
|
check_batched_gradgrad = supports_gradgrad
|
|
else:
|
|
assert not (check_batched_gradgrad and not supports_gradgrad), (
|
|
"check_batched_gradgrad refines the part of autograd that will be checked (by "
|
|
"gradgradcheck), so it should not be set if either supports_gradgrad or supports_autograd "
|
|
"is False.")
|
|
|
|
self.supports_gradgrad = supports_gradgrad
|
|
self.check_batched_grad = check_batched_grad
|
|
self.check_batched_gradgrad = check_batched_gradgrad
|
|
|
|
# Autograd flags that depend on both forward AD and backward AD
|
|
if supports_inplace_autograd is None:
|
|
supports_inplace_autograd = supports_autograd or supports_forward_ad
|
|
else:
|
|
assert not (supports_inplace_autograd and not supports_autograd and not supports_forward_ad), (
|
|
"supports_inplace_autograd refines the part of autograd that is supported, so "
|
|
"it should not be set if both supports_autograd and supports_forward_ad are False")
|
|
self.supports_inplace_autograd = supports_inplace_autograd
|
|
|
|
self.supports_sparse = supports_sparse
|
|
|
|
self.aliases = ()
|
|
if aliases is not None:
|
|
self.aliases = tuple(AliasInfo(a) for a in aliases) # type: ignore[assignment]
|
|
|
|
self.supports_scripting = supports_scripting
|
|
self.assert_jit_shape_analysis = assert_jit_shape_analysis
|
|
|
|
self.test_conjugated_samples = test_conjugated_samples
|
|
self.test_neg_view = test_neg_view
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
"""Calls the function variant of the operator."""
|
|
return self.op(*args, **kwargs)
|
|
|
|
def get_op(self):
|
|
"""Returns the function variant of the operator, torch.<op_name>."""
|
|
return self.op
|
|
|
|
def get_method(self):
|
|
"""Returns the method variant of the operator, torch.Tensor.<op_name>.
|
|
Returns None if the operator has no method variant.
|
|
"""
|
|
return self.method_variant
|
|
|
|
def get_inplace(self):
|
|
"""Returns the inplace variant of the operator, torch.Tensor.<op_name>_.
|
|
Returns None if the operator has no inplace variant.
|
|
"""
|
|
return self.inplace_variant
|
|
|
|
def get_operator_variant(self):
|
|
"""Returns operator variant of the operator, e.g. operator.neg
|
|
Returns None if the operator has no operator variant.
|
|
"""
|
|
return self.operator_variant
|
|
|
|
def conjugate_sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs but with the tensor input or first
|
|
tensor in a sequence input conjugated.
|
|
"""
|
|
|
|
# TODO: Remove the try/except once all operators have sample_inputs_func with
|
|
# **kwargs in their signature.
|
|
try:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
except TypeError:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad)
|
|
|
|
conj_samples = list(samples)
|
|
|
|
def conjugate(tensor):
|
|
_requires_grad = tensor.requires_grad
|
|
with torch.no_grad():
|
|
tensor = tensor.conj()
|
|
return tensor.requires_grad_(_requires_grad)
|
|
|
|
for i in range(len(samples)):
|
|
sample = conj_samples[i]
|
|
# Note: it is assumed that the input here is either a tensor or tensorlist
|
|
if isinstance(sample.input, torch.Tensor):
|
|
sample.input = conjugate(sample.input)
|
|
else:
|
|
with torch.no_grad():
|
|
sample.input[0] = conjugate(sample.input[0])
|
|
|
|
return tuple(conj_samples)
|
|
|
|
def sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs.
|
|
|
|
These samples should be sufficient to test the function works correctly
|
|
with autograd, TorchScript, etc.
|
|
"""
|
|
|
|
# TODO: Remove the try/except once all operators have sample_inputs_func with
|
|
# **kwargs in their signature.
|
|
try:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
except TypeError:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad)
|
|
|
|
if 'include_conjugated_inputs' in kwargs and kwargs.get('include_conjugated_inputs'):
|
|
conj_samples = self.conjugate_sample_inputs(device, dtype, requires_grad, **kwargs)
|
|
samples_list = list(samples)
|
|
samples_list.extend(conj_samples)
|
|
samples = tuple(samples_list)
|
|
|
|
return samples
|
|
|
|
def get_decorators(self, test_class, test_name, device, dtype):
|
|
'''Returns the decorators targeting the given test.'''
|
|
result = []
|
|
for decorator in self.decorators:
|
|
if isinstance(decorator, DecorateInfo):
|
|
if decorator.is_active(test_class, test_name, device, dtype):
|
|
result.extend(decorator.decorators)
|
|
else:
|
|
result.append(decorator)
|
|
return result
|
|
|
|
def supported_dtypes(self, device_type):
|
|
if device_type == 'cpu':
|
|
return self.dtypesIfCPU
|
|
if device_type == 'cuda':
|
|
return self.dtypesIfROCM if TEST_WITH_ROCM else self.dtypesIfCUDA
|
|
else:
|
|
return self.dtypes
|
|
|
|
def supported_backward_dtypes(self, device_type):
|
|
if not self.supports_autograd:
|
|
return set()
|
|
|
|
backward_dtypes = None
|
|
if device_type == 'cpu':
|
|
backward_dtypes = self.backward_dtypesIfCPU
|
|
elif device_type == 'cuda':
|
|
backward_dtypes = self.backward_dtypesIfROCM if TEST_WITH_ROCM else self.backward_dtypesIfCUDA
|
|
else:
|
|
backward_dtypes = self.backward_dtypes
|
|
|
|
allowed_backward_dtypes = floating_and_complex_types_and(torch.bfloat16, torch.float16)
|
|
return set(allowed_backward_dtypes).intersection(backward_dtypes)
|
|
|
|
def supports_complex_autograd(self, device_type):
|
|
if device_type == 'cpu':
|
|
return any(dtype.is_complex for dtype in self.backward_dtypesIfCPU)
|
|
if device_type == 'cuda':
|
|
if TEST_WITH_ROCM:
|
|
return any(dtype.is_complex for dtype in self.backward_dtypesIfROCM)
|
|
else:
|
|
return any(dtype.is_complex for dtype in self.backward_dtypesIfCUDA)
|
|
else:
|
|
return any(dtype.is_complex for dtype in self.backward_dtypes)
|
|
|
|
def supports_dtype(self, dtype, device_type):
|
|
return dtype in self.supported_dtypes(device_type)
|
|
|
|
def default_test_dtypes(self, device_type):
|
|
"""Returns the default dtypes used to test this operator on the device.
|
|
|
|
Equal to the operator's default_test_dtypes filtered to remove dtypes
|
|
not supported by the device.
|
|
"""
|
|
supported = self.supported_dtypes(device_type)
|
|
return (supported if self._default_test_dtypes is None
|
|
else supported.intersection(self._default_test_dtypes))
|
|
|
|
@property
|
|
def formatted_name(self):
|
|
"""Returns a formatted full name for this OpInfo that can be used in test names."""
|
|
variant = '_' + self.variant_test_name if self.variant_test_name else ''
|
|
return '{}{}'.format(self.name.replace('.', '_'), variant)
|
|
|
|
|
|
def _generate_reduction_inputs(device, dtype, requires_grad):
|
|
"""Generates input tensors for testing reduction operators"""
|
|
yield make_tensor([], device, dtype, requires_grad=requires_grad)
|
|
yield make_tensor([2], device, dtype, requires_grad=requires_grad)
|
|
yield make_tensor([3, 5], device, dtype, requires_grad=requires_grad, noncontiguous=True)
|
|
yield make_tensor([3, 2, 1, 2], device, dtype, requires_grad=requires_grad)
|
|
|
|
|
|
def _generate_reduction_kwargs(ndim, supports_multiple_dims=True):
|
|
"""Generates a subset of all valid dim and keepdim kwargs given ndim that
|
|
is appropriate for testing reduction operators.
|
|
"""
|
|
|
|
# Test default dim and keepdim
|
|
yield {}
|
|
|
|
# Test reducing inner and outer most dimensions
|
|
yield {'dim': 0, 'keepdim': True}
|
|
yield {'dim': -1, 'keepdim': False}
|
|
|
|
# Test reducing middle dimension
|
|
if ndim > 2:
|
|
yield {'dim': ndim // 2, 'keepdim': True}
|
|
|
|
if supports_multiple_dims:
|
|
# Test reducing all dimensions
|
|
yield {'dim': tuple(range(ndim)), 'keepdim': False}
|
|
|
|
# Test reducing both first and last dimensions
|
|
if ndim > 1:
|
|
yield {'dim': (0, -1), 'keepdim': True}
|
|
|
|
# Test reducing every other dimension starting with the second
|
|
if ndim > 3:
|
|
yield {'dim': tuple(range(1, ndim, 2)), 'keepdim': False}
|
|
|
|
|
|
def sample_inputs_reduction(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""Sample inputs for reduction operators."""
|
|
|
|
# TODO(@heitorschueroff) Once all reduction operators are using
|
|
# ReductionOpInfo use op_info.supports_multiple_dims directly.
|
|
supports_multiple_dims: bool = kwargs.get('supports_multiple_dims', True)
|
|
|
|
# TODO(@heitorschueroff) Once all reduction operators are using ReductionOpInfo
|
|
# use op_info.genearte_args_kwargs directly.
|
|
generate_args_kwargs = kwargs.get('generate_args_kwargs', lambda *args, **kwargs: (yield tuple(), {}))
|
|
|
|
inputs: List[SampleInput] = []
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
for reduction_kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims):
|
|
for args, kwargs in generate_args_kwargs(t, **reduction_kwargs):
|
|
kwargs.update(reduction_kwargs)
|
|
inputs.append(SampleInput(t, args=args, kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
|
|
# NOTE [Reductions]:
|
|
#
|
|
# For testing purposes, we relax the definition of a reduction operator
|
|
# as defined in the docstring below. We do this to capture operators with
|
|
# a similar API so they can be tested automatically. However...
|
|
#
|
|
# Strictly speaking a reduction operator is an operator that can reduce an
|
|
# array to a single scalar value and that can be computed from the partial
|
|
# result of reducing subarrays. This usually means that the reduction operation
|
|
# should be commutative and associative. This definition is important when it
|
|
# comes to implementation as it determines how a reduction can be parallelized.
|
|
#
|
|
# For example, many summary statistics such as median, mode and quantile cannot
|
|
# be computed from partial results because these are sorting and counting based
|
|
# algorithms that need information that would be lost in the reduced value.
|
|
class ReductionOpInfo(OpInfo):
|
|
"""Reduction operator information.
|
|
|
|
An operator is a reduction operator if it reduces one or more dimensions of
|
|
the input tensor to a single value. Reduction operators must implement the
|
|
following signature:
|
|
|
|
- `op(input, *args, *, dim=None, keepdim=False, **kwargs) -> Tensor`
|
|
|
|
ReductionOpInfo tests that reduction operators implement a consistent API.
|
|
Optional features such as reducing over multiple dimensions are captured in
|
|
the optional keyword parameters of the ReductionOpInfo constructor.
|
|
|
|
If a reduction operator does not yet implement the full required API of
|
|
reduction operators, this should be documented by skipping the failing
|
|
tests rather than adding optional parameters to ReductionOpInfo.
|
|
|
|
NOTE
|
|
The API for reduction operators has not yet been finalized and some
|
|
requirements may change.
|
|
|
|
See tests in test/test_reductions.py
|
|
"""
|
|
|
|
def __init__(
|
|
self, name, *,
|
|
|
|
# The identity value for the operator if it has one.
|
|
identity: Optional[Any] = None,
|
|
|
|
# The nan policy for the operator if it implements one.
|
|
# - propagate: NaN values are propagated to the output
|
|
# - omit: NaN values are discarded during the reduction
|
|
nan_policy: Optional[str] = None,
|
|
|
|
# Whether the operator supports reducing multiple dimensions.
|
|
supports_multiple_dims: bool = True,
|
|
|
|
# Whether the operator promotes integral to floating point dtypes.
|
|
promotes_int_to_float: bool = False,
|
|
|
|
# Whether the operator promotes all integral dtypes to int64.
|
|
promotes_int_to_int64: bool = False,
|
|
|
|
# If a specific dtype is given, then the operator always returns that
|
|
# dtype irrespective of the input dtype. If None, the operator returns
|
|
# the dtype according to the type promotion rules above.
|
|
result_dtype: Optional[torch.dtype] = None,
|
|
|
|
# ReductionOpInfo tests generate their own input, dim and keepdim
|
|
# arguments and call this function to generate tuples of extra args and
|
|
# kwargs to use when calling the op. This is required for operators that
|
|
# have other required parameters besides the input tensor.
|
|
generate_args_kwargs: Callable = lambda t, dim=None, keepdim=False: (yield tuple(), {}),
|
|
|
|
# Options from the OpInfo base class
|
|
**kwargs,
|
|
):
|
|
assert nan_policy in (None, 'propagate', 'omit')
|
|
|
|
# These are mutually exclusive options
|
|
assert not (result_dtype and promotes_int_to_float)
|
|
assert not (result_dtype and promotes_int_to_int64)
|
|
assert not (promotes_int_to_float and promotes_int_to_int64)
|
|
|
|
# Default sample_inputs_func for ReductionOpInfo which augments sample
|
|
# inputs from sample_inputs_reduction with the args and kwargs from
|
|
# generate_args_kwargs. This is only used if sample_inputs_func is None.
|
|
def sample_inputs_func(*args, **kwargs):
|
|
kwargs['supports_multiple_dims'] = supports_multiple_dims
|
|
kwargs['generate_args_kwargs'] = generate_args_kwargs
|
|
return sample_inputs_reduction(*args, **kwargs)
|
|
|
|
# Override OpInfo defaults and call base class __init__
|
|
kwargs.setdefault('inplace_variant', None)
|
|
kwargs.setdefault('sample_inputs_func', sample_inputs_func)
|
|
kwargs.setdefault('default_test_dtypes', (
|
|
torch.uint8, torch.int64, torch.float16, torch.bfloat16, torch.float32, torch.complex64))
|
|
super(ReductionOpInfo, self).__init__(name, **kwargs)
|
|
|
|
self.identity = identity
|
|
self.nan_policy = nan_policy
|
|
self.supports_multiple_dims = supports_multiple_dims
|
|
self.promotes_int_to_float = promotes_int_to_float
|
|
self.promotes_int_to_int64 = promotes_int_to_int64
|
|
self.result_dtype = result_dtype
|
|
self.generate_args_kwargs = generate_args_kwargs
|
|
|
|
|
|
def sample_inputs_unary(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, high = op_info.domain
|
|
low = low if low is None else low + op_info._domain_eps
|
|
high = high if high is None else high - op_info._domain_eps
|
|
|
|
return (SampleInput(make_tensor((L,), device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)))
|
|
|
|
# Metadata class for unary "universal functions (ufuncs)" that accept a single
|
|
# tensor and have common properties like:
|
|
class UnaryUfuncInfo(OpInfo):
|
|
"""Operator information for 'universal unary functions (unary ufuncs).'
|
|
These are functions of a single tensor with common properties like:
|
|
- they are elementwise functions
|
|
- the input shape is the output shape
|
|
- they typically have method and inplace variants
|
|
- they typically support the out kwarg
|
|
- they typically have NumPy or SciPy references
|
|
See NumPy's universal function documentation
|
|
(https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
|
|
about the concept of ufuncs.
|
|
"""
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
default_test_dtypes=(
|
|
torch.uint8, torch.long, torch.half, torch.bfloat16,
|
|
torch.float32, torch.cfloat), # dtypes which tests check by default
|
|
domain=(None, None), # the [low, high) domain of the function
|
|
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
|
|
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
|
|
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
|
|
supports_complex_to_float=False, # op supports casting from complex input to real output safely eg. angle
|
|
sample_inputs_func=sample_inputs_unary,
|
|
sample_kwargs=lambda device, dtype, input: ({}, {}),
|
|
supports_sparse=False,
|
|
**kwargs):
|
|
super(UnaryUfuncInfo, self).__init__(name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
default_test_dtypes=default_test_dtypes,
|
|
sample_inputs_func=sample_inputs_func,
|
|
supports_sparse=supports_sparse,
|
|
**kwargs)
|
|
self.ref = ref
|
|
self.domain = domain
|
|
self.handles_large_floats = handles_large_floats
|
|
self.handles_extremals = handles_extremals
|
|
self.handles_complex_extremals = handles_complex_extremals
|
|
self.supports_complex_to_float = supports_complex_to_float
|
|
|
|
# test_unary_ufuncs.py generates its own inputs to test the consistency
|
|
# of the operator on sliced tensors, non-contig tensors, etc.
|
|
# `sample_kwargs` is a utility function to provide kwargs
|
|
# along with those inputs if required (eg. clamp).
|
|
# It should return two dictionaries, first holding kwarg for
|
|
# torch operator and second one for reference NumPy operator.
|
|
self.sample_kwargs = sample_kwargs
|
|
|
|
# Epsilon to ensure grad and gradgrad checks don't test values
|
|
# outside a function's domain.
|
|
self._domain_eps = 1e-5
|
|
|
|
def sample_inputs_tensor_split(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
args_cases = (
|
|
# Cases with tensor indices.
|
|
(torch.tensor([1, 2, 3]),),
|
|
(torch.tensor(1),),
|
|
(torch.tensor([1, 2, 3]), 1),
|
|
(torch.tensor([1, 4, 2, 5, 3, 6])[::2], 1),
|
|
# Cases with list of indices.
|
|
((2, 4),),
|
|
((2, 4), 1),
|
|
((2, 4), -1),
|
|
# Cases with integer section.
|
|
(3,),
|
|
(3, 1),
|
|
(3, -1),
|
|
)
|
|
|
|
def generator():
|
|
for args in args_cases:
|
|
yield SampleInput(make_input((S, S, S)), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_linalg_det(op_info, device, dtype, requires_grad):
|
|
kw = dict(device=device, dtype=dtype)
|
|
inputs = [
|
|
make_tensor((S, S), **kw),
|
|
make_tensor((1, 1), **kw), # 1x1
|
|
random_symmetric_matrix(S, **kw), # symmetric
|
|
random_symmetric_psd_matrix(S, **kw), # symmetric_psd
|
|
random_symmetric_pd_matrix(S, **kw), # symmetric_pd
|
|
|
|
random_square_matrix_of_rank(S, S - 2, **kw), # dim2_null
|
|
random_square_matrix_of_rank(S, 1, **kw), # rank1
|
|
random_square_matrix_of_rank(S, 2, **kw), # rank2
|
|
|
|
random_fullrank_matrix_distinct_singular_value(S, **kw), # distinct_singular_value
|
|
make_tensor((3, 3, S, S), **kw), # batched
|
|
make_tensor((3, 3, 1, 1), **kw), # batched_1x1
|
|
random_symmetric_matrix(S, 3, **kw), # batched_symmetric
|
|
random_symmetric_psd_matrix(S, 3, **kw), # batched_symmetric_psd
|
|
random_symmetric_pd_matrix(S, 3, **kw), # batched_symmetric_pd
|
|
random_fullrank_matrix_distinct_singular_value(S, 3, 3, **kw), # batched_distinct_singular_values
|
|
make_tensor((0, 0), **kw),
|
|
make_tensor((0, S, S), **kw),
|
|
]
|
|
for t in inputs:
|
|
t.requires_grad = requires_grad
|
|
return [SampleInput(t) for t in inputs]
|
|
|
|
def sample_inputs_linalg_det_singular(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def make_singular_matrix_batch_base(size, rank):
|
|
assert size[-1] == size[-2]
|
|
assert rank > 0 and rank <= size[-1]
|
|
|
|
with torch.no_grad():
|
|
n = size[-1]
|
|
a = make_arg(size[:-2] + (n, rank)) / 10
|
|
b = make_arg(size[:-2] + (rank, n)) / 10
|
|
|
|
x = a @ b
|
|
lu, pivs = x.lu()
|
|
p, l, u = torch.lu_unpack(lu, pivs)
|
|
u_diag_abs = u.diagonal(0, -2, -1).abs()
|
|
u_diag_abs_largest = u_diag_abs.max(dim=-1, keepdim=True).values
|
|
u_diag_abs_smallest_idxs = torch.topk(u_diag_abs, k=(n - rank), largest=False).indices
|
|
u.diagonal(0, -2, -1).div_(u_diag_abs_largest)
|
|
u.diagonal(0, -2, -1)[..., u_diag_abs_smallest_idxs] = torch.finfo(dtype).eps
|
|
|
|
matrix = p @ l @ u
|
|
|
|
assert (matrix.det().abs() < torch.finfo(dtype).eps * torch.linalg.matrix_norm(matrix)).all().item()
|
|
|
|
matrix.requires_grad_(requires_grad)
|
|
return matrix
|
|
|
|
def sample_generator():
|
|
for batch, size in product(((), (2,), (2, 2)), range(6)):
|
|
shape = batch + (size, size)
|
|
for rank in range(1, size):
|
|
yield make_singular_matrix_batch_base(shape, rank)
|
|
|
|
return [SampleInput(t) for t in sample_generator()]
|
|
|
|
|
|
def sample_inputs_linalg_matrix_power(op_info, device, dtype, requires_grad):
|
|
# (<matrix_size>, (<batch_sizes, ...>))
|
|
test_sizes = [
|
|
(1, ()),
|
|
(2, (0,)),
|
|
(2, (2,)),
|
|
]
|
|
|
|
inputs = []
|
|
for matrix_size, batch_sizes in test_sizes:
|
|
size = batch_sizes + (matrix_size, matrix_size)
|
|
for n in (0, 3, 5):
|
|
t = make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(t, args=(n,)))
|
|
for n in [-4, -2, -1]:
|
|
t = random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_sizes, device=device, dtype=dtype)
|
|
t.requires_grad = requires_grad
|
|
inputs.append(SampleInput(t, args=(n,)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_hsplit(op_info, device, dtype, requires_grad):
|
|
return (SampleInput(make_tensor((6,), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),
|
|
SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),)
|
|
|
|
def sample_inputs_vsplit(op_info, device, dtype, requires_grad):
|
|
return (SampleInput(make_tensor((6, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),
|
|
SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),)
|
|
|
|
def sample_inputs_dsplit(op_info, device, dtype, requires_grad):
|
|
return (SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=([1, 2, 3],),),
|
|
SampleInput(make_tensor((S, S, 6), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(2,),),)
|
|
|
|
def sample_inputs_linalg_multi_dot(op_info, device, dtype, requires_grad):
|
|
# Each test case consists of the sizes in the chain of multiplications
|
|
# e.g. [2, 3, 4, 5] generates matrices (2, 3) @ (3, 4) @ (4, 5)
|
|
test_cases = [
|
|
[1, 2, 1],
|
|
[2, 0, 2],
|
|
[0, 2, 2],
|
|
[2, 2, 2, 2],
|
|
[2, 3, 4, 5],
|
|
[5, 4, 0, 2],
|
|
[2, 4, 3, 5, 3, 2]
|
|
]
|
|
|
|
result = []
|
|
for sizes in test_cases:
|
|
tensors = []
|
|
for size in zip(sizes[:-1], sizes[1:]):
|
|
t = make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
tensors.append(t)
|
|
result.append(SampleInput(tensors))
|
|
|
|
return result
|
|
|
|
def sample_inputs_linalg_matrix_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
sizes = ((2, 2), (2, 3, 2))
|
|
ords = ('fro', 'nuc', inf, -inf, 1, -1, 2, -2)
|
|
dims = ((-2, -1), (-1, 0))
|
|
|
|
inputs: List[SampleInput] = []
|
|
for size, ord, dim, keepdim in product(sizes, ords, dims, [True, False]):
|
|
t = make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(t, args=(ord, dim, keepdim)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_linalg_norm(op_info, device, dtype, requires_grad):
|
|
test_sizes = [
|
|
(S,),
|
|
(0,),
|
|
(S, S),
|
|
(0, 0),
|
|
(S, 0),
|
|
(0, S),
|
|
(S, S, S),
|
|
(0, S, S),
|
|
(S, 0, S),
|
|
(0, 0, 0),
|
|
]
|
|
|
|
vector_ords = (None, 0, 0.5, 1, 2, 3.5, inf, -0.5, -1, -2, -3.5, -inf)
|
|
matrix_ords = (None, 'fro', 'nuc', 1, 2, inf, -1, -2, -inf)
|
|
|
|
inputs = []
|
|
|
|
for test_size in test_sizes:
|
|
is_vector_norm = len(test_size) == 1
|
|
is_matrix_norm = len(test_size) == 2
|
|
|
|
for keepdim in [False, True]:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if not (is_vector_norm or is_matrix_norm):
|
|
continue
|
|
|
|
ords = vector_ords if is_vector_norm else matrix_ords
|
|
|
|
for ord in ords:
|
|
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if ord in ['nuc', 'fro']:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
ord=ord,
|
|
keepdim=keepdim,
|
|
dim=(0, 1))))
|
|
return inputs
|
|
|
|
def sample_inputs_cosine_similarity(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input_shape, dict of dim and eps
|
|
cases: Tuple[tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S), {'dim': 1}),
|
|
((S, 2), {'dim': -1}),
|
|
((S,), {'dim': 0, 'eps': 0.5}),
|
|
((), {'dim': 0}),
|
|
((S, S, M), {'dim': 2}),
|
|
((S, S), {})
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(input_shape),), kwargs=kwargs)
|
|
# Test for Broadcasting
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -2})
|
|
yield SampleInput(make_arg((2, 3)), args=(make_arg((2, 1, 3)),), kwargs={'dim': -1})
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_batch_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_arg_without_requires_grad = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
# Ordered as: input shape, kwargs for training, momentum, eps
|
|
cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((S, S, S), {'training': True, 'momentum': 0.5, 'eps': 0.6}),
|
|
((3, 2, 4), {'training': False, 'momentum': -1.2}),
|
|
((3, 1), {'training': True, 'momentum': 0.0}),
|
|
((0,), {'training': True}),
|
|
((0,), {'training': False}),
|
|
((3, 2, 3, 4), {'training': True, 'momentum': -1.0, 'eps': 0.5}),
|
|
((3, 2, 3, 4), {'training': False, 'momentum': -1.0, 'eps': 0.5}),
|
|
((2, 1), {}),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, kwargs in cases:
|
|
# args: running mean, running var, weight and bias should necessarily be of shape: (channels,)
|
|
channels = input_shape[1] if len(input_shape) > 1 else 0
|
|
weight = make_arg(channels) if channels > 0 else None
|
|
bias = make_arg(channels) if channels > 0 else None
|
|
running_mean = make_arg_without_requires_grad(channels, low=0)
|
|
running_var = make_arg_without_requires_grad(channels, low=0)
|
|
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(
|
|
running_mean,
|
|
running_var,
|
|
weight,
|
|
bias
|
|
),
|
|
kwargs=kwargs
|
|
)
|
|
|
|
# Checking for permutations of weights and biases as `None`
|
|
weights = [channels, None, None]
|
|
biases = [None, channels, None]
|
|
is_training = [True, False, False]
|
|
|
|
for weight, bias, training in zip(weights, biases, is_training):
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(
|
|
running_mean,
|
|
running_var,
|
|
make_arg(channels),
|
|
make_arg(channels)
|
|
),
|
|
kwargs={'training': training}
|
|
)
|
|
|
|
# Test case for no optional kwargs
|
|
# running_mean and running_var are required in evaluation mode (training: False) but not in training mode
|
|
yield SampleInput(make_arg((1, 2, 3)), args=(None, None), kwargs={'training': True})
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_nn_activation_relu(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
(()),
|
|
((S, )),
|
|
((S, S)),
|
|
((S, M, S))
|
|
)
|
|
|
|
def generator():
|
|
for shape in cases:
|
|
yield SampleInput(make_arg(shape))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (2,), '2'),
|
|
((S, S), (0,), '0'),
|
|
((S, S), (0.5,), '0_5'),
|
|
((S, S), (1,), '1'),
|
|
((S, S), (3,), '3'),
|
|
((S, S), (-1,), 'neg_1'),
|
|
((S, S), (-2,), 'neg_2'),
|
|
((S, S), (-0.5,), 'neg_0_5'),
|
|
((S, S), (-1.5,), 'neg_1_5'),
|
|
)
|
|
|
|
cases_nonzero_input = (
|
|
((S, S, S), (1.5,), '1_5_default'),
|
|
((S, S, S), (1.5, 1), '1_5_dim'),
|
|
((S, S, S), (1.5, -1), '1_5_neg_dim'),
|
|
((S, S, S), (1.5, 1, True), 'keepdim_1_5_dim'),
|
|
((S, S, S), (1.5, -1, True), 'keepdim_1_5_neg_dim'),
|
|
)
|
|
|
|
cases_negdim_base = (
|
|
((S, S), (-2, 1,), 'neg_2_2_dim'),
|
|
((S, S), (-1, 1,), 'neg_1_2_dim'),
|
|
((S, S), (0, 1,), '0_2_dim'),
|
|
((S, S), (1, 1,), '1_2_dim'),
|
|
((S, S), (2, 1,), '2_2_dim'),
|
|
((S, S), (3, 1,), '3_2_dim'),
|
|
((S, S, S), (2, 1), '2_dim'),
|
|
((S, S, S), (3, 1), '3_dim'),
|
|
((S, S, S), (2, 1, True), 'keepdim_2_dim'),
|
|
((S, S, S), (3, 1, True), 'keepdim_3_dim'),
|
|
((), (2, 0), '2_dim_scalar'),
|
|
((), (3, 0), '3_dim_scalar'),
|
|
((), (2, 0, True), 'keepdim_2_dim_scalar'),
|
|
((), (3, 0, True), 'keepdim_3_dim_scalar'),
|
|
)
|
|
|
|
cases_negdim = []
|
|
for case in cases_negdim_base:
|
|
cases_negdim.append(case)
|
|
shape, args, name = case
|
|
new_args = copy.deepcopy(list(args))
|
|
new_args[1] *= -1
|
|
cases_negdim.append((shape, tuple(new_args), name.replace("_dim", "_neg_dim")))
|
|
|
|
def generator():
|
|
for shape, args, name in itertools.chain(cases, cases_negdim):
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
for shape, args, name in cases_nonzero_input:
|
|
yield SampleInput(make_arg(shape, exclude_zero=True), args=args, name=name)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_norm_fro(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (), 'default'),
|
|
((S, S), ('fro',), 'fro_default'),
|
|
((S, S), ('fro', [0, 1],), 'fro'),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_norm_nuc(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), ('nuc',), 'nuc'),
|
|
((S, S, S), ('nuc', [1, 2]), 'nuc_batched'),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_norm_inf(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (-inf,), '-inf'),
|
|
((S, S), (inf,), 'inf'),
|
|
((S, S), (inf, 1,), 'inf_2_dim'),
|
|
((S, S), (inf, -1,), 'inf_2_neg_dim'),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args, name in cases:
|
|
yield SampleInput(make_arg(shape), args=args, name=name)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_linalg_vector_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
size_1D = (S,)
|
|
size_2D = (2, 2)
|
|
|
|
test_cases = [
|
|
# input size, ord, dim args
|
|
(size_1D, 2, None),
|
|
(size_1D, 2, (0,)),
|
|
(size_1D, 0, None),
|
|
(size_1D, 0, (0,)),
|
|
(size_1D, 0.9, None),
|
|
(size_1D, 0.9, (0,)),
|
|
(size_1D, 1, None),
|
|
(size_1D, 1, (0,)),
|
|
(size_1D, -2.1, None),
|
|
(size_1D, -2.1, (0,)),
|
|
(size_1D, inf, None),
|
|
(size_1D, inf, (0,)),
|
|
(size_1D, -inf, None),
|
|
(size_1D, -inf, (0,)),
|
|
|
|
(size_2D, 2, None),
|
|
(size_2D, 2, (0,)),
|
|
(size_2D, 2, (-1, 0)),
|
|
(size_2D, 0, None),
|
|
(size_2D, 0, (0,)),
|
|
(size_2D, 0, (-1, 0)),
|
|
(size_2D, 0.9, None),
|
|
(size_2D, 0.9, (0,)),
|
|
(size_2D, 0.9, (-1, 0)),
|
|
(size_2D, 1, None),
|
|
(size_2D, 1, (0,)),
|
|
(size_2D, 1, (-1, 0)),
|
|
(size_2D, -2.1, None),
|
|
(size_2D, -2.1, (0,)),
|
|
(size_2D, -2.1, (-1, 0)),
|
|
(size_2D, inf, None),
|
|
(size_2D, inf, (0,)),
|
|
(size_2D, inf, (-1, 0)),
|
|
(size_2D, -inf, None),
|
|
(size_2D, -inf, (0,)),
|
|
(size_2D, -inf, (-1, 0)),
|
|
]
|
|
inputs = []
|
|
|
|
for test_size, ord, dim in test_cases:
|
|
for keepdim in [False, True]:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim,
|
|
dim=dim)))
|
|
|
|
return inputs
|
|
|
|
|
|
# Metadata class for binary "universal functions (ufuncs)" that accept two
|
|
# tensor and have common properties
|
|
class BinaryUfuncInfo(OpInfo):
|
|
"""Operator information for 'universal binary functions (binary ufuncs).'
|
|
These are functions of two tensors with common properties like:
|
|
- they are elementwise functions
|
|
- the output shape is determined by the input shape
|
|
- they typically have method and inplace variants
|
|
- they typically support the out kwarg
|
|
- they typically have NumPy or SciPy references
|
|
See NumPy's universal function documentation
|
|
(https://numpy.org/doc/stable/reference/ufuncs.html) for more details
|
|
about the concept of ufuncs.
|
|
"""
|
|
def __init__(self, name, *, lhs_make_tensor_kwargs=None, rhs_make_tensor_kwargs=None, **kwargs):
|
|
super().__init__(name, **kwargs)
|
|
|
|
# [lr]hs_make_tensor_kwargs are part of the OpInfo to be able to dynamically generate valid samples later on.
|
|
if lhs_make_tensor_kwargs is None:
|
|
lhs_make_tensor_kwargs = {}
|
|
self.lhs_make_tensor_kwargs = lhs_make_tensor_kwargs
|
|
|
|
if rhs_make_tensor_kwargs is None:
|
|
rhs_make_tensor_kwargs = {}
|
|
self.rhs_make_tensor_kwargs = rhs_make_tensor_kwargs
|
|
|
|
|
|
def _resolve_binay_pwise_kwargs(
|
|
op_info, *, op_kwargs=None, lhs_make_tensor_kwargs=None, rhs_make_tensor_kwargs=None
|
|
):
|
|
"""Resolves default values for :func:`sample_inputs_binary_pwise`.
|
|
|
|
By default :attr:`op_kwargs`, :attr:`lhs_make_tensor_kwargs`, and :attr:`rhs_make_tensor_kwargs` are just empty
|
|
dictionaries. In case :attr:`op_info` is a :class:`BinaryUfuncInfo`, :attr:`BinaryUfuncInfo.lhs_make_tensor_kwargs`
|
|
and :attr:`BinaryUfuncInfo.rhs_make_tensor_kwargs` will be used as defaults.
|
|
"""
|
|
if op_kwargs is None:
|
|
op_kwargs = {}
|
|
if lhs_make_tensor_kwargs is None:
|
|
lhs_make_tensor_kwargs = op_info.lhs_make_tensor_kwargs if isinstance(op_info, BinaryUfuncInfo) else {}
|
|
if rhs_make_tensor_kwargs is None:
|
|
rhs_make_tensor_kwargs = op_info.rhs_make_tensor_kwargs if isinstance(op_info, BinaryUfuncInfo) else {}
|
|
|
|
return op_kwargs, lhs_make_tensor_kwargs, rhs_make_tensor_kwargs
|
|
|
|
|
|
def sample_inputs_binary_pwise(
|
|
op_info,
|
|
device,
|
|
dtype,
|
|
requires_grad,
|
|
*,
|
|
python_scalars=False,
|
|
op_kwargs=None,
|
|
lhs_make_tensor_kwargs=None,
|
|
rhs_make_tensor_kwargs=None,
|
|
**kwargs,
|
|
):
|
|
op_kwargs, lhs_make_tensor_kwargs, rhs_make_tensor_kwargs = _resolve_binay_pwise_kwargs(
|
|
op_info,
|
|
op_kwargs=op_kwargs,
|
|
lhs_make_tensor_kwargs=lhs_make_tensor_kwargs,
|
|
rhs_make_tensor_kwargs=rhs_make_tensor_kwargs,
|
|
)
|
|
|
|
scalar = make_tensor((), device=device, dtype=dtype, **rhs_make_tensor_kwargs)
|
|
if python_scalars:
|
|
scalar = scalar.item() # type: ignore[assignment]
|
|
|
|
shapes = [
|
|
((), scalar),
|
|
((S,), scalar),
|
|
((S, 1), (S,)),
|
|
((M, S), scalar),
|
|
((S, M, S), (M, S)),
|
|
((S, M, S), (S, M, S)),
|
|
((M, 1, S), (M, S)),
|
|
((M, 1, S), (1, M, S)),
|
|
]
|
|
|
|
sample_inputs = []
|
|
for shape_lhs, shape_rhs_or_scalar in shapes:
|
|
lhs = make_tensor(
|
|
shape_lhs,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
**lhs_make_tensor_kwargs,
|
|
)
|
|
if isinstance(shape_rhs_or_scalar, tuple):
|
|
# shape
|
|
rhs = make_tensor(
|
|
shape_rhs_or_scalar,
|
|
device=device,
|
|
dtype=dtype,
|
|
requires_grad=requires_grad,
|
|
**rhs_make_tensor_kwargs,
|
|
)
|
|
broadcasts_input = torch.broadcast_shapes(shape_lhs, shape_rhs_or_scalar) != shape_lhs
|
|
else:
|
|
# scalar
|
|
rhs = shape_rhs_or_scalar # type: ignore[assignment]
|
|
broadcasts_input = False
|
|
|
|
sample_inputs.append(SampleInput(lhs, args=(rhs,), kwargs=op_kwargs, broadcasts_input=broadcasts_input))
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_add_sub(
|
|
op_info,
|
|
device,
|
|
dtype,
|
|
requires_grad,
|
|
python_scalars=False,
|
|
alpha=1,
|
|
op_kwargs=None,
|
|
lhs_make_tensor_kwargs=None,
|
|
rhs_make_tensor_kwargs=None,
|
|
**kwargs,
|
|
):
|
|
op_kwargs, lhs_make_tensor_kwargs, rhs_make_tensor_kwargs = _resolve_binay_pwise_kwargs(
|
|
op_info,
|
|
op_kwargs=op_kwargs,
|
|
lhs_make_tensor_kwargs=lhs_make_tensor_kwargs,
|
|
rhs_make_tensor_kwargs=rhs_make_tensor_kwargs,
|
|
)
|
|
|
|
sample_inputs = sample_inputs_binary_pwise(
|
|
op_info,
|
|
device,
|
|
dtype,
|
|
requires_grad,
|
|
python_scalars=python_scalars,
|
|
op_kwargs=op_kwargs,
|
|
lhs_make_tensor_kwargs=lhs_make_tensor_kwargs,
|
|
rhs_make_tensor_kwargs=rhs_make_tensor_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
lhs = make_tensor((S, S), device=device, dtype=dtype, requires_grad=requires_grad, **lhs_make_tensor_kwargs)
|
|
rhs = make_tensor((S, S), device=device, dtype=dtype, requires_grad=requires_grad, **rhs_make_tensor_kwargs)
|
|
sample_inputs.append(SampleInput(lhs, args=(rhs,), kwargs=dict(op_kwargs, alpha=alpha), broadcasts_input=False))
|
|
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_t(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
return (SampleInput(make_arg((1, 2))),
|
|
SampleInput(make_arg((2,))),
|
|
SampleInput(make_arg(())))
|
|
|
|
|
|
def sample_inputs_mm(op_info, device, dtype, requires_grad, **kwargs):
|
|
first_shape, second_shape = (S, M), (M, S)
|
|
sample_inputs = []
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),)))
|
|
|
|
if dtype.is_complex:
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad).conj(),)))
|
|
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad).transpose(0, 1),
|
|
args=(
|
|
make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad).transpose(0, 1).conj(),)))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_addmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
alpha_val = kwargs.get('alpha', 2 + 3j if dtype.is_complex else 0.6)
|
|
beta_val = kwargs.get('beta', 1 + 2j if dtype.is_complex else 0.2)
|
|
tests_list = [
|
|
((2, 3), (2, 2), (2, 3), False)
|
|
]
|
|
tests_with_lhs_broadcasting = [
|
|
((1,), (2, 2), (2, 3), True),
|
|
((), (2, 2), (2, 3), True)
|
|
]
|
|
test_cases = tests_list + tests_with_lhs_broadcasting # type: ignore[operator]
|
|
|
|
sample_inputs = []
|
|
|
|
for shape_a, shape_b, shape_c, broadcasts_input in test_cases:
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
make_tensor(shape_a, device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape_b, device, dtype,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shape_c, device, dtype,
|
|
requires_grad=requires_grad)),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},
|
|
broadcasts_input=broadcasts_input))
|
|
|
|
if dtype.is_complex:
|
|
shape = (3, 3)
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(shape, device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape, device, dtype,
|
|
requires_grad=requires_grad).t().conj(),
|
|
make_tensor(shape, device, dtype,
|
|
requires_grad=requires_grad)),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},))
|
|
sample_inputs.append(
|
|
SampleInput(make_tensor(shape, device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor(shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shape, device, dtype,
|
|
requires_grad=requires_grad).t().conj()),
|
|
kwargs={'alpha': alpha_val, 'beta': beta_val},))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_mv(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_bmm(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S, M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, M, S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_dot_vdot(self, device, dtype, requires_grad, **kwargs):
|
|
sample_inputs = []
|
|
sample_inputs.append(SampleInput(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
))
|
|
if dtype.is_complex:
|
|
# dot/vdot for (conj(input), conj(arg_tensor)) and (conj(input), arg_tensor)
|
|
# is tested in test_conj_view (which tests operations with only conjugated input tensor
|
|
# -- not conjugated arg tensors)
|
|
sample_inputs.append(SampleInput(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
torch.conj(make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
)
|
|
))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_addmv(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
test_cases = (((S,), (S, M), (M,), 1, 1, False),
|
|
((S,), (S, M), (M,), 0.2, 0.6, False),
|
|
)
|
|
|
|
test_cases_with_broadcast = (((1,), (S, M), (M,), 1, 1, True),
|
|
((1,), (S, M), (M,), 0.2, 0.6, True),
|
|
((), (S, M), (M,), 1, 1, True),
|
|
((), (S, M), (M,), 0.2, 0.6, True),
|
|
)
|
|
|
|
cases = test_cases + test_cases_with_broadcast
|
|
|
|
def generator():
|
|
# addmv performs: beta * M + alpha * (mat @ vec)
|
|
for M, mat, vec, beta, alpha, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(M), args=(make_arg(mat), make_arg(vec)),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_addbmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# input_shape, batch1_shape, batch2_shape, beta_val, alpha_val, is_broadcasting
|
|
test_cases = [((S, M), (S, S, S), (S, S, M), 1, 1, False),
|
|
((1,), (S, S, S), (S, S, M), 1, 1, True),
|
|
((S, M), (S, S, S), (S, S, M), 0.6, 0.2, False),
|
|
((1,), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
((), (S, S, S), (S, S, M), 1, 1, True),
|
|
((), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
]
|
|
|
|
def generator():
|
|
for input_shape, batch1_shape, batch2_shape, beta, alpha, is_broadcasting in test_cases:
|
|
if dtype.is_complex:
|
|
beta_complex, alpha_complex = beta * (1 + 2j), alpha * (2 + 3j)
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)),
|
|
kwargs=dict(beta=beta_complex, alpha=alpha_complex), broadcasts_input=is_broadcasting)
|
|
yield SampleInput(make_arg(input_shape), args=(make_arg(batch1_shape), make_arg(batch2_shape)),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=is_broadcasting)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_addcmul_addcdiv(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [(((S, S), (S, S), (S, S)), False),
|
|
(((S, S), (S, 1), (1, S)), False),
|
|
(((1,), (S, S, 1), (1, S)), True),
|
|
(((), (), ()), False),
|
|
(((S, S), (), ()), True),
|
|
(((), (S, S, 1), (1, S)), True)
|
|
]
|
|
|
|
sample_inputs = []
|
|
for input_args, broadcasts_input in test_cases:
|
|
args = tuple(make_tensor(arg, device, dtype, requires_grad=requires_grad) if isinstance(arg, tuple) else arg
|
|
for arg in input_args)
|
|
sample_inputs.append(SampleInput(args[0], args=args[1:], broadcasts_input=broadcasts_input))
|
|
|
|
sample_inputs.append(SampleInput(args[0], args=args[1:], kwargs=dict(value=3.14), broadcasts_input=broadcasts_input))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_baddbmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [((S, S, M), (S, S, S), (S, S, M), 1, 1, False),
|
|
((1,), (S, S, S), (S, S, M), 1, 1, True),
|
|
((S, S, M), (S, S, S), (S, S, M), 0.6, 0.2, False),
|
|
((1,), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
((), (S, S, S), (S, S, M), 1, 1, True),
|
|
((), (S, S, S), (S, S, M), 0.6, 0.2, True),
|
|
]
|
|
sample_inputs = []
|
|
for (input_shape, batch1_shape, batch2_shape, alpha, beta, broadcasts_input) in test_cases:
|
|
args = (make_tensor(input_shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(batch1_shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(batch2_shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]),
|
|
kwargs=dict(beta=beta, alpha=alpha), broadcasts_input=broadcasts_input))
|
|
if dtype.is_complex:
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]),
|
|
kwargs=dict(beta=beta * (1 + 2j), alpha=alpha * (2 + 3j)),
|
|
broadcasts_input=broadcasts_input))
|
|
|
|
if dtype.is_complex:
|
|
shapes = [(S, S, S), (S, M, S), (S, S, M)]
|
|
args = (make_tensor(shapes[0], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shapes[1], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(shapes[2], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
args[0].transpose(-1, 1), args=(args[1].transpose(-1, 1).conj(), args[2].transpose(-1, 1).conj()),
|
|
kwargs=dict(beta=beta * (1 + 2j), alpha=alpha * (2 + 3j)),))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_addr(op_info, device, dtype, requires_grad, **kwargs):
|
|
input1 = SampleInput(
|
|
make_tensor((S, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)))
|
|
|
|
input2 = SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
broadcasts_input=True)
|
|
|
|
if dtype.is_complex:
|
|
alpha, beta = 0.1 + 0.3j, 0.4 + 0.6j
|
|
elif dtype.is_floating_point:
|
|
alpha, beta = 0.2, 0.6
|
|
else:
|
|
alpha, beta = 2, 3
|
|
|
|
input3 = SampleInput(
|
|
make_tensor((S, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha))
|
|
|
|
input4 = SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha),
|
|
broadcasts_input=True)
|
|
|
|
return (input1, input2, input3, input4)
|
|
|
|
def sample_inputs_xlogy(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, low=0, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
|
|
def sample_inputs_xlog1py(self, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def generator():
|
|
# same shape
|
|
yield SampleInput(make_arg((S, S)), args=(make_arg((S, S), low=-1),))
|
|
# rhs broadcast
|
|
yield SampleInput(make_arg((S, S)), args=(make_arg((S,), low=-1),))
|
|
# all zero `x`
|
|
with torch.no_grad():
|
|
x = make_arg((S, S))
|
|
x.fill_(0)
|
|
yield SampleInput(x, args=(make_arg((S, S), low=-1),))
|
|
|
|
# randomly zero-masked `x`
|
|
x = make_arg((S, S))
|
|
y = make_arg((S, S), low=-1)
|
|
with torch.no_grad():
|
|
x[torch.rand(x.shape) > 0.5] = 0
|
|
yield SampleInput(x, args=(y,))
|
|
|
|
# Scalar x
|
|
# `input` has to be a tensor
|
|
# yield SampleInput(0, args=(make_arg((S, S), low=-1),))
|
|
# yield SampleInput(2.1, args=(make_arg((S, S), low=-1),))
|
|
|
|
# Scalar y
|
|
yield SampleInput(make_arg((S, S)), args=(-0.5,))
|
|
yield SampleInput(make_arg((S, S)), args=(1.2,))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_zero_(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = ((), (S, S, S), (S,))
|
|
|
|
def generator():
|
|
for shape in cases:
|
|
yield(SampleInput(make_arg(shape)))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_logsumexp(self, device, dtype, requires_grad):
|
|
inputs = (
|
|
((), (0,), True),
|
|
((S, S), (1,), True),
|
|
((S, S), (1,), False)
|
|
)
|
|
samples = []
|
|
|
|
for shape, dim, keepdim in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(dim, keepdim)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_like_fns(self, device, dtype, requires_grad, **kwargs):
|
|
inputs = [
|
|
((), {}),
|
|
((S, S), {}),
|
|
((0, S, 0), {}),
|
|
((S,), {'dtype': dtype, 'device': device}),
|
|
# Hard-code some dtypes/devices. We want to test cases where the
|
|
# (dtype, device) is different from the input's (dtype, device)
|
|
((S,), {'dtype': torch.double}),
|
|
((S,), {'device': 'cpu'}),
|
|
((S,), {'dtype': torch.double, 'device': 'cpu'}),
|
|
]
|
|
if torch.cuda.is_available():
|
|
inputs.append(((S,), {'device': 'cuda'}))
|
|
|
|
samples = []
|
|
for shape, kwargs in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_full_like(self, device, dtype, requires_grad, **kwargs):
|
|
def get_val(dtype):
|
|
return make_tensor([], 'cpu', dtype).item()
|
|
|
|
inputs = [
|
|
((), get_val(dtype), {}),
|
|
((S, S), get_val(dtype), {}),
|
|
((0, S, 0), get_val(dtype), {}),
|
|
((S,), get_val(dtype), {'dtype': dtype, 'device': device}),
|
|
# Hard-code some dtypes/devices. We want to test cases where the
|
|
# (dtype, device) is different from the input's (dtype, device)
|
|
((S,), get_val(torch.double), {'dtype': torch.double}),
|
|
((S,), get_val(dtype), {'device': 'cpu'}),
|
|
((S,), get_val(torch.double), {'dtype': torch.double, 'device': 'cpu'}),
|
|
]
|
|
if torch.cuda.is_available():
|
|
inputs.append(((S,), get_val(dtype), {'device': 'cuda'}))
|
|
|
|
samples = []
|
|
for shape, fill_value, kwargs in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(fill_value,), kwargs=kwargs))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_logcumsumexp(self, device, dtype, requires_grad):
|
|
inputs = (
|
|
((S, S, S), 0),
|
|
((S, S, S), 1),
|
|
((), 0),
|
|
)
|
|
samples = []
|
|
|
|
for shape, dim in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(dim,)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_trace(self, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput((make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))),)
|
|
|
|
|
|
def sample_inputs_renorm(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
cases = (((S, S, S), (2, 1, 0.5)),
|
|
((S, S, S), (2, -1, 0.5)),
|
|
((S, S, S), (1, 2, 3)),
|
|
((S, S, S), (float('inf'), 2, 0.5)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_transpose_swapdims(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((1, 2, 3), (-1, -2)),
|
|
((1, 2, 3), (-1, 2)),
|
|
((1, 2, 3), (1, -2)),
|
|
((1, 2, 3), (1, 2)),
|
|
((), (0, 0)),
|
|
((1, ), (0, 0)),
|
|
((M, M), (0, 1)),
|
|
((S, S, S), (2, 0)), )
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_adjoint(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((1, 2, 3), (), (M, M), (S, S, S), (S, M, S), (M, S, M, S))
|
|
return list(SampleInput(make_arg(shape)) for shape in shapes)
|
|
|
|
def sample_inputs_T(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((), (M, M))
|
|
return list(SampleInput(make_arg(shape)) for shape in shapes)
|
|
|
|
|
|
def sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always invertible input for linear algebra ops using
|
|
random_fullrank_matrix_distinct_singular_value.
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
out = []
|
|
for batch, n in product(batches, ns):
|
|
a = random_fullrank_matrix_distinct_singular_value(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a))
|
|
return out
|
|
|
|
def sample_inputs_linalg_pinv_singular(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function produces factors `a` and `b` to generate inputs of the form `a @ b.t()` to
|
|
test the backward method of `linalg_pinv`. That way we always preserve the rank of the
|
|
input no matter the perturbations applied to it by the gradcheck.
|
|
Note that `pinv` is Frechet-differentiable in a rank-preserving neighborhood.
|
|
"""
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
# the size of at least 30 is required to cause failures for the previous implicit implementation
|
|
# of the pinv's backward method, albeit it is slow.
|
|
size = [0, 3, 50]
|
|
|
|
def generate_samples():
|
|
for batch, m, n in product(batches, size, size):
|
|
for k in range(min(3, min(m, n))):
|
|
# Note that by making the columns of `a` and `b` orthonormal we make sure that
|
|
# the product matrix `a @ b.t()` has condition number 1 when restricted to its image
|
|
a = torch.rand(*batch, m, k, device=device, dtype=dtype).qr().Q.requires_grad_(requires_grad)
|
|
b = torch.rand(*batch, n, k, device=device, dtype=dtype).qr().Q.requires_grad_(requires_grad)
|
|
yield SampleInput(a, args=(b,))
|
|
|
|
return list(generate_samples())
|
|
|
|
def sample_inputs_linalg_cond(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# autograd is not supported for inputs with zero number of elements
|
|
shapes = ((S, S),
|
|
(2, S, S),
|
|
(2, 1, S, S), )
|
|
|
|
def generator():
|
|
for shape in shapes:
|
|
yield SampleInput(make_arg(shape))
|
|
|
|
return list(generator())
|
|
|
|
def np_sinc_with_fp16_as_fp32(x):
|
|
# Wraps numpy's sinc function so that fp16 values are promoted to fp32
|
|
# before sinc is invoked. Context: numpy's sinc returns NaN when evaluated
|
|
# at 0 for fp16.
|
|
if x.dtype == np.float16:
|
|
return np.sinc(x.astype(np.float32))
|
|
else:
|
|
return np.sinc(x)
|
|
|
|
def sample_inputs_broadcast_to(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, 1, 1), (S, S, S)),
|
|
((S, 1, S), (S, S, S)),
|
|
((S, 1), (S, S, S)),
|
|
((1,), (S, S, S)),
|
|
((1, S), (1, 1, S)),
|
|
((), ()),
|
|
((), (1, 3, 2)),
|
|
)
|
|
|
|
return tuple(
|
|
SampleInput(
|
|
make_tensor(size, device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(shape,)) for size, shape in test_cases)
|
|
|
|
def sample_inputs_broadcast_tensors(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
test_cases: Tuple[tuple] = (((3,), (1, 2, 1), (1, 1), (5, 1, 1),),)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, *other_shapes in test_cases:
|
|
samples.append(SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_block_diag(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
test_cases: Tuple[tuple] = (((1, S), (2, S), (3, S),),)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, *other_shapes in test_cases:
|
|
samples.append(SampleInput(make_arg(shape), args=tuple(make_arg(s) for s in other_shapes)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_bitwise_shift(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
(S, S, S),
|
|
(S,),
|
|
(),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for size in test_cases:
|
|
tensor1 = make_tensor(size, device, dtype, low=-32, high=32, requires_grad=requires_grad)
|
|
tensor2 = make_tensor(size, device, dtype, low=0, high=5, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(tensor1, args=(tensor2,)))
|
|
sample_inputs.append(SampleInput(tensor1, args=(2,)))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
|
|
def sample_inputs_cdist(op_info, device, dtype, requires_grad, **kwargs):
|
|
small_S = 2
|
|
test_cases = (
|
|
((S, S, 2), (S, S + 1, 2)),
|
|
((S, S), (S, S)),
|
|
((S, S, S), (S, S, S)),
|
|
((3, 5), (3, 5)),
|
|
((2, 3, 5), (2, 3, 5)),
|
|
((1, 2, 3), (1, 2, 3)),
|
|
((1, 1), (S, 1)),
|
|
((0, 5), (4, 5)),
|
|
((4, 5), (0, 5)),
|
|
((0, 4, 5), (3, 5)),
|
|
((4, 5), (0, 3, 5)),
|
|
((0, 4, 5), (1, 3, 5)),
|
|
((1, 4, 5), (0, 3, 5)),
|
|
# Using S here would make this one test take 9s
|
|
((small_S, small_S, small_S + 1, 2), (small_S, small_S, small_S + 2, 2)),
|
|
((small_S, 1, 1, small_S), (1, small_S, small_S)),
|
|
((1, 1, small_S), (small_S, 1, small_S, small_S)),
|
|
)
|
|
|
|
samples = []
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
# FIXME add an override for JIT and revert 0. back to 0
|
|
# since it's accepted by eager
|
|
for p in [0., 1., 2., 3., 0.5, 1.5, 2.5, float("inf")]:
|
|
for t1_size, t2_size in test_cases:
|
|
# The args should never be non-contiguous as this is not supported in the backward
|
|
samples.append(SampleInput(
|
|
make_tensor(t1_size, device, dtype, requires_grad=requires_grad, noncontiguous=False),
|
|
args=(make_tensor(t2_size, device, dtype, requires_grad=requires_grad, noncontiguous=False), p, cm)))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_fill_(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (1,)),
|
|
((), (1,)),
|
|
# For requires_grad=False below,
|
|
# check https://github.com/pytorch/pytorch/issues/59137
|
|
((S, S, S), (make_arg((), requires_grad=False),)))
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_comparison_ops(self, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, S, S), (S, S, S), False),
|
|
((S, S, S), (), False),
|
|
((S, S, S), (1,), False),
|
|
((S,), (1,), False),
|
|
((), (), False),
|
|
)
|
|
test_cases_lhs_broadcasting = (
|
|
((S, 1, S), (S, S, S), True),
|
|
((1,), (S, S, S), True),
|
|
((1, S), (1, 1, S), True),
|
|
((), (0,), True),
|
|
((), (S, S, S), True),
|
|
)
|
|
cases = test_cases + test_cases_lhs_broadcasting
|
|
sample_inputs = list(SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),),
|
|
broadcasts_input=broadcasts_input)
|
|
for first_shape, second_shape, broadcasts_input in cases)
|
|
equal_tensors_non_bool = (
|
|
([[[-8, 6], [9, 0]], [[0, 5], [5, 7]]]),
|
|
([[[6, 5]], [[1, -5]]]),
|
|
([[2], [-1]]),
|
|
([0, -6]),
|
|
([3],),
|
|
)
|
|
equal_tensors_bool = (
|
|
([[[1, 0], [0, 0]], [[0, 1], [1, 0]]]),
|
|
([[[1, 1]], [[1, 0]]]),
|
|
([[1], [0]]),
|
|
([0, 1]),
|
|
([1],),
|
|
)
|
|
more_cases = equal_tensors_bool if dtype is torch.bool else equal_tensors_non_bool
|
|
more_inputs = list(SampleInput(torch.tensor(elements, device=device, dtype=dtype,
|
|
requires_grad=requires_grad),
|
|
args=(torch.tensor(elements, device=device, dtype=dtype,
|
|
requires_grad=requires_grad),))
|
|
for elements in more_cases)
|
|
sample_inputs = [*sample_inputs, *more_inputs]
|
|
return tuple(sample_inputs)
|
|
|
|
|
|
def sample_inputs_stack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors, args=(0,)),)
|
|
|
|
def sample_inputs_cat_concat(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases: Tuple[tuple, tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S), (S, S), {'dim': -1}),
|
|
((S, S), (S, S), {'dim': 1}),
|
|
((M, S), (S, S), {'dim': 0}), # different shapes
|
|
((1, 2, 3), (1, 2, 3), {'dim': -2}),
|
|
((0,), (0,), {'dim': 0}), # empty tensor
|
|
((0, S), (S, S), {'dim': 0}),
|
|
((1,), (1,), {}) # dim not passed, fallback to default
|
|
)
|
|
|
|
def generator():
|
|
for input_shape1, input_shape2, kwargs in cases:
|
|
yield SampleInput([make_arg(input_shape1), make_arg(input_shape2)], kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_hstack_dstack_vstack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors),)
|
|
|
|
def sample_inputs_hypot(op_info, device, dtype, requires_grad):
|
|
input = make_tensor((S, S), device, dtype, requires_grad=requires_grad)
|
|
args = make_tensor((S, S), device, dtype, requires_grad=requires_grad)
|
|
|
|
return (
|
|
SampleInput(input, args=(args,)),
|
|
)
|
|
|
|
def sample_inputs_gather(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, gather_variable((S, S), 1, M, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(1, gather_variable((M, S // 2), 0, S, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([0], dtype=torch.int64, device=device))),
|
|
# Empty index tensor case, see: https://github.com/pytorch/pytorch/pull/65006
|
|
SampleInput(
|
|
make_tensor((S,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([], dtype=torch.uint8, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
)
|
|
|
|
|
|
def sample_inputs_take_along_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S), 1, S, True, device=device), 0)),
|
|
|
|
# `indices` broadcast
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((1, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# `self` broadcast
|
|
SampleInput(make_tensor((1, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# without `dim` arg
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), )),
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device),)),
|
|
)
|
|
|
|
|
|
def sample_inputs_aminmax(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases: Tuple[tuple, dict] = ( # type: ignore[assignment]
|
|
((S, S, S), {}),
|
|
((S, S, S), {'dim': 1}),
|
|
((S, S, S), {'dim': 1, 'keepdim': True}),
|
|
((), {'dim': 0}),
|
|
((), {}),
|
|
((), {'dim': 0, 'keepdim': True}),
|
|
)
|
|
|
|
samples: List[SampleInput] = []
|
|
for shape, kwargs in test_cases:
|
|
samples.append(SampleInput(
|
|
make_tensor(shape, device, dtype, requires_grad=requires_grad),
|
|
kwargs=kwargs))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_diff(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((1,), 0, None, None),
|
|
((S,), 0, None, None),
|
|
((S, 1), 0, None, None),
|
|
((S, 1), 1, None, None),
|
|
((S, S), 0, None, None),
|
|
((S, S), 1, None, None),
|
|
((S, S), 0, (1, S), (2, S)),
|
|
((S, S), 0, None, (2, S)),
|
|
((S, S, S), 1, None, None),
|
|
((S, S, S), 1, (S, 1, S), (S, 1, S)),)
|
|
|
|
sample_inputs = []
|
|
for size, dim, size_prepend, size_append in test_cases:
|
|
args = (make_tensor(size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad), 1, dim,
|
|
make_tensor(size_prepend, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) if size_prepend else None,
|
|
make_tensor(size_append, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) if size_append else None)
|
|
sample_inputs.append(SampleInput(args[0], args=args[1:]))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_histogram(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
for size, bin_ct, weighted, density in product(sizes, range(1, 5), [False, True], [False, True]):
|
|
input_tensor = make_arg(size)
|
|
weight_tensor = make_arg(size) if weighted else None
|
|
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bin_ct,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
bins_tensor = make_arg((bin_ct + 1,))
|
|
sample_inputs.append(SampleInput(input_tensor, args=(bins_tensor,),
|
|
kwargs=dict(weight=weight_tensor, density=density)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_bucketize(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
sizes = ((), (S,), (S, S), (S, S, S), (S, 1, S), (S, 0, S))
|
|
|
|
sample_inputs = []
|
|
|
|
for size, out_int32, right in product(sizes, [False, True], [False, True]):
|
|
input_tensor = make_arg(size)
|
|
boundaries = make_arg((S,)).msort()
|
|
|
|
sample_inputs.append(SampleInput(input_tensor, args=(boundaries, ),
|
|
kwargs=dict(out_int32=out_int32, right=right)))
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_gradient(op_info, device, dtype, requires_grad):
|
|
sample_inputs = []
|
|
test_cases_float = (
|
|
((S,), None, None, 1),
|
|
((S,), 2., None, 1),
|
|
((S, S), None, None, 2),
|
|
((S, S), [2.0, 2.1], None, 1),
|
|
((S, S), [2.0, 2.1], (0, 1), 1),
|
|
((4, 4, 4), [2., 1.], (0, 1), 2),
|
|
)
|
|
for size, spacing, dim, edge_order in test_cases_float:
|
|
t = make_tensor(size, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(t, kwargs=dict(dim=dim, spacing=spacing, edge_order=edge_order)))
|
|
|
|
test_cases_tensor = (
|
|
((3, 3, 3), ((1.1, 2.0, 3.5), (4.0, 2, 6.0)), (0, -1), 1),
|
|
((3, 3, 3), ((1.0, 3.0, 2.0), (8.0, 6.0, 1.0)), (0, 1), 2),
|
|
)
|
|
for size, coordinates, dim, edge_order in test_cases_tensor:
|
|
t = make_tensor(size, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
coordinates_tensor_list = []
|
|
for coords in coordinates:
|
|
a = torch.tensor(coords, dtype=dtype, device=device)
|
|
coordinates_tensor_list.append(a)
|
|
sample_inputs.append(SampleInput(t, kwargs=dict(dim=dim, spacing=coordinates_tensor_list, edge_order=edge_order)))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_index_select(op_info, device, dtype, requires_grad):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, index_variable(2, S, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([0], dtype=torch.int64, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
)
|
|
|
|
def sample_inputs_getitem(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_args = [
|
|
([1, 2],),
|
|
(slice(0, 3),),
|
|
([slice(0, 3), 1],),
|
|
([[0, 2, 3], [1, 3, 3], [0, 0, 2]],),
|
|
([[0, 0, 3], [1, 1, 3], [0, 0, 2]],),
|
|
([slice(None), slice(None), [0, 3]],),
|
|
([slice(None), [0, 3], slice(None)],),
|
|
([[0, 3], slice(None), slice(None)],),
|
|
([[0, 3], [1, 2], slice(None)],),
|
|
([[0, 3], ],),
|
|
([[0, 3], slice(None)],),
|
|
([[0, 3], Ellipsis],),
|
|
([[0, 2, 3], [1, 3, 3], torch.LongTensor([0, 0, 2])],),
|
|
(index_variable(2, S, device=device),),
|
|
(mask_not_all_zeros((S,)),),
|
|
]
|
|
|
|
return tuple(SampleInput(
|
|
make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=args)
|
|
for args in test_args)
|
|
|
|
def sample_inputs_index_put(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
for accumulate in [False, True]:
|
|
# Test with indices arg
|
|
inputs.append(SampleInput(
|
|
make_tensor((S, S,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
(index_variable(2, S, device=device), ),
|
|
make_tensor((2, S), device, dtype, low=None, high=None)),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
# Test with mask arg
|
|
mask = torch.zeros(S, dtype=torch.bool) if accumulate else mask_not_all_zeros((S,))
|
|
inputs.append(SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
(mask, ),
|
|
make_tensor((S,), device, dtype, low=None, high=None),),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
return inputs
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_index_add(op_info, device, dtype, requires_grad, **kwargs):
|
|
# These testa are pretty much the same as those from index_copy.
|
|
# Perhaps merge?
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
t = make_arg((S, S))
|
|
s = make_arg((S, S))
|
|
# non-contiguous target
|
|
t_nonctg = t.transpose(0, 1)
|
|
# non-contiguous source
|
|
s_nonctg = s.transpose(0, 1)
|
|
|
|
idx = make_arg((S,), dtype=torch.int64, low=0, high=S)
|
|
idx_nonctg = make_arg((S,), dtype=torch.int64, low=0, high=S, noncontiguous=True)
|
|
samples = [SampleInput(tensor, args=(1, idx, source))
|
|
for tensor, idx, source in product([t, t_nonctg], [idx, idx_nonctg], [s, s_nonctg])]
|
|
samples.extend(SampleInput(tensor, args=(1, idx, source), kwargs=dict(alpha=a))
|
|
for tensor, idx, source, a in product([t, t_nonctg], [idx, idx_nonctg], [s, s_nonctg], [-1, 0, 2]))
|
|
|
|
# Add scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
ts = (make_arg(size) for size in scalar_sizes)
|
|
idxs = (make_arg(size, dtype=torch.int64, low=0, high=1) for size in scalar_sizes)
|
|
ss = (make_arg(size) for size in scalar_sizes)
|
|
|
|
samples.extend(SampleInput(t, args=(0, idx, s)) for t, idx, s in product(ts, idxs, ss))
|
|
samples.extend(SampleInput(t, args=(0, idx, s), kwargs=dict(alpha=a)) for t, idx, s, a in product(ts, idxs, ss, [-1, 0, 2]))
|
|
return samples
|
|
|
|
def sample_inputs_sort(op_info, device, dtype, requires_grad, **kwargs):
|
|
def apply_grad(t):
|
|
if dtype in floating_types_and(torch.float16, torch.bfloat16):
|
|
t.requires_grad_(requires_grad)
|
|
|
|
def small_3d_unique(dtype, device):
|
|
res = torch.randperm(S * S * S, dtype=torch.int64, device=device).view(S, S, S)
|
|
res = res.to(dtype)
|
|
apply_grad(res)
|
|
return res
|
|
|
|
def large_1d_unique(dtype, device):
|
|
res = torch.randperm(L * L * L, dtype=torch.int64, device=device)
|
|
res = res.to(dtype)
|
|
apply_grad(res)
|
|
return res
|
|
|
|
samples = []
|
|
# Test case for large tensor.
|
|
largesample = SampleInput(large_1d_unique(dtype, device))
|
|
samples.append(largesample)
|
|
|
|
# Test cases for small 3d tensors.
|
|
# Imitates legacy tests from test/test_torch.py
|
|
t = small_3d_unique(dtype, device)
|
|
dims = range(-3, 3)
|
|
flag = [True, False]
|
|
for dim, descending, stable in product(dims, flag, flag):
|
|
# default schema without stable sort
|
|
samples.append(SampleInput(t, args=(dim, descending)))
|
|
# schema with stable sort, no CUDA support yet
|
|
if torch.device(device).type == 'cpu':
|
|
samples.append(
|
|
SampleInput(t, kwargs=dict(dim=dim, descending=descending, stable=stable))
|
|
)
|
|
|
|
# Test cases for scalar tensor
|
|
scalar = torch.tensor(1, dtype=dtype, device=device)
|
|
apply_grad(scalar)
|
|
samples.append(SampleInput(scalar))
|
|
samples.append(SampleInput(scalar, args=(0,)))
|
|
samples.append(SampleInput(scalar, args=(0, True)))
|
|
|
|
# Test cases for stable sort
|
|
samples.append(SampleInput(scalar, kwargs=dict(stable=True)))
|
|
samples.append(SampleInput(scalar, kwargs=dict(dim=0, stable=True)))
|
|
samples.append(SampleInput(scalar, kwargs=dict(dim=0, descending=True, stable=True)))
|
|
return samples
|
|
|
|
def sample_inputs_argsort(*args, **kwargs):
|
|
return [sample_input for sample_input in sample_inputs_sort(*args, **kwargs) if "stable" not in sample_input.kwargs]
|
|
|
|
def sample_inputs_index_fill(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
t = make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
fill_val = torch.tensor(-1 + 1j if t.is_complex() else -1)
|
|
# non-contiguous input
|
|
t01 = t.transpose(0, 1)
|
|
t02 = t.transpose(0, 2)
|
|
t12 = t.transpose(1, 2)
|
|
idx = index_variable(1, S, device=device)
|
|
# non-contiguous index
|
|
idx_nonctg = torch.empty_strided((S,), (2,), device=device, dtype=torch.int64)
|
|
idx_nonctg.copy_(idx)
|
|
for d in range(t.dim()):
|
|
for tensor in [t, t01, t02, t12]:
|
|
samples.append(SampleInput(tensor, args=(d, idx, fill_val)))
|
|
samples.append(SampleInput(tensor, args=(d, -idx - 1, fill_val)))
|
|
samples.append(SampleInput(tensor, args=(d, idx_nonctg, fill_val)))
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
index_tensor = partial(torch.tensor, device=device, dtype=torch.long)
|
|
|
|
def unique_idx(numel, max_idx):
|
|
# Generate unique random indices vector of `numel`
|
|
# elements in range [0, max_idx).
|
|
indices = random.sample(range(max_idx), numel)
|
|
return index_tensor(indices)
|
|
|
|
samples.append(SampleInput(make_arg((S, S)), args=(0, unique_idx(2, S), 2)))
|
|
samples.append(SampleInput(make_arg((S, S)), args=(0, unique_idx(2, S), make_arg(()))))
|
|
samples.append(SampleInput(make_arg((S, S)), args=(0, index_tensor(0), 2)))
|
|
samples.append(SampleInput(make_arg(()), args=(0, index_tensor([0]), 2)))
|
|
samples.append(SampleInput(make_arg(()), args=(0, index_tensor(0), 2)))
|
|
|
|
# Duplicate indices
|
|
samples.append(SampleInput(make_arg((S, S)), args=(0, index_tensor([0, 0]), 2)))
|
|
samples.append(SampleInput(make_arg((S, S)), args=(0, index_tensor([0, 0, 2]), make_arg(()))))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_max_min_binary(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args_for_binary_op = (
|
|
((S, S, S), (S, S, S),),
|
|
((S, S, S), (S,),),
|
|
((S,), (S, S, S),),
|
|
((S, 1, S), (S, S),),
|
|
((S, S), (S, S),),
|
|
((), (),),
|
|
((S, S, S), (),),
|
|
((), (S, S, S),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(other_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),),))
|
|
for input_tensor, other_tensor in args_for_binary_op)
|
|
return inputs
|
|
|
|
def sample_inputs_adaptive_avg_pool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((1, 8, 8, 8), (5, 7)),
|
|
((2, 8, 8, 8), (None, 7)),
|
|
((1, 8, 4, 3), (5, None)),
|
|
((1, 8, 4, 3), (None, None)),
|
|
((1, 8, 4, 3), (5)),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_adaptive_avg_pool1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((0, 8, 8), (5,)),
|
|
((3, 8, 8), 5),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_adaptive_avg_pool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as (input shape, output size)
|
|
cases = (
|
|
((0, 8, 8, 8, 8), (5, 7, 4)),
|
|
((1, 8, 4, 3, 7), (None, None, None)),
|
|
((3, 3, 8, 8, 6), (5, 7, None)),
|
|
((1, 3, 8, 8, 6), (5, None, 2)),
|
|
((3, 3, 8, 8, 6), (None, 3, 2)),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, output_size in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(output_size,))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_max_pool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
kerneli = [[3, 2], 3]
|
|
stridei = [[2, 2]]
|
|
Ni = [1, 2, None]
|
|
Ci = [2]
|
|
Hi = [3, 6]
|
|
Wi = [6]
|
|
ceil_modei = [True, False]
|
|
paddingi = [0, 1]
|
|
dilationi = [1, (1, 2)]
|
|
return_indicesi = [True, False]
|
|
|
|
products = product(kerneli, stridei, Ni, Ci, Hi, Wi, ceil_modei, paddingi, dilationi, return_indicesi)
|
|
|
|
def generator():
|
|
for kernel, stride, N, C, H, W, ceil_mode, padding, dilation, return_indices in products:
|
|
max_pool = torch.nn.MaxPool2d(kernel, stride, ceil_mode=ceil_mode, padding=padding,
|
|
dilation=dilation, return_indices=return_indices)
|
|
kwargs = {
|
|
"kernel_size": max_pool.kernel_size,
|
|
"stride": max_pool.stride,
|
|
"padding": max_pool.padding,
|
|
"dilation": max_pool.dilation,
|
|
"ceil_mode": max_pool.ceil_mode,
|
|
"return_indices": max_pool.return_indices,
|
|
}
|
|
sample_input = make_arg((N, C, H, W)) if N is not None else (make_arg((C, H, W)))
|
|
|
|
yield SampleInput(sample_input, kwargs=kwargs)
|
|
return list(generator())
|
|
|
|
def sample_inputs_normalize(self, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, low=-1, high=1, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases: Tuple[Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((2, 1, 4, 5), {'p': 1., 'dim': 2}),
|
|
((2, 3, 4, 5), {'p': 2., 'dim': 1}),
|
|
((1, 2, 4, 5), {'p': 0.5, 'dim': 0}),
|
|
((1, 3, 4, 5), {'p': -1., 'dim': 1}),
|
|
((1, 3, 4, 5), {'p': 0., 'dim': -1}),
|
|
((), {'p': 1.2, 'dim': 0}),
|
|
((2, 3, 4, 5), {}),
|
|
((2, 3, 4, 5), {'eps': 1e-4}))
|
|
|
|
def generator():
|
|
for input_shape, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_conv_transpose2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, output_padding, groups, dilation)
|
|
cases: Tuple[Tuple[int], Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 3, 4, 4), (3, 3, 3, 3), (3,),
|
|
{'stride': (2, 2), 'padding': 2, 'output_padding': (1, 1), 'groups': 1}),
|
|
((2, 2, 4, 4), (2, 2, 4, 5), (4,),
|
|
{'stride': (3, 2), 'padding': (1, 2), 'output_padding': (2, 3), 'groups': 2, 'dilation': (4, 4)}),
|
|
((1, 1, 4, 5), (1, 1, 4, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 1, 4, 3), (1, 2, 3, 4), None,
|
|
{'stride': 2, 'padding': 1, 'output_padding': 1, 'groups': 1}),
|
|
((1, 4, 5, 5), (4, 8, 3, 3), None,
|
|
{})
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_conv2d(op_info, device, dtype, requires_grad, jit_fail_sample=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as shapes for input, weight, bias
|
|
# and a dict of values of (stride, padding, groups, dilation)
|
|
cases: Tuple = (
|
|
((1, 3, 4, 4), (3, 3, 3, 3), (3,),
|
|
{'stride': (2, 2), 'padding': 2, 'groups': 1}),
|
|
((2, 4, 8, 8), (2, 2, 3, 3), (2,),
|
|
{'stride': (3, 2), 'padding': (2, 1), 'groups': 2, 'dilation': (4, 4)}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': 1, 'groups': 1, 'dilation': (2, 3)}),
|
|
((1, 2, 4, 3), (4, 2, 3, 4), None,
|
|
{'stride': 2, 'padding': 1, 'groups': 1}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 2, 'padding': "valid"}),
|
|
((1, 4, 5, 5), (1, 4, 2, 3), (1,),
|
|
{'stride': 1, 'padding': "same", 'dilation': 3}),
|
|
# Below are the group related samples from common_nn.py
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4}),
|
|
((2, 4, 6, 6), (8, 1, 3, 3), (8,), {'groups': 4}),
|
|
((2, 4, 6, 6), (8, 1, 3, 3), None, {'groups': 4}),
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'stride': (3, 2)}),
|
|
((2, 4, 6, 6), (4, 1, 3, 3), (4,), {'groups': 4, 'padding': (1, 1)}),
|
|
((2, 4, 5, 5), (4, 1, 2, 2), (4,), {'groups': 4, 'dilation': (2, 2)}),
|
|
((2, 4, 6, 5), (6, 2, 3, 2), (6,), {'groups': 2}),
|
|
# With defaults
|
|
((1, 4, 5, 5), (3, 4, 3, 3), None, {}),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, weight, bias, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(
|
|
make_arg(weight),
|
|
make_arg(bias) if bias is not None else bias
|
|
), kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_layer_norm(opinfo, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Ordered as input shape, normalized_shape and a kwarg dict for eps
|
|
cases: Tuple[Tuple[int], Tuple[int], dict] = ( # type: ignore[assignment]
|
|
((1, 2, 3), (1, 2, 3), {'eps': 0.5}),
|
|
((2, 2, 3), (2, 3), {'eps': -0.5}),
|
|
((1,), (1,), {}),
|
|
((1, 2), (2,), {}),
|
|
((0, 1), (1,), {}),
|
|
)
|
|
|
|
def generator():
|
|
for input_shape, normalized_shape, kwargs in cases:
|
|
# Shape of weight and bias should be the same as normalized_shape
|
|
weight = make_arg(normalized_shape)
|
|
bias = make_arg(normalized_shape)
|
|
yield SampleInput(
|
|
make_arg(input_shape),
|
|
args=(normalized_shape, weight, bias),
|
|
kwargs=kwargs
|
|
)
|
|
# Without any optional args
|
|
yield SampleInput(make_arg((1, 2)), args=((2,),))
|
|
|
|
# TODO: @krshrimali, once to_numpy method in SampleInput class is modified to take None inputs,
|
|
# enable these inputs; see https://github.com/pytorch/pytorch/pull/63276#discussion_r691950400
|
|
|
|
# With weight and a `None` bias
|
|
# yield SampleInput(make_arg((1, 2)), args=((2,), make_arg((2,)), None))
|
|
|
|
# With `None` weight and bias (tests failing for this, see the link above)
|
|
# yield SampleInput(make_arg((1, 2)), args=((2,), None, make_arg((2,))))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_hardswish(self, device, dtype, requires_grad):
|
|
N = 5
|
|
# make sure we are testing -3 -> 3 range. default is -10 -> 10 so maybe unnecessary ?
|
|
tensors = [SampleInput(make_tensor((N * 2, N * 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-5, high=5)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_linear(self, device, dtype, requires_grad):
|
|
features_options = [[3, 4], [8, 8]]
|
|
batch_options: List[List[int]] = [
|
|
[], # no batch
|
|
[0],
|
|
[8],
|
|
[2, 3],
|
|
]
|
|
create_tensor = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-2, high=2)
|
|
|
|
sample_inputs = []
|
|
for has_bias, (in_feat, out_feat), batch_shape in \
|
|
itertools.product([True, False], features_options, batch_options):
|
|
input_tensor = create_tensor(batch_shape + [in_feat])
|
|
weight = create_tensor([out_feat, in_feat])
|
|
if not has_bias:
|
|
sample_inputs.append(SampleInput(input_tensor, args=(weight,)))
|
|
continue
|
|
|
|
bias = create_tensor([out_feat])
|
|
sample_inputs.append(SampleInput(input_tensor, args=(weight, bias)))
|
|
return sample_inputs
|
|
|
|
def sample_inputs_interpolate(mode, self, device, dtype, requires_grad):
|
|
N, C = 2, 3
|
|
D = 4
|
|
S = 3
|
|
L = 5
|
|
|
|
align_corners_options: Tuple[Any, ...] = (None,)
|
|
if mode in ('linear', 'bilinear', 'bicubic', 'trilinear'):
|
|
align_corners_options = (True, False, None)
|
|
ranks_for_mode = {
|
|
'nearest': [1, 2, 3],
|
|
'linear': [1],
|
|
'bilinear': [2],
|
|
'bicubic': [2],
|
|
'trilinear': [3],
|
|
'area': [1, 2, 3]
|
|
}
|
|
|
|
def shape(size, rank, with_batch_channel=True):
|
|
if with_batch_channel:
|
|
return tuple([N, C] + ([size] * rank))
|
|
return tuple([size] * rank)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-1, high=1)
|
|
|
|
sample_inputs = []
|
|
for align_corners in align_corners_options:
|
|
for rank in ranks_for_mode[mode]:
|
|
sample_inputs.extend([
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(shape(S, rank, False), None, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(shape(L, rank, False), None, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(None, 1.7, mode, align_corners)),
|
|
SampleInput(make_arg(shape(D, rank)),
|
|
args=(None, 0.6, mode, align_corners)),
|
|
])
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_gelu(self, device, dtype, requires_grad):
|
|
N = 5
|
|
tensors = [SampleInput(make_tensor((N * 2, N * 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad, low=-3, high=3)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_max_min_reduction_with_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args_for_reduction_with_dim = (
|
|
((S, S, S), (1,),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args_for_reduction_with_dim)
|
|
return inputs
|
|
|
|
def sample_inputs_max_min_reduction_no_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
inputs.append(SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
inputs.append(SampleInput(make_tensor((), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
return inputs
|
|
|
|
def _generate_nan_reduction_inputs(device, dtype, requires_grad):
|
|
yield from _generate_reduction_inputs(device, dtype, requires_grad)
|
|
yield torch.tensor([2, torch.nan, -1], device=device, dtype=dtype, requires_grad=requires_grad)
|
|
yield torch.tensor([[torch.nan, 2], [0, 1]], device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def sample_inputs_nan_reduction(supports_multiple_dims):
|
|
# Generates sample inputs for reduction ops that contain the input tensor
|
|
# and dim and keepdim kwargs. If a reduction op needs to test additional
|
|
# args/kwargs then create a separate sample_inputs function
|
|
def fn(op_info, device, dtype, requires_grad):
|
|
inputs = []
|
|
|
|
for t in _generate_nan_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims):
|
|
inputs.append(SampleInput(t, kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
return fn
|
|
|
|
def sample_inputs_reduction_quantile(op_info, device, dtype, requires_grad):
|
|
test_quantiles = (0.5, make_tensor((2,), device, dtype, low=0, high=1))
|
|
test_interpolations = ['linear', 'midpoint']
|
|
|
|
inputs = []
|
|
for quantiles in test_quantiles:
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t, args=(quantiles,)))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims=False):
|
|
# Interpolation kwarg for now is only supported when providing both dim and keepdim
|
|
kwargs.setdefault('dim', 0)
|
|
kwargs.setdefault('keepdim', False)
|
|
for interpolation in test_interpolations:
|
|
kwargs['interpolation'] = interpolation
|
|
inputs.append(SampleInput(t, args=(quantiles,), kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_reduction_count_nonzero(*args, **kwargs):
|
|
"""Sample inputs for count_nonzero"""
|
|
samples: List[SampleInput] = sample_inputs_reduction(*args, **kwargs)
|
|
# count_nonzero does not support keepdim yet
|
|
for sample in samples:
|
|
sample.kwargs.pop('keepdim', None)
|
|
return samples
|
|
|
|
def sample_inputs_leaky_relu(op_info, device, dtype, requires_grad):
|
|
N = 10
|
|
tensors = [SampleInput(make_tensor((N, N), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_avgpool2d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override
|
|
cases = (((1, 3, 9, 9), 3, 1, 1, True, False, 2),
|
|
((1, 3, 9, 9), (4, 4), (2, 3), 1, True, False, 2),
|
|
((1, 3, 9, 9), (6, 6), (3, 3), (2, 3), True, True, 2),
|
|
((2, 3, 9, 9), (3, 3), (1, 1), (1, ), True, False, 2),
|
|
((1, 1, 4, 4), (2, 2), (), (0, ), False, True, -2),
|
|
((1, 2, 6, 6), (4, 4), (2, 2), (2, ), True, True, None))
|
|
|
|
def generator():
|
|
for input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override in cases:
|
|
yield SampleInput(make_arg(input_shape),
|
|
args=(kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override))
|
|
# Case with just input_shape and kernel_size
|
|
yield SampleInput(make_arg((1, 3, 9, 9)), args=((3, 3)))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_avgpool1d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, kwargs
|
|
cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [
|
|
((2, 3, 9), (3,), dict()),
|
|
((1, 3, 9), 3, dict(stride=1, padding=1, ceil_mode=True, count_include_pad=False)),
|
|
((1, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=True, count_include_pad=True)),
|
|
((2, 3, 9), (3,), dict(stride=(1,), padding=(1,), ceil_mode=False, count_include_pad=True)),
|
|
((0, 3, 9), (6,), dict(stride=(3,), padding=(2,), ceil_mode=False, count_include_pad=True)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), padding=(2,), ceil_mode=False)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), padding=(3,), ceil_mode=True)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=False)),
|
|
((1, 2, 9), (7,), dict(stride=(3,), ceil_mode=True)),
|
|
]
|
|
|
|
def generator():
|
|
for input_shape, kernel_size, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_avgpool3d(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
# Order: input_shape, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override
|
|
cases: List[Tuple[Tuple[int, ...], Union[int, Tuple[int, ...]], Dict]] = [
|
|
((2, 3, 3, 4, 4), (2, 2, 2), dict()),
|
|
((1, 2, 4, 4, 4), 2, dict(stride=1, padding=1, ceil_mode=True,
|
|
count_include_pad=False, divisor_override=2)),
|
|
((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=True,
|
|
count_include_pad=True, divisor_override=2)),
|
|
((1, 2, 5, 5, 5), (2, 3, 4), dict(stride=(1, 2, 2), padding=(0, 1, 2), ceil_mode=False)),
|
|
((1, 1, 7, 5, 7), (6, 3, 4), dict(stride=(2, 3, 2), padding=(3, 1, 0), ceil_mode=False,
|
|
count_include_pad=False, divisor_override=2)),
|
|
((1, 1, 4, 5, 4), (2, 2, 3), dict(stride=(2, 2, 1), padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=-2)),
|
|
((1, 1, 6, 5, 6), (4, 5, 6), dict(stride=(2, 3, 2), padding=2, ceil_mode=True,
|
|
count_include_pad=True, divisor_override=None)),
|
|
((0, 1, 4, 5, 4), (2, 3, 1), dict(stride=(2, 1, 2), padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None)),
|
|
]
|
|
|
|
def generator():
|
|
for input_shape, kernel_size, kwargs in cases:
|
|
yield SampleInput(make_arg(input_shape), args=(kernel_size,), kwargs=kwargs)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_topk(op_info, device, dtype, requires_grad, **kwargs):
|
|
def get_tensor_input(size):
|
|
return make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3,)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True, True)))
|
|
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1,)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True, True)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_outer(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
arg_a = make_tensor((S,), device, dtype, requires_grad=requires_grad)
|
|
arg_b = make_tensor((M,), device, dtype, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(arg_a, args=(arg_b,)))
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_igamma_igammac(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, low=1e-3)
|
|
cases = (((S, S), (S, S), False),
|
|
((S, S), (S, ), False),
|
|
((S, ), (S, S), True),
|
|
((), (), False))
|
|
|
|
def generator():
|
|
for shape, other_shape, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(shape, requires_grad=requires_grad),
|
|
args=(make_arg(other_shape, requires_grad=False),),
|
|
broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_dist(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
sizes = ((S, S, S), (S,), (S, 1, S), (), (S, S))
|
|
ps = (2, 4)
|
|
|
|
def generate_samples():
|
|
for size_x, size_y, p in product(sizes, sizes, ps):
|
|
yield SampleInput(make_arg(size_x), args=(make_arg(size_y), p))
|
|
|
|
return list(generate_samples())
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_index_copy(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape, low=None, high=None, dtype=dtype):
|
|
return make_tensor(shape, device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)
|
|
|
|
t = make_arg((S, S))
|
|
s = make_arg((S, S))
|
|
# non-contiguous input
|
|
t01 = t.transpose(0, 1)
|
|
# non-contiguous input
|
|
s01 = s.transpose(0, 1)
|
|
|
|
# idx is a permutation of 0...S-1 for this function to be deterministic
|
|
idx = torch.randperm(S, device=device, dtype=torch.int64)
|
|
# non-contiguous index
|
|
idx_nonctg = torch.repeat_interleave(idx, 2, dim=-1)[::2]
|
|
# index_copy_ does not support negative indices
|
|
# idx_neg = -idx - 1
|
|
samples = [SampleInput(tensor, args=(1, idx, source))
|
|
for tensor, idx, source in product([t, t01], [idx, idx_nonctg], [s, s01])]
|
|
|
|
# Add scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
ts = (make_arg(size) for size in scalar_sizes)
|
|
idxs = (make_arg(size, dtype=torch.int64, low=0, high=1) for size in scalar_sizes)
|
|
ss = (make_arg(size) for size in scalar_sizes)
|
|
|
|
samples.extend(SampleInput(t, args=(0, idx, s)) for t, idx, s in product(ts, idxs, ss))
|
|
return samples
|
|
|
|
def sample_inputs_mode(op_info, device, dtype, requires_grad):
|
|
inputs = []
|
|
args = (
|
|
((S, S, S), (),),
|
|
((S, S, S), (1, ),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args)
|
|
return inputs
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_put(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
def gen_inputs():
|
|
# Generic inputs
|
|
tgt_gen = (make_arg((S, S), noncontiguous=not ctg) for ctg in (True, False))
|
|
src_gen = (make_arg((S,), noncontiguous=not ctg) for ctg in (True, False))
|
|
idx = torch.randperm(S * S, device=device, dtype=torch.int64)[:S]
|
|
idx_nonctg = torch.repeat_interleave(idx, 2, dim=-1)[::2]
|
|
idx_neg = -idx - 1
|
|
idx_list = [idx, idx_nonctg, idx_neg]
|
|
for tgt, idx, src, acc in product(tgt_gen, idx_list, src_gen, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
tgt_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
for tgt, idx, src, acc in product(tgt_gen, idx_gen, src_gen, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
# Empty cases
|
|
tgt_sizes = [(0,), (), (1,), (3, 2)]
|
|
tgt_gen = (make_arg(size) for size in tgt_sizes)
|
|
idx = make_idx((0,), high=1)
|
|
src = make_arg((0,))
|
|
for tgt, acc in product(tgt, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
return list(gen_inputs())
|
|
|
|
def sample_inputs_take(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
def gen_inputs():
|
|
# Generic inputs: take S elements out of S * S
|
|
src_gen = (make_arg((S, S), noncontiguous=not ctg) for ctg in (True, False))
|
|
idx = make_idx((S,), high=S * S)
|
|
idx_nonctg = make_idx((S,), high=S * S, noncontiguous=True)
|
|
idx_neg = -idx - 1
|
|
idx_list = [idx, idx_nonctg, idx_neg]
|
|
for src, idx in product(src_gen, idx_list):
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
for src, idx in product(src_gen, idx_gen):
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
# Empty cases
|
|
src_sizes = [(0,), (), (1,), (3, 2)]
|
|
src_gen = (make_arg(size) for size in src_sizes)
|
|
idx = make_idx((0,), high=1)
|
|
for src in src_gen:
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
return list(gen_inputs())
|
|
|
|
def sample_movedim_moveaxis(op_info, device, dtype, requires_grad):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=([0, 1, 2, 3], [3, 2, 1, 0])),
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=([0, -1, -2, -3], [-3, -2, -1, -0]))
|
|
)
|
|
|
|
|
|
def sample_repeat_tile(op_info, device, dtype, requires_grad, **kwargs):
|
|
rep_dims = ((), (0, ), (1, ), (0, 2), (1, 1), (2, 3), (2, 3, 2), (0, 2, 3), (2, 1, 1, 1),)
|
|
shapes = ((), (0,), (2,), (3, 0), (3, 2), (3, 0, 1))
|
|
|
|
if requires_grad:
|
|
# Tests for variant_consistency_jit, grad, gradgrad
|
|
# are slower. Use smaller bags of `rep_dims` and `shapes`
|
|
# in this case.
|
|
rep_dims = ((), (0, ), (0, 2), (1, 1), (2, 3), (1, 3, 2), (3, 1, 1)) # type: ignore[assignment]
|
|
shapes = ((), (0,), (2,), (3, 2)) # type: ignore[assignment]
|
|
|
|
tensors = [make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) for shape in shapes]
|
|
|
|
samples = []
|
|
for rep_dim, tensor in product(rep_dims, tensors):
|
|
for t in (tensor, tensor.T):
|
|
if op_info.name == 'repeat' and len(rep_dim) >= t.dim():
|
|
# `torch.repeat` errors for `len(rep_dims) < t.dim()`,
|
|
# so we filter such combinations.
|
|
samples.append(SampleInput(t, args=(rep_dim,),))
|
|
elif op_info.name == 'tile':
|
|
samples.append(SampleInput(t, args=(rep_dim,),))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_narrow(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_args = (
|
|
((S, S, S), (1, 2, 2)),
|
|
((S, S, S), (-1, 2, 2)),
|
|
((S, S, S), (1, 0, 0)),
|
|
((S, S, S), (-1, 0, 0)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in shapes_and_args:
|
|
tensor = make_tensor(shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
yield SampleInput(tensor, args=args)
|
|
|
|
return list(generator())
|
|
|
|
def sample_trapezoid(op_info, device, dtype, requires_grad, **kwargs):
|
|
y_shape_x_shape_and_kwargs = [
|
|
((2, 3), (2, 3), {}),
|
|
((2, 3), (2, 3), {'dim': 1}),
|
|
((6,), (6,), {}),
|
|
((6,), None, {}),
|
|
# When 'trapezoid' is called with an empty input, it does not produce an output with requires_grad
|
|
# See Issue #{61619}
|
|
# ((6,0), (6,0), {}),
|
|
((2, 3), (1, 3), {}),
|
|
((3, 3), (3, 3), {}),
|
|
((3, 3), (3, 3), {'dim': -2}),
|
|
((5,), None, {'dx': 2.0}),
|
|
((2, 2), None, {'dx': 3.0})
|
|
]
|
|
samples = []
|
|
for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs:
|
|
y_tensor = make_tensor(y_shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
if x_shape is not None:
|
|
x_tensor = make_tensor(x_shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(y_tensor, args=(x_tensor,), kwargs=kwarg))
|
|
else:
|
|
samples.append(SampleInput(y_tensor, kwargs=kwarg))
|
|
return samples
|
|
|
|
def sample_cumulative_trapezoid(op_info, device, dtype, requires_grad, **kwargs):
|
|
|
|
y_shape_x_shape_and_kwargs = [
|
|
((2, 3), (2, 3), {}),
|
|
((2, 3), (2, 3), {'dim': 1}),
|
|
((6,), (6,), {}),
|
|
((6,), None, {}),
|
|
# When 'cumulative_trapezoid' is called with an empty input, it does not produce an output with requires_grad
|
|
# See Issue #{61619}
|
|
# ((6,0), (6,0), {}),
|
|
((2, 3), (1, 3), {}),
|
|
((3, 3), (3, 3), {}),
|
|
((3, 3), (3, 3), {'dim': -2}),
|
|
((5,), None, {'dx': 2.0}),
|
|
((2, 2), None, {'dx': 3.0})
|
|
]
|
|
samples = []
|
|
for y_shape, x_shape, kwarg in y_shape_x_shape_and_kwargs:
|
|
y_tensor = make_tensor(y_shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
if x_shape is not None:
|
|
x_tensor = make_tensor(x_shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(y_tensor, args=(x_tensor,), kwargs=kwarg))
|
|
else:
|
|
samples.append(SampleInput(y_tensor, kwargs=kwarg))
|
|
return samples
|
|
|
|
def sample_unsqueeze(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_axes = [
|
|
((3, 4, 5), 0),
|
|
((3, 4, 5), 1),
|
|
((3, 4, 5), 3),
|
|
((3, 4, 5), -1),
|
|
((3, 4, 5), -3),
|
|
((), 0)
|
|
]
|
|
|
|
samples = []
|
|
for shape, axis in shapes_and_axes:
|
|
tensor = make_tensor(shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(tensor, args=(axis,),))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_nn_unfold(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes = ((0, 1, 5, 5), (1, 1, 5, 5), (2, 3, 5, 5))
|
|
kernel_sizes = (2, (2, 2), (3, 3))
|
|
dilations = (1, 2, (1, 2))
|
|
paddings = (0, 1, (1, 1))
|
|
strides = (1, 2, (1, 2))
|
|
|
|
def generator():
|
|
cases = product(shapes, kernel_sizes, dilations, paddings, strides)
|
|
for shape, kernel_size, dilation, padding, stride in cases:
|
|
tensor = make_tensor(shape, device, dtype, requires_grad=requires_grad)
|
|
yield SampleInput(tensor, args=(kernel_size, dilation, padding, stride))
|
|
|
|
# With default args
|
|
yield SampleInput(make_tensor((1, 1, 5, 5), device, dtype, requires_grad=requires_grad),
|
|
args=((3, 3),))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_squeeze(op_info, device, dtype, requires_grad, **kwargs):
|
|
shapes_and_args = (
|
|
((S, 1, S, 1), ()),
|
|
((1, 1, 1, 1), ()),
|
|
((S, 1, S, 1), (1,)),
|
|
((S, 1, S, 1), (-1,)),
|
|
((S, 1, S, 1), (2,)),
|
|
((S, 1, S, 1), (-2,)),
|
|
((), (0, )),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in shapes_and_args:
|
|
tensor = make_tensor(shape, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
yield SampleInput(tensor, args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_nn_pad(op_info, device, dtype, requires_grad, mode, **kwargs):
|
|
assert mode in ('constant', 'reflect', 'replicate', 'circular')
|
|
if mode in ['reflect', 'replicate']:
|
|
cases: tuple = ( # ignore
|
|
((1, 3), (1, 2)),
|
|
((1, 3), (0, 1)),
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((1, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
elif mode == 'constant':
|
|
cases = (
|
|
((1, 3), (1, 2)),
|
|
((1, 3), (0, 1)),
|
|
((1, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((0, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((1, 3, 3), (0, 2, 0, 1)),
|
|
((1, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((0, 3, 3, 3), (1, 2)),
|
|
((0, 3, 3, 3), (0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((0, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((3, 3, 5, 5), (1, 2)),
|
|
((3, 3, 5, 5), (0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 3, 3, 3), (1, 2)),
|
|
((1, 3, 3, 3, 3), (0, 1)),
|
|
((1, 3, 3, 3, 3), (0, 2, 0, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
else: # mode == 'circular'
|
|
if dtype == torch.bool:
|
|
# test_dtypes fails on ASAN with for the case ab
|
|
# runtime error: load of value 190, which is not a valid value for type 'bool'
|
|
# Reference: https://github.com/pytorch/pytorch/pull/62814#issuecomment-894156562
|
|
# Reference Issue: https://github.com/pytorch/pytorch/issues/63034
|
|
cases = (
|
|
((2, 3, 3), (1, 2)),
|
|
((1, 3, 3), (1, 2)),
|
|
)
|
|
else:
|
|
cases = (
|
|
((0, 3, 3), (1, 2)),
|
|
((0, 3, 3), (0, 1)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 3, 3), (0, 1)),
|
|
((0, 3, 3, 3), (0, 2, 0, 1)),
|
|
((3, 3, 5, 5), (0, 2, 0, 1)),
|
|
((1, 3, 3, 3, 3), (1, 1, 1, 1, 1, 1)),
|
|
((1, 3, 4, 4), (-1, 1, -2, 1)),
|
|
)
|
|
|
|
make_inp = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def generator():
|
|
if mode == 'constant':
|
|
# Default args
|
|
yield SampleInput(make_inp((1, 3, 3)), args=((2, 2),))
|
|
|
|
if mode in ['reflect', 'replicate', 'circular']:
|
|
for shape, pad in cases:
|
|
yield SampleInput(make_inp(shape), args=(pad, mode))
|
|
else: # mode == 'constant'
|
|
for pad_value in (1., 2.):
|
|
for shape, pad in cases:
|
|
yield SampleInput(make_inp(shape), args=(pad, mode, pad_value))
|
|
|
|
return list(generator())
|
|
|
|
|
|
# TODO: reconcile with torch.linalg.det and torch.linalg.slogdet
|
|
# Creates matrices with a positive nonzero determinant
|
|
def sample_inputs_logdet(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_nonzero_det(A, *, sign=1, min_singular_value=0.1, **kwargs):
|
|
u, s, vh = torch.linalg.svd(A, full_matrices=False)
|
|
s.clamp_(min=min_singular_value)
|
|
A = (u * s.unsqueeze(-2)) @ vh
|
|
det = A.det()
|
|
if sign is not None:
|
|
if A.dim() == 2:
|
|
if (det < 0) ^ (sign < 0):
|
|
A[0, :].neg_()
|
|
else:
|
|
cond = ((det < 0) ^ (sign < 0)).nonzero()
|
|
if cond.size(0) > 0:
|
|
for i in range(cond.size(0)):
|
|
A[list(cond[i])][0, :].neg_()
|
|
return A
|
|
|
|
samples = []
|
|
|
|
# cases constructed using make_tensor()
|
|
tensor_shapes = (
|
|
(S, S),
|
|
(1, 1),
|
|
(3, 3, S, S),
|
|
(3, 3, 1, 1)
|
|
)
|
|
|
|
for shape in tensor_shapes:
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t).requires_grad_(requires_grad)
|
|
samples.append(SampleInput(d))
|
|
|
|
# cases constructed using:
|
|
# 1) make_symmetric_matrices
|
|
# 2) make_symmetric_pd_matrices
|
|
# 3) make_fullrank_matrices_with_distinct_singular_values
|
|
symmetric_shapes = (
|
|
(S, S),
|
|
(3, S, S),
|
|
)
|
|
|
|
|
|
def _helper(constructor, *shape, **kwargs):
|
|
t = constructor(*shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t, **kwargs).requires_grad_(requires_grad)
|
|
samples.append(SampleInput(d))
|
|
|
|
for shape in symmetric_shapes:
|
|
_helper(make_symmetric_matrices, *shape)
|
|
_helper(make_symmetric_pd_matrices, *shape)
|
|
_helper(make_fullrank_matrices_with_distinct_singular_values, *shape, min_singular_value=0)
|
|
|
|
return tuple(samples)
|
|
|
|
def np_unary_ufunc_integer_promotion_wrapper(fn):
|
|
# Wrapper that passes PyTorch's default scalar
|
|
# type as an argument to the wrapped NumPy
|
|
# unary ufunc when given an integer input.
|
|
# This mimicks PyTorch's integer->floating point
|
|
# type promotion.
|
|
#
|
|
# This is necessary when NumPy promotes
|
|
# integer types to double, since PyTorch promotes
|
|
# integer types to the default scalar type.
|
|
|
|
# Helper to determine if promotion is needed
|
|
def is_integral(dtype):
|
|
return dtype in [np.bool_, bool, np.uint8, np.int8, np.int16, np.int32, np.int64]
|
|
|
|
@wraps(fn)
|
|
def wrapped_fn(x):
|
|
# As the default dtype can change, acquire it when function is called.
|
|
# NOTE: Promotion in PyTorch is from integer types to the default dtype
|
|
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
|
|
if is_integral(x.dtype):
|
|
return fn(x.astype(np_dtype))
|
|
return fn(x)
|
|
|
|
return wrapped_fn
|
|
|
|
def sample_inputs_spectral_ops(self, device, dtype, requires_grad=False, **kwargs):
|
|
nd_tensor = make_tensor((S, S + 1, S + 2), device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
tensor = make_tensor((31,), device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
if self.ndimensional == SpectralFuncType.ND:
|
|
return [
|
|
SampleInput(nd_tensor, kwargs=dict(s=(3, 10), dim=(1, 2), norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(s=(8,))),
|
|
SampleInput(tensor),
|
|
|
|
*(SampleInput(nd_tensor, kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3, (0, -1)]),
|
|
]
|
|
elif self.ndimensional == SpectralFuncType.TwoD:
|
|
return [
|
|
SampleInput(nd_tensor, kwargs=dict(s=(3, 10), dim=(1, 2), norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(s=(6, 8))),
|
|
SampleInput(tensor, kwargs=dict(dim=0)),
|
|
SampleInput(nd_tensor, kwargs=dict(dim=(0, -1))),
|
|
SampleInput(nd_tensor, kwargs=dict(dim=(-3, -2, -1))),
|
|
]
|
|
else:
|
|
return [
|
|
SampleInput(nd_tensor, kwargs=dict(n=10, dim=1, norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(n=7)),
|
|
SampleInput(tensor),
|
|
|
|
*(SampleInput(nd_tensor, kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3]),
|
|
]
|
|
|
|
def sample_inputs_repeat_interleave(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(make_input(()), kwargs=dict(repeats=2)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=2)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=2, dim=1)),
|
|
SampleInput(make_input((2, 3, 4)), kwargs=dict(repeats=torch.arange(3, device=device), dim=1))
|
|
]
|
|
|
|
SpectralFuncType = Enum('SpectralFuncType', ('OneD', 'TwoD', 'ND'))
|
|
|
|
# Metadata class for Fast Fourier Transforms in torch.fft.
|
|
class SpectralFuncInfo(OpInfo):
|
|
"""Operator information for torch.fft transforms. """
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref=None, # Reference implementation (probably in np.fft namespace)
|
|
dtypes=floating_and_complex_types(),
|
|
ndimensional: SpectralFuncType,
|
|
sample_inputs_func=sample_inputs_spectral_ops,
|
|
decorators=None,
|
|
**kwargs):
|
|
decorators = list(decorators) if decorators is not None else []
|
|
decorators += [
|
|
skipCPUIfNoFFT,
|
|
skipCUDAIfRocm,
|
|
]
|
|
|
|
super().__init__(name=name,
|
|
dtypes=dtypes,
|
|
decorators=decorators,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
self.ref = ref
|
|
self.ndimensional = ndimensional
|
|
|
|
|
|
class ShapeFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for Shape manipulating operations like tile and roll"""
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
sample_inputs_func=None,
|
|
**kwargs):
|
|
super(ShapeFuncInfo, self).__init__(name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
self.ref = ref
|
|
|
|
def sample_inputs_foreach(self, device, dtype, N, *, noncontiguous=False, same_size=False):
|
|
if same_size:
|
|
return [make_tensor((N, N), device, dtype, noncontiguous=noncontiguous) for _ in range(N)]
|
|
else:
|
|
return [make_tensor((N - i, N - i), device, dtype, noncontiguous=noncontiguous) for i in range(N)]
|
|
|
|
|
|
def get_foreach_method_names(name):
|
|
# get torch inplace reference function
|
|
op_name = "_foreach_" + name
|
|
inplace_op_name = "_foreach_" + name + "_"
|
|
|
|
op = getattr(torch, op_name, None)
|
|
inplace_op = getattr(torch, inplace_op_name, None)
|
|
|
|
ref = getattr(torch, name, None)
|
|
ref_inplace = getattr(torch.Tensor, name + "_", None)
|
|
return op, inplace_op, ref, ref_inplace
|
|
|
|
class ForeachFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for foreach functions"""
|
|
def __init__(self,
|
|
name,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
dtypesIfROCM=None,
|
|
safe_casts_outputs=True,
|
|
supports_alpha_param=False,
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
**kwargs):
|
|
super().__init__(
|
|
"_foreach_" + name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
safe_casts_outputs=safe_casts_outputs,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs
|
|
)
|
|
|
|
foreach_method, foreach_method_inplace, torch_ref_method, torch_ref_inplace = get_foreach_method_names(name)
|
|
self.method_variant = foreach_method
|
|
self.inplace_variant = foreach_method_inplace
|
|
self.ref = torch_ref_method
|
|
self.ref_inplace = torch_ref_inplace
|
|
self.supports_alpha_param = supports_alpha_param
|
|
|
|
|
|
def sample_inputs_linalg_cholesky_inverse(op_info, device, dtype, requires_grad=False):
|
|
# Generate Cholesky factors of positive-definite (non-singular) Hermitian (symmetric) matrices
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
|
|
inputs = (
|
|
torch.zeros(0, 0, dtype=dtype, device=device), # 0x0 matrix
|
|
torch.zeros(0, 2, 2, dtype=dtype, device=device), # zero batch of matrices
|
|
random_hermitian_pd_matrix(S, dtype=dtype, device=device), # single matrix
|
|
random_hermitian_pd_matrix(S, 2, dtype=dtype, device=device), # batch of matrices
|
|
)
|
|
test_cases = (torch.linalg.cholesky(a) for a in inputs)
|
|
out = []
|
|
for a in test_cases:
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a))
|
|
out.append(SampleInput(a, kwargs=dict(upper=True)))
|
|
return out
|
|
|
|
def sample_inputs_linalg_lstsq(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import random_well_conditioned_matrix
|
|
out = []
|
|
for batch in ((), (3,), (3, 3)):
|
|
shape = batch + (3, 3)
|
|
a = random_well_conditioned_matrix(*shape, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
b = make_tensor(shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
out.append(SampleInput(a, args=(b,)))
|
|
return out
|
|
|
|
def sample_inputs_householder_product(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.householder_product (torch.orgqr).
|
|
The first argument should be a square matrix or batch of square matrices, the second argument is a vector or batch of vectors.
|
|
Empty, square, rectangular, batched square and batched rectangular input is generated.
|
|
"""
|
|
# Each column of the matrix is getting multiplied many times leading to very large values for
|
|
# the Jacobian matrix entries and making the finite-difference result of grad check less accurate.
|
|
# That's why gradcheck with the default range [-9, 9] fails and [-2, 2] is used here.
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S + 1, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S + 1, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((0, 0), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), device, dtype, low=None, high=None, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), device, dtype, low=None, high=None, requires_grad=requires_grad),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_ormqr(op_info, device, dtype, requires_grad):
|
|
# create a helper function wrapping `make_tensor`
|
|
make_input = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def gen_inputs():
|
|
batches = [(), (0, ), (2, ), (2, 1)]
|
|
ns = [5, 2, 0]
|
|
tf = [True, False]
|
|
for batch, (m, n), left, transpose in product(batches, product(ns, ns), tf, tf):
|
|
reflectors = make_input((*batch, m, n))
|
|
tau = make_input((*batch, min(m, n)))
|
|
other_matrix_shape = (m, n) if left else (n, m)
|
|
other = make_input((*batch, *other_matrix_shape))
|
|
kwargs = {"left": left, "transpose": transpose}
|
|
yield SampleInput(reflectors, args=(tau, other,), kwargs=kwargs)
|
|
|
|
return tuple(gen_inputs())
|
|
|
|
def sample_inputs_linalg_cholesky(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always positive-definite input for torch.linalg.cholesky using
|
|
random_hermitian_pd_matrix.
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
out = []
|
|
for batch, n, upper in product(batches, ns, [True, False]):
|
|
a = random_hermitian_pd_matrix(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a, kwargs={"upper": upper}))
|
|
return out
|
|
|
|
def sample_inputs_symeig(op_info, device, dtype, requires_grad=False):
|
|
out = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
|
|
for o in out:
|
|
o.kwargs = {"upper": bool(np.random.choice([True, False])),
|
|
"eigenvectors": True}
|
|
# A gauge-invariant function
|
|
o.output_process_fn_grad = lambda output: (output[0], abs(output[1]))
|
|
return out
|
|
|
|
def sample_inputs_linalg_eig(op_info, device, dtype, requires_grad=False):
|
|
"""
|
|
This function generates input for torch.linalg.eigh with UPLO="U" or "L" keyword argument.
|
|
"""
|
|
def out_fn(output):
|
|
return output[0], abs(output[1])
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.output_process_fn_grad = out_fn
|
|
|
|
return samples
|
|
|
|
def sample_inputs_linalg_eigh(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.eigh/eigvalsh with UPLO="U" or "L" keyword argument.
|
|
"""
|
|
def out_fn(output):
|
|
if isinstance(output, tuple):
|
|
# eigh function
|
|
return output[0], abs(output[1])
|
|
else:
|
|
# eigvalsh function
|
|
return output
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.kwargs = {"UPLO": np.random.choice(["L", "U"])}
|
|
sample.output_process_fn_grad = out_fn
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_linalg_slogdet(op_info, device, dtype, requires_grad=False):
|
|
def out_fn(output):
|
|
return output[1]
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.output_process_fn_grad = out_fn
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_linalg_pinv_hermitian(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.pinv with hermitian=True keyword argument.
|
|
"""
|
|
out = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad, **kwargs)
|
|
for o in out:
|
|
o.kwargs = {"hermitian": True}
|
|
return out
|
|
|
|
def sample_inputs_linalg_solve(op_info, device, dtype, requires_grad=False, vector_rhs_allowed=True, **kwargs):
|
|
"""
|
|
This function generates always solvable input for torch.linalg.solve
|
|
Using random_fullrank_matrix_distinct_singular_value gives a non-singular (=invertible, =solvable) matrices 'a'.
|
|
The first input to torch.linalg.solve is generated as the itertools.product of 'batches' and 'ns'.
|
|
The second input is generated as the product of 'batches', 'ns' and 'nrhs'.
|
|
In total this function generates 18 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices.
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
and 'nrhs' controls the number of vectors to solve for:
|
|
() - using 1 as the number of vectors implicitly
|
|
(1,) - same as () but explicit
|
|
(3,) - solve for 3 vectors.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
'vector_rhs_allowed' controls whether to include nrhs = () to the list of SampleInputs.
|
|
torch.solve / triangular_solve / cholesky_solve (opposed to torch.linalg.solve) do not allow
|
|
1D tensors (vectors) as the right-hand-side.
|
|
Once torch.solve / triangular_solve / cholesky_solve and its testing are removed,
|
|
'vector_rhs_allowed' may be removed here as well.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
batches = [(), (0, ), (2, )]
|
|
ns = [5, 0]
|
|
if vector_rhs_allowed:
|
|
nrhs = [(), (1,), (3,)]
|
|
else:
|
|
nrhs = [(1,), (3,)]
|
|
out = []
|
|
for n, batch, rhs in product(ns, batches, nrhs):
|
|
a = random_fullrank_matrix_distinct_singular_value(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
b = torch.randn(*batch, n, *rhs, dtype=dtype, device=device)
|
|
b.requires_grad = requires_grad
|
|
out.append(SampleInput(a, args=(b,)))
|
|
return out
|
|
|
|
|
|
def sample_inputs_legacy_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always solvable input for legacy solve functions
|
|
(the ones that are not in torch.linalg module).
|
|
The difference from sample_inputs_linalg_solve is that here the right-hand-side of A x = b equation
|
|
should have b.ndim >= 2, vectors are not allowed.
|
|
Also the arguments order is swapped.
|
|
"""
|
|
out = sample_inputs_linalg_solve(
|
|
op_info, device, dtype, requires_grad=requires_grad, vector_rhs_allowed=False
|
|
)
|
|
|
|
# Reverses tensor order
|
|
for sample in out:
|
|
sample.input, sample.args = sample.args[0], (sample.input,)
|
|
|
|
return out
|
|
|
|
|
|
def sample_inputs_cholesky_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
out = sample_inputs_linalg_cholesky_inverse(
|
|
op_info, device, dtype, requires_grad=False
|
|
)
|
|
|
|
for sample in out:
|
|
psd_matrix = sample.input
|
|
sample.input = make_tensor(psd_matrix.shape, device, dtype, requires_grad=requires_grad, low=None, high=None)
|
|
sample.args = (psd_matrix.requires_grad_(requires_grad),)
|
|
|
|
return out
|
|
|
|
|
|
def sample_inputs_lu(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# not needed once OpInfo tests support Iterables
|
|
def generate_samples():
|
|
batch_shapes = ((), (3,), (3, 3))
|
|
for batch_shape, get_infos, size_delta in product(batch_shapes, (True, False), (-2, -1, 0, +1, +2)):
|
|
shape = batch_shape + (S + size_delta, S)
|
|
input = make_tensor(shape, device, dtype, requires_grad=requires_grad, low=None, high=None)
|
|
yield SampleInput(input, args=(True, get_infos))
|
|
|
|
return list(generate_samples())
|
|
|
|
|
|
def sample_inputs_lu_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
batches = [(), (0, ), (2, )]
|
|
ns = [5, 3, 0]
|
|
nrhs = [0, 1, 6]
|
|
|
|
def generate_samples():
|
|
for n, batch, rhs in product(ns, batches, nrhs):
|
|
a = random_fullrank_matrix_distinct_singular_value(n, *batch, dtype=dtype, device=device)
|
|
requires_grad_options = (False,) if not requires_grad else (True, False)
|
|
# we try all possible combinations of requires_grad for each input
|
|
for lu_requires_grad, b_requires_grad in product(requires_grad_options, requires_grad_options):
|
|
# when requires_grad == True, at least one input has to have requires_grad enabled
|
|
if requires_grad and not lu_requires_grad and not b_requires_grad:
|
|
continue
|
|
# we run LU several times to guarantee that the produced SampleInputs are independent
|
|
# this is especially important when setting different requries_grad for same tensors!
|
|
lu, pivs = a.lu()
|
|
lu.requires_grad = lu_requires_grad
|
|
b = torch.randn(*batch, n, rhs, dtype=dtype, device=device)
|
|
b.requires_grad = b_requires_grad
|
|
yield SampleInput(b, args=(lu, pivs))
|
|
|
|
return list(generate_samples())
|
|
|
|
|
|
def sample_inputs_lu_unpack(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# not needed once OpInfo tests support Iterables
|
|
def generate_samples():
|
|
for lu_sample in sample_inputs_lu(op_info, device, dtype, requires_grad, **kwargs):
|
|
lu_data, pivots = lu_sample.input.lu()
|
|
yield SampleInput(lu_data, args=(pivots,))
|
|
|
|
# generate rectangular inputs
|
|
lu_data_shape = lu_data.shape
|
|
batch_shape = lu_data_shape[:-2]
|
|
n = lu_data_shape[-2]
|
|
|
|
for shape_inc in ((1, 0), (0, 1)):
|
|
lu_data, pivots = make_tensor(
|
|
batch_shape + (n + shape_inc[0], n + shape_inc[1]),
|
|
device, dtype,
|
|
requires_grad=False,
|
|
low=None, high=None
|
|
).lu()
|
|
lu_data.requires_grad_(requires_grad)
|
|
yield SampleInput(lu_data, args=(pivots,))
|
|
|
|
return list(generate_samples())
|
|
|
|
|
|
def sample_inputs_roll(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
args = ((0, 0), (1, 2), (0, 2), (2, 0), (-1, 0), (10000, 1), (2,), ((1, 2, -1), (0, 1, 2)))
|
|
|
|
def generator():
|
|
for arg in args:
|
|
yield SampleInput(make_arg((S, S, S)), args=arg)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_rot90(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
args = ((1, (0, 1),),
|
|
(1, (1, 2),),
|
|
(1, (1, -1),),
|
|
())
|
|
|
|
def generator():
|
|
for arg in args:
|
|
yield SampleInput(make_arg((S, S, S)), args=arg)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_std_var(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensor_nd = make_tensor((S, S, S), device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
tensor_1d = make_tensor((S,), device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(tensor_nd),
|
|
SampleInput(tensor_nd, kwargs=dict(dim=1)),
|
|
SampleInput(tensor_nd, kwargs=dict(dim=1, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d, kwargs=dict(dim=0, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d, kwargs=dict(dim=0, unbiased=False, keepdim=False)),
|
|
|
|
SampleInput(tensor_nd, kwargs=dict(dim=(1,), correction=S // 2)),
|
|
SampleInput(tensor_nd, kwargs=dict(dim=None, correction=0, keepdim=True)),
|
|
]
|
|
|
|
|
|
def _generate_correlation_inputs(device, dtype, requires_grad):
|
|
shapes = [(2,), (1, 2), (3, 2), (2, 3)]
|
|
for shape in shapes:
|
|
yield make_tensor(shape, device, dtype, requires_grad=requires_grad)
|
|
|
|
|
|
def sample_inputs_corrcoef(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [SampleInput(t) for t in _generate_correlation_inputs(device, dtype, requires_grad)]
|
|
|
|
|
|
def sample_inputs_cov(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
for t in _generate_correlation_inputs(device, dtype, requires_grad):
|
|
inputs.append(SampleInput(t))
|
|
num_observations = t.numel() if t.ndimension() < 2 else t.size(1)
|
|
fweights = make_tensor((num_observations,), device, torch.int, low=0, high=10, requires_grad=requires_grad)
|
|
aweights = make_tensor((num_observations,), device, torch.float, low=0, high=1, requires_grad=requires_grad)
|
|
for correction, fw, aw in product(range(num_observations), [None, fweights], [None, aweights]):
|
|
inputs.append(SampleInput(t, kwargs={'correction': correction, 'fweights': fw, 'aweights': aw}))
|
|
return inputs
|
|
|
|
|
|
def _sample_inputs_svd(op_info, device, dtype, requires_grad=False, is_linalg_svd=False):
|
|
"""
|
|
This function generates input for torch.svd with distinct singular values so that autograd is always stable.
|
|
Matrices of different size:
|
|
square matrix - S x S size
|
|
tall marix - S x (S-2)
|
|
wide matrix - (S-2) x S
|
|
and batched variants of above are generated.
|
|
Each SampleInput has a function 'output_process_fn_grad' attached to it that is applied on the output of torch.svd
|
|
It is needed for autograd checks, because backward of svd doesn't work for an arbitrary loss function.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
# svd and linalg.svd returns V and V.conj().T, respectively. So we need to slice
|
|
# along different dimensions when needed (this is used by
|
|
# test_cases2:wide_all and wide_all_batched below)
|
|
if is_linalg_svd:
|
|
def slice_V(v):
|
|
return v[..., :(S - 2), :]
|
|
|
|
def uv_loss(usv):
|
|
u00 = usv[0][0, 0]
|
|
v00_conj = usv[2][0, 0]
|
|
return u00 * v00_conj
|
|
else:
|
|
def slice_V(v):
|
|
return v[..., :, :(S - 2)]
|
|
|
|
def uv_loss(usv):
|
|
u00 = usv[0][0, 0]
|
|
v00_conj = usv[2][0, 0].conj()
|
|
return u00 * v00_conj
|
|
|
|
test_cases1 = ( # some=True (default)
|
|
# loss functions for complex-valued svd have to be "gauge invariant",
|
|
# i.e. loss functions shouldn't change when sigh of the singular vectors change.
|
|
# the simplest choice to satisfy this requirement is to apply 'abs'.
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: usv[1]), # 'check_grad_s'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: abs(usv[0])), # 'check_grad_u'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: abs(usv[2])), # 'check_grad_v'
|
|
# this test is important as it checks the additional term that is non-zero only for complex-valued inputs
|
|
# and when the loss function depends both on 'u' and 'v'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
uv_loss), # 'check_grad_uv'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2][..., :, :(S - 2)]))), # 'wide'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:, :(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'tall'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device),
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :(S - 2), :],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'wide_batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :, :(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'tall_batched'
|
|
)
|
|
test_cases2 = ( # some=False
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(slice_V(usv[2])))), # 'wide_all'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:, :(S - 2)],
|
|
lambda usv: (abs(usv[0][:, :(S - 2)]), usv[1], abs(usv[2]))), # 'tall_all'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :(S - 2), :],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(slice_V(usv[2])))), # 'wide_all_batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :, :(S - 2)],
|
|
lambda usv: (abs(usv[0][..., :, :(S - 2)]), usv[1], abs(usv[2]))), # 'tall_all_batched'
|
|
)
|
|
|
|
out = []
|
|
for a, out_fn in test_cases1:
|
|
a.requires_grad = requires_grad
|
|
if is_linalg_svd:
|
|
kwargs = {'full_matrices': False}
|
|
else:
|
|
kwargs = {'some': True}
|
|
out.append(SampleInput(a, kwargs=kwargs, output_process_fn_grad=out_fn))
|
|
|
|
for a, out_fn in test_cases2:
|
|
a.requires_grad = requires_grad
|
|
if is_linalg_svd:
|
|
kwargs = {'full_matrices': True}
|
|
else:
|
|
kwargs = {'some': False}
|
|
out.append(SampleInput(a, kwargs=kwargs, output_process_fn_grad=out_fn))
|
|
|
|
return out
|
|
|
|
|
|
def sample_inputs_permute(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = [((1, 2, 3, 4), (0, 2, 3, 1)),
|
|
((1, 2, 3, 4), (0, -2, -1, 1)),
|
|
((), ()),
|
|
((1, 2, 3, 4), (2, 1, 3, 0))]
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=(args,))
|
|
|
|
return list(generator())
|
|
|
|
|
|
# Based on erstwhile method_tests tests & some tensor_op_tests for pow
|
|
def sample_inputs_pow(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
|
|
if dtype in [torch.float16, torch.bfloat16, torch.float32, torch.float64]:
|
|
test_cases = (
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (2, 2), 0, 1, 0.1, requires_grad, False),
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (1,), 0, 1, 0.1, requires_grad, False),
|
|
((), 1e-3, 1e-3 + 1, 0, requires_grad, (), 0.1, 1.1, 0, False, False),
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (), 0.1, 1.1, 1, False, False),
|
|
)
|
|
tests_require_resizing = (
|
|
((1,), 0, 5, 1e-3, requires_grad, (2, 2), 0, 1, 0.1, requires_grad, requires_grad),
|
|
((2, 1, 2), 0, 5, 1e-3, requires_grad, (1, 2, 1), 0, 1, 0.1, requires_grad, requires_grad),
|
|
((), 1e-3, 1e-3 + 1, 0, requires_grad, (1, S, 1), 0, 1, 0.1, requires_grad, requires_grad),
|
|
)
|
|
cases = test_cases + tests_require_resizing
|
|
samples = list(SampleInput(make_tensor(shape_b, low=low_b, high=high_b,
|
|
requires_grad=b_grad, device=device,
|
|
dtype=dtype) + additive_b,
|
|
args=(make_tensor(shape_e, low=low_e, high=high_e,
|
|
requires_grad=e_grad, device=device,
|
|
dtype=dtype) + additive_e,),
|
|
broadcasts_input=broadcasts_input)
|
|
for shape_b, low_b, high_b, additive_b, b_grad, shape_e, low_e,
|
|
high_e, additive_e, e_grad, broadcasts_input in cases)
|
|
tensor_scalar_inputs = (
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (3.14,)),
|
|
((), 1e-3, 1e-3 + 1, 0, requires_grad, (3.14,))
|
|
)
|
|
more_samples = list(SampleInput(make_tensor(shape, dtype=dtype, device=device,
|
|
high=high, low=low,
|
|
requires_grad=b_grad) + additive,
|
|
args=exp)
|
|
for shape, low, high, additive, b_grad, exp in tensor_scalar_inputs)
|
|
samples = [*samples, *more_samples]
|
|
elif dtype in [torch.complex64, torch.complex128]:
|
|
args_tuple = (
|
|
((2, 2), 0, 5, requires_grad, (3.14,)),
|
|
((), 0, 1, requires_grad, (3.14,)),
|
|
((), 0, 1, requires_grad, (3.14j,))
|
|
)
|
|
samples = list(SampleInput(make_tensor(shape, dtype=dtype, device=device,
|
|
high=high, low=low,
|
|
requires_grad=b_grad) + 1e-3 * (1 + 1j),
|
|
args=arg)
|
|
for shape, low, high, b_grad, arg in args_tuple)
|
|
elif dtype == torch.bool:
|
|
arg_tuple = (0, 1, 1., 2.3)
|
|
samples = list(SampleInput(make_tensor((2, 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad),
|
|
args=(arg,))
|
|
for arg in arg_tuple)
|
|
dtypes_list = [torch.float64, torch.float32, torch.int64, torch.int32]
|
|
more_samples = list(SampleInput(make_tensor((2, 2), device, dtype=torch.bool,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 2), device, dtype=dtype,
|
|
requires_grad=requires_grad),))
|
|
for dtype in dtypes_list)
|
|
samples = [*samples, *more_samples]
|
|
samples.append(SampleInput(make_tensor((2, 2, 2), device, dtype=torch.bool,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1), device, dtype=torch.float64,
|
|
requires_grad=requires_grad),)))
|
|
else:
|
|
exp_tuple = (1, 2, 3)
|
|
samples = list(SampleInput(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(arg,))
|
|
for arg in exp_tuple)
|
|
samples.append(SampleInput(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),)))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_svd(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
return _sample_inputs_svd(op_info, device, dtype, requires_grad, is_linalg_svd=False)
|
|
|
|
def sample_inputs_linalg_svd(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
return _sample_inputs_svd(op_info, device, dtype, requires_grad, is_linalg_svd=True)
|
|
|
|
def sample_inputs_linalg_svdvals(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 2, 0]
|
|
samples = []
|
|
for batch, (m, n) in product(batches, product(ns, ns)):
|
|
a = make_tensor((*batch, m, n), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
samples.append(SampleInput(a))
|
|
return samples
|
|
|
|
def sample_inputs_hardshrink_hardtanh(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
N = 10
|
|
tensors = [SampleInput(make_tensor((N, N), device=device, dtype=dtype,
|
|
requires_grad=requires_grad)) for _ in range(1, N)]
|
|
return tensors
|
|
|
|
def sample_inputs_eig(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
eigvecs = make_tensor((S, S), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
eigvals = make_tensor((S,), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
# we produce only diagonazible inputs which do not have
|
|
# complex eigenvalues for real inputs, as there is no
|
|
# backward implementation for real inputs with complex
|
|
# eigenvalues yet.
|
|
input = (eigvecs * eigvals.unsqueeze(-2)) @ eigvecs.inverse()
|
|
input.requires_grad_(requires_grad)
|
|
|
|
def process_output(eigpair):
|
|
eigvals, eigvecs = eigpair
|
|
if dtype.is_complex:
|
|
# eig produces eigenvectors which are normalized to 1 norm.
|
|
# Note that if v is an eigenvector, so is v * e^{i \phi},
|
|
# and |v| = |v * e^{i \phi}| = 1.
|
|
# This, however, makes the eigenvector backward computation process
|
|
# rather unstable unless the objective function is gauge-invariant,
|
|
# that is if f(z) == f(|z|), for example.
|
|
# Hence for complex inputs we ignore the phases and return only
|
|
# the absolute values.
|
|
return eigvals, eigvecs.abs()
|
|
else:
|
|
return eigvals, eigvecs
|
|
|
|
return [
|
|
SampleInput(
|
|
input,
|
|
kwargs=dict(eigenvectors=True),
|
|
output_process_fn_grad=process_output
|
|
),
|
|
]
|
|
|
|
|
|
def sample_inputs_einsum(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
x = make_tensor((3,), device, dtype, requires_grad=requires_grad)
|
|
y = make_tensor((4,), device, dtype, requires_grad=requires_grad)
|
|
A = make_tensor((2, 3,), device, dtype, requires_grad=requires_grad, noncontiguous=True)
|
|
B = make_tensor((1, 3,), device, dtype, requires_grad=requires_grad)
|
|
C = make_tensor((1, 2, 3,), device, dtype, requires_grad=requires_grad)
|
|
D = make_tensor((1, 3, 4,), device, dtype, requires_grad=requires_grad, noncontiguous=True)
|
|
E = make_tensor((4, 4,), device, dtype, requires_grad=requires_grad)
|
|
H = make_tensor((3, 3,), device, dtype, requires_grad=requires_grad, noncontiguous=True)
|
|
I = make_tensor((1, 3, 1,), device, dtype, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
|
|
# Vector operations
|
|
inputs.append(SampleInput([x], args=('i->',))) # sum
|
|
inputs.append(SampleInput([x, y], args=('i,j->ij',))) # outer
|
|
|
|
# Matrix operations
|
|
inputs.append(SampleInput([A], args=("ij->i",))) # col sum
|
|
inputs.append(SampleInput([A, B], args=("ij,kj->ik",))) # matmul
|
|
inputs.append(SampleInput([A, E], args=("ij,Ab->ijAb",))) # matrix outer product
|
|
|
|
# Tensor operations
|
|
inputs.append(SampleInput([C, D], args=("aij,ajk->aik",))) # batch matmul
|
|
inputs.append(SampleInput([D, E], args=("aij,jk->aik",))) # tensor matrix contraction
|
|
inputs.append(SampleInput([C, B], args=("ijk,ik->j",))) # non contiguous
|
|
|
|
# Test diagonals
|
|
inputs.append(SampleInput([I], args=('iji->j',))) # non-contiguous trace
|
|
|
|
# Test ellipsis
|
|
inputs.append(SampleInput([H], args=("i...->...",)))
|
|
inputs.append(SampleInput([C, x], args=('...ik, ...j -> ij',)))
|
|
|
|
return inputs
|
|
|
|
|
|
def sample_inputs_linalg_qr(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.qr
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
"""
|
|
batches = [(), (0,), (2, ), (1, 1)]
|
|
ns = [5, 2, 0]
|
|
out = []
|
|
for batch, (m, n) in product(batches, product(ns, ns)):
|
|
a = torch.randn(*batch, m, n, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
out.append(SampleInput(a))
|
|
return out
|
|
|
|
def sample_inputs_geqrf(op_info, device, dtype, requires_grad=False):
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 2, 0]
|
|
samples = []
|
|
for batch, (m, n) in product(batches, product(ns, ns)):
|
|
# TODO: CUDA path doesn't work with batched or empty inputs
|
|
if torch.device(device).type == 'cuda' and (batch != () or m == 0 or n == 0):
|
|
continue
|
|
a = make_tensor((*batch, m, n), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
samples.append(SampleInput(a))
|
|
return samples
|
|
|
|
def sample_inputs_flip(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
sizes = ((S, M, S), (S, 0, M))
|
|
all_dims = ((0, 1, 2), (0,), (0, 2), (-1,), ())
|
|
|
|
def gen_samples():
|
|
for size, dims in product(sizes, all_dims):
|
|
yield SampleInput(make_arg(size), kwargs={"dims": dims})
|
|
|
|
return list(gen_samples())
|
|
|
|
def sample_inputs_fliplr_flipud(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, 0, M), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
)
|
|
return [SampleInput(tensor) for tensor in tensors]
|
|
|
|
def sample_inputs_fmod_remainder(op_info, device, dtype, requires_grad, *, autodiffed=False, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
if autodiffed:
|
|
samples = (
|
|
((S, S, S), 1.5, False),
|
|
((), 1.5, False),
|
|
)
|
|
else:
|
|
cases = (
|
|
((S, S, S), (), False),
|
|
((S, S, S), (S, S, S), False),
|
|
((S, S, S), (S,), False),
|
|
)
|
|
|
|
# Sample inputs with scalars as torch tensors
|
|
cases_with_tensor_scalar = (
|
|
((), torch.tensor(1, dtype=dtype, device=device, requires_grad=False), False),
|
|
)
|
|
|
|
# Sample inputs with broadcasting
|
|
cases_with_broadcasting = (
|
|
((S,), (S, S, S), True),
|
|
((S, 1, S), (S, S, S), True),
|
|
((), (S, S, S), True),
|
|
)
|
|
|
|
samples = cases + cases_with_tensor_scalar + cases_with_broadcasting # type: ignore[assignment]
|
|
|
|
def generator():
|
|
for shape, arg_other, broadcasts_input in samples:
|
|
if isinstance(arg_other, tuple):
|
|
arg = make_arg(arg_other, requires_grad=False, exclude_zero=True)
|
|
else:
|
|
# shape_other is scalar or torch.tensor
|
|
arg = arg_other
|
|
yield(SampleInput(make_arg(shape), args=(arg,), broadcasts_input=broadcasts_input))
|
|
|
|
return list(generator())
|
|
|
|
# TODO: clamp shares tensors among its sample inputs --- we should prohibit this!
|
|
def sample_inputs_clamp(op_info, device, dtype, requires_grad, **kwargs):
|
|
x = make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
lb = make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
ub = make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
|
|
def detach(tensor):
|
|
return tensor.clone().detach_().requires_grad_(requires_grad)
|
|
|
|
return [
|
|
SampleInput(detach(x), args=(lb, ub)),
|
|
SampleInput(detach(x), args=(detach(lb[0]), detach(ub[0]))),
|
|
SampleInput(detach(x), args=(detach(lb[:, :1]),)),
|
|
]
|
|
|
|
def sample_inputs_clamp_scalar(op_info, device, dtype, requires_grad):
|
|
tensors = (
|
|
make_tensor((2, 3, 2), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((2, 0, 3), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
if dtype is torch.uint8:
|
|
min_max_vals = ((2, 5), (3, 7))
|
|
else:
|
|
min_max_vals = ((0, 1), (-1, 1))
|
|
output = [SampleInput(tensor, args=vals) for tensor, vals in product(tensors, min_max_vals)]
|
|
output += [SampleInput(tensors[0], args=(0.5, None)), SampleInput(tensors[0], args=(None, 0.5))]
|
|
empty_tensor = make_tensor((), device=device, dtype=dtype, low=None, high=None, requires_grad=requires_grad)
|
|
output += [SampleInput(empty_tensor, args=(0.0, 1.0)), ]
|
|
return output
|
|
|
|
def sample_kwargs_clamp_scalar(device, dtype, input):
|
|
if dtype is torch.uint8:
|
|
min_val, max_val = (random.randint(1, 3), random.randint(4, 8))
|
|
elif dtype.is_floating_point:
|
|
min_val, max_val = (random.uniform(-8, 0), random.uniform(1, 8)) # type: ignore[assignment]
|
|
else:
|
|
min_val, max_val = (random.randint(-8, 0), random.randint(1, 8))
|
|
return {'min': min_val, 'max': max_val}, {'a_min': min_val, 'a_max': max_val}
|
|
|
|
def sample_inputs_cross(op_info, device, dtype, requires_grad, **kwargs):
|
|
sample0 = SampleInput(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, 3), device=device, dtype=dtype, requires_grad=requires_grad),))
|
|
sample1 = SampleInput(make_tensor((S, 3, S), device=device, dtype=dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, 3, S), device=device, dtype=dtype, requires_grad=requires_grad),),
|
|
kwargs={'dim': 1})
|
|
|
|
return (sample0, sample1)
|
|
|
|
def sample_inputs_cumprod(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, device, dtype, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_zeros(dim_select):
|
|
assert len(dim_select) == 2
|
|
result = make_arg(3 * (S,))
|
|
with torch.no_grad():
|
|
result.narrow(dim_select[0], 0, 1).narrow(dim_select[1], 1, 1).zero_()
|
|
result.narrow(dim_select[0], 2, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
result.narrow(dim_select[0], 4, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
return result
|
|
|
|
# will not be needed once OpInfo tests suport Iterables
|
|
def sample_generator():
|
|
for dim in range(3):
|
|
yield SampleInput(make_arg((S, S, S)), args=(dim,))
|
|
# Scalar tensors and empty tensor
|
|
for size in [(), (1,), (0,)]:
|
|
yield SampleInput(make_arg(size), args=(0,))
|
|
|
|
yield SampleInput(prod_zeros([0, 1]), args=(1,))
|
|
yield SampleInput(prod_zeros([0, 2]), args=(1,))
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,))
|
|
|
|
# test dtype kwarg
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,), kwargs={'dtype': dtype})
|
|
|
|
return list(sample_generator())
|
|
|
|
def sample_inputs_view_as_complex(op_info, device, dtype, requires_grad, **kwargs):
|
|
return [SampleInput(make_tensor((S, 2), device, dtype, requires_grad=requires_grad),)]
|
|
|
|
def sample_inputs_view_as_real(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((), device, dtype, requires_grad=requires_grad)
|
|
)
|
|
return [SampleInput(tensor) for tensor in tensors]
|
|
|
|
def sample_inputs_copysign(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _make_tensor(*shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
cases = [
|
|
# no broadcast
|
|
((S, S, S), (S, S, S), False),
|
|
# broadcast rhs
|
|
((S, S, S), (S, S), False),
|
|
|
|
# scalar
|
|
((S, S), 3.14, False),
|
|
# scalar positive zero
|
|
((S, S), 0.0, False),
|
|
# scalar negative zero
|
|
((S, S), -0.0, False),
|
|
]
|
|
|
|
# broadcast lhs
|
|
cases.append(((S, S), (S, S, S), True))
|
|
# broadcast all
|
|
cases.append(((S, 1, S), (M, S), True))
|
|
|
|
def generator():
|
|
for input_shape, arg_val, broadcasts_input in cases:
|
|
if isinstance(arg_val, tuple):
|
|
arg = _make_tensor(*arg_val)
|
|
else:
|
|
# arg_val is scalar
|
|
arg = arg_val
|
|
|
|
yield SampleInput(_make_tensor(*input_shape), args=(arg, ), broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_prod(op_info, device, dtype, requires_grad):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, device, dtype, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_single_zero():
|
|
result = make_arg(2 * (S,))
|
|
with torch.no_grad():
|
|
result[0, 1] = 0
|
|
return result
|
|
|
|
# will not be needed once OpInfo tests support Iterables
|
|
def sample_generator():
|
|
for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad):
|
|
yield SampleInput(sample.input) # only Tensor, ignore other inputs
|
|
yield sample
|
|
sample.kwargs['keepdim'] = True
|
|
yield sample
|
|
yield SampleInput(prod_single_zero())
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,))
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,), kwargs={'keepdim': True})
|
|
|
|
# test zero scalar tensor
|
|
zero = make_arg(())
|
|
with torch.no_grad():
|
|
zero.zero_()
|
|
yield SampleInput(zero)
|
|
yield SampleInput(zero, args=(0,))
|
|
yield SampleInput(zero, args=(0,), kwargs={'keepdim': True})
|
|
|
|
return list(sample_generator())
|
|
|
|
def sample_inputs_nextafter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (
|
|
((S, S), (S, S), False),
|
|
((S, S), (S,), False),
|
|
((S, ), (S, S), True)
|
|
)
|
|
|
|
def generator():
|
|
for shape, other_shape, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(shape), args=(make_arg(other_shape),), broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_diag(op_info, device, dtype, requires_grad, **kwargs):
|
|
vec_sample = SampleInput(make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad))
|
|
|
|
tensors = (
|
|
make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((3, 5), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((5, 3), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
|
|
args = ((), (2,), (-2,), (1,), (2,))
|
|
|
|
samples = []
|
|
for tensor, arg in product(tensors, args):
|
|
samples.append(SampleInput(tensor, args=arg))
|
|
|
|
return samples + [vec_sample]
|
|
|
|
def sample_inputs_diagonal_diag_embed(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
# Shapes for 2D Tensors
|
|
shapes_2d = ((M, M), (3, 5), (5, 3))
|
|
|
|
# Shapes for 3D Tensors
|
|
shapes_3d = ((M, M, M),)
|
|
|
|
args_2d = ((), (2,), (-2,), (1,))
|
|
args_3d = ((1, 1, 2), (2, 0, 1), (-2, 0, 1))
|
|
|
|
def generator():
|
|
for shape, arg in chain(product(shapes_2d, args_2d), product(shapes_3d, args_3d)):
|
|
yield SampleInput(make_arg(shape), args=arg)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_to_sparse(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return (SampleInput(make_arg((S, S)), args=(), output_process_fn_grad=lambda x: x.to_dense()),
|
|
SampleInput(make_arg((S, S)), args=(1,), output_process_fn_grad=lambda x: x.to_dense()),)
|
|
|
|
|
|
# Used for both log_softmax and softmax
|
|
def sample_inputs_softmax_variant(op_info, device, dtype, requires_grad, with_dtype=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = [
|
|
((S, ), (0, )),
|
|
((S, S), (0, )),
|
|
((S, S), (1, )),
|
|
((S, S), (-1, )),
|
|
((S, M, S), (2, )),
|
|
]
|
|
|
|
# PyTorch on XLA throws an error when passed with dim argument for 0d tensor.
|
|
# See https://github.com/pytorch/xla/issues/3061 for more details.
|
|
if torch.device(device).type != 'xla':
|
|
cases.append(((), (0, )))
|
|
|
|
return [
|
|
SampleInput(make_arg(shape), args=dim, kwargs=dict(dtype=torch.float64) if with_dtype else None)
|
|
for shape, dim in cases
|
|
]
|
|
|
|
|
|
def sample_inputs_logit(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, high = op_info.domain
|
|
|
|
# Note: Operator is very sensitive at points near the
|
|
# start and end of domain and leads to NaN for float16
|
|
# if domain_eps is 1e-5.
|
|
domain_eps = op_info._domain_eps if dtype != torch.float16 else 3e-2
|
|
|
|
low = low + domain_eps
|
|
high = high - domain_eps
|
|
|
|
samples = (
|
|
SampleInput(make_tensor((S, S, S), device, dtype, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), device, dtype, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
SampleInput(make_tensor((), device, dtype, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_isin(op_info, device, dtype, requires_grad):
|
|
element = make_tensor((L,), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
indices = torch.randint(0, L, size=[S])
|
|
test_elements = element[indices].clone()
|
|
return [
|
|
SampleInput(element, args=(test_elements,))
|
|
]
|
|
|
|
def sample_inputs_masked_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def samples_generator():
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((S,), device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(bernoulli_scalar().to(device), make_arg((S, S))))
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))),
|
|
broadcasts_input=True)
|
|
|
|
samples = tuple(samples_generator())
|
|
return samples
|
|
|
|
|
|
def sample_inputs_masked_fill(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def sample_generator():
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((), device=device) > 0, 10))
|
|
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg(())),
|
|
broadcasts_input=True)
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, 10),
|
|
broadcasts_input=True)
|
|
|
|
samples = tuple(sample_generator())
|
|
return samples
|
|
|
|
def sample_inputs_masked_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn(M, M, device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M,), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, 1, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matrix_exp(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), device, dtype, requires_grad=requires_grad)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matmul(op_info, device, dtype, requires_grad):
|
|
test_cases = (((L,), (L,)),
|
|
((S, M), (M,)),
|
|
((M,), (M, S)),
|
|
((S, M), (M, S)),
|
|
((S, 0), (0, M)),
|
|
((S, S, M), (M,)),
|
|
((S, S, M), (M, S)),
|
|
((S, S, 0), (0, S)),
|
|
((M,), (S, M, S)),
|
|
((S, M), (S, M, S)),
|
|
((0, 0), (S, 0, 0)),
|
|
((S, S, M, M), (S, S, M, S)),
|
|
((S, S, M, M), (M,)),
|
|
((M,), (S, S, M, S)))
|
|
sample_inputs = []
|
|
for lhs_shape, rhs_shape in test_cases:
|
|
lhs = make_tensor(lhs_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
rhs = make_tensor(rhs_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
if op_info.name == 'matmul':
|
|
sample_inputs.append(SampleInput(lhs, args=(rhs,)))
|
|
elif op_info.name == '__rmatmul__':
|
|
sample_inputs.append(SampleInput(rhs, args=(lhs,)))
|
|
else:
|
|
raise RuntimeError("`op_info.name` must be 'matmul' or '__rmatmul__'")
|
|
return tuple(sample_inputs)
|
|
|
|
|
|
def sample_inputs_meshgrid(op_info: OpInfo, device: torch.device, dtype: torch.dtype,
|
|
requires_grad: bool,
|
|
*, variant: str) -> List[SampleInput]:
|
|
if variant == 'variadic':
|
|
def make_inputs(
|
|
tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor,
|
|
List[torch.Tensor]],
|
|
Tuple[torch.Tensor, ...]]:
|
|
return tensors[0], tuple(tensors[1:])
|
|
elif variant == 'list':
|
|
def make_inputs(
|
|
tensors: List[torch.Tensor]) -> Tuple[Union[torch.Tensor,
|
|
List[torch.Tensor]],
|
|
Tuple[torch.Tensor, ...]]:
|
|
return tensors, ()
|
|
else:
|
|
raise ValueError(
|
|
'Unsupported variant, must be one of {"variadic", "list"}. '
|
|
f'Got "{variant}".')
|
|
|
|
SCALAR = torch.Size([])
|
|
VECTOR = torch.Size([3])
|
|
test_cases: List[List[torch.Size]] = [
|
|
[SCALAR],
|
|
[VECTOR],
|
|
[VECTOR, SCALAR],
|
|
[VECTOR, SCALAR, VECTOR],
|
|
[VECTOR, SCALAR, VECTOR, SCALAR],
|
|
]
|
|
|
|
sample_inputs = []
|
|
for shapes, indexing in itertools.product(test_cases, {'xy', 'ij'}):
|
|
input, args = make_inputs(
|
|
[make_tensor(shape, device, dtype, requires_grad=requires_grad)
|
|
for shape in shapes])
|
|
sample_inputs.append(SampleInput(input=input, args=args,
|
|
kwargs=dict(indexing=indexing)))
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_polar(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
SampleInput(_make_tensor_helper((S, S), low=0), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper((), low=0), args=(_make_tensor_helper(()),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_complex(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _make_tensor_helper(shape):
|
|
return make_tensor(shape, device, dtype, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
SampleInput(_make_tensor_helper((S, S)), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper(()), args=(_make_tensor_helper(()),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_polygamma(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
tensor_shapes = ((S, S), ())
|
|
ns = (1, 2, 3, 4, 5)
|
|
|
|
def generator():
|
|
for shape, n in product(tensor_shapes, ns):
|
|
yield SampleInput(make_arg(shape), args=(n,))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_mvlgamma(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
tensor_shapes = ((S, S), ())
|
|
ns = (1, 2, 3, 4, 5)
|
|
|
|
# Since the accepted lower bound for input
|
|
# to mvlgamma depends on `p` argument,
|
|
# the following function computes the lower bound
|
|
# which we pass to `make_tensor`.
|
|
def compute_min_val(p):
|
|
return (p - 1.) / 2
|
|
|
|
def generator():
|
|
for shape, n in product(tensor_shapes, ns):
|
|
min_val = compute_min_val(n)
|
|
if not dtype.is_floating_point:
|
|
# Round-up minimum value for integral dtypes
|
|
min_val += 1
|
|
yield SampleInput(make_arg(shape, low=min_val), args=(n,))
|
|
|
|
return list(generator())
|
|
|
|
|
|
# Since `mvlgamma` has multiple entries,
|
|
# there are multiple common skips for the additional
|
|
# entries. Following function is a helper to that end.
|
|
def skips_mvlgamma(skip_redundant=False):
|
|
skips = (
|
|
# outside domain values are hard error for mvlgamma op.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_float_domains'),
|
|
)
|
|
if skip_redundant:
|
|
# Redundant tests
|
|
skips = skips + ( # type: ignore[assignment]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
)
|
|
return skips
|
|
|
|
|
|
# To test reference numerics against multiple values of argument `p`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of p.
|
|
# We run the op tests from test_ops.py only for `p=1` to avoid redundancy in testing.
|
|
# Class `MvlGammaInfo` already contains the basic information related to the operator,
|
|
# it only takes arguments like `domain`, `skips` and `sample_kwargs`, which
|
|
# differ between the entries.
|
|
class MvlGammaInfo(UnaryUfuncInfo):
|
|
def __init__(self, variant_test_name, domain, skips, sample_kwargs):
|
|
super(MvlGammaInfo, self).__init__(
|
|
'mvlgamma',
|
|
ref=reference_mvlgamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.multigammaln',),
|
|
variant_test_name=variant_test_name,
|
|
domain=domain,
|
|
decorators=(precisionOverride({torch.float16: 5e-2}),),
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_mvlgamma,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
skips=skips,
|
|
sample_kwargs=sample_kwargs)
|
|
|
|
|
|
def sample_inputs_entr(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, _ = op_info.domain
|
|
|
|
if requires_grad:
|
|
low = 0 + op_info._domain_eps
|
|
|
|
return (SampleInput(make_tensor((L,), device, dtype,
|
|
low=low,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype,
|
|
low=low,
|
|
requires_grad=requires_grad)))
|
|
|
|
|
|
def sample_inputs_zeta(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
samples = (SampleInput(make_arg((S,), low=1, requires_grad=requires_grad),
|
|
args=(make_arg((S,), low=2, requires_grad=False),)),
|
|
SampleInput(make_arg((S,), low=1, requires_grad=requires_grad),
|
|
args=(3.,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
# TODO: Consolidate `i0e` with sample_inputs_unary when `make_tensor`,
|
|
# supports `exclude` argument.
|
|
# For more context: https://github.com/pytorch/pytorch/pull/56352#discussion_r633277617
|
|
def sample_inputs_i0_i1(op_info, device, dtype, requires_grad, **kwargs):
|
|
|
|
samples = (SampleInput(make_tensor((S,), device, dtype,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype,
|
|
requires_grad=requires_grad)))
|
|
|
|
if requires_grad and op_info.op == torch.special.i0e:
|
|
# NOTE: `i0e`'s first-order gradient is not continous
|
|
# at `0`, hence we don't test `i0e` with any input being `0`.
|
|
# TODO: Remove this when `make_tensor` supports excluding `0`.
|
|
with torch.no_grad():
|
|
for sample in samples:
|
|
t = sample.input
|
|
t[t == 0] = torch.finfo(dtype).eps # type: ignore[index]
|
|
elif requires_grad and op_info.op != torch.special.i0e:
|
|
# Special Case for gradient
|
|
# Sample with `0` in the input
|
|
t = make_tensor((S,), device, dtype,
|
|
requires_grad=requires_grad)
|
|
|
|
with torch.no_grad():
|
|
t[0] = 0
|
|
|
|
samples += (SampleInput(t),) # type: ignore[assignment]
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_rsub(op_info, device, dtype, requires_grad, variant='tensor', **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _samples_with_alpha_helper(args, alphas, filter_fn=lambda arg_alpha: True):
|
|
filtered_product = filter(filter_fn, product(args, alphas)) # type: ignore[var-annotated]
|
|
return (SampleInput(input, args=(arg,), kwargs=dict(alpha=alpha))
|
|
for (input, arg), alpha in filtered_product)
|
|
|
|
int_alpha, float_alpha, complex_alpha = 2, 0.1, 1 + 0.6j
|
|
|
|
if variant == 'tensor':
|
|
samples = (
|
|
SampleInput(_make_tensor_helper((S, S)), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(_make_tensor_helper((S,)),)),
|
|
SampleInput(_make_tensor_helper((S,)), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper(()), args=(_make_tensor_helper(()),)),
|
|
SampleInput(_make_tensor_helper(()), args=(_make_tensor_helper((S,)),)),
|
|
SampleInput(_make_tensor_helper((S,)), args=(_make_tensor_helper(()),)),
|
|
)
|
|
|
|
if dtype.is_complex:
|
|
alphas = [int_alpha, float_alpha, complex_alpha]
|
|
elif dtype.is_floating_point:
|
|
alphas = [int_alpha, float_alpha]
|
|
else:
|
|
alphas = [int_alpha]
|
|
|
|
args = ((_make_tensor_helper((S, S)), _make_tensor_helper((S, S))),
|
|
(_make_tensor_helper((S, S)), _make_tensor_helper((S,))),
|
|
(_make_tensor_helper(()), _make_tensor_helper(())))
|
|
samples += tuple(_samples_with_alpha_helper(args, alphas)) # type: ignore[assignment]
|
|
elif variant == 'scalar':
|
|
# Scalar Other
|
|
samples = (SampleInput(_make_tensor_helper((S, S)), args=(0.5,)),
|
|
SampleInput(_make_tensor_helper(()), args=(0.5,)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(1.5j,)),
|
|
SampleInput(_make_tensor_helper(()), args=(1.5j,)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(0.4 + 1.2j,)),
|
|
SampleInput(_make_tensor_helper(()), args=(1.2 + 1.76j,)))
|
|
|
|
scalar_args = [(_make_tensor_helper((S, S)), 0.5), (_make_tensor_helper(()), 0.5),
|
|
(_make_tensor_helper((S, S)), 2.7j), (_make_tensor_helper(()), 2.7j),
|
|
(_make_tensor_helper((S, S)), 1 - 2.7j), (_make_tensor_helper(()), 1 + 2.7j)]
|
|
|
|
alphas = [int_alpha, float_alpha, complex_alpha]
|
|
|
|
def filter_fn(arg_alpha):
|
|
arg, alpha = arg_alpha
|
|
if isinstance(alpha, complex):
|
|
if dtype.is_complex or isinstance(arg[1], complex):
|
|
return True
|
|
else:
|
|
# complex alpha is valid only if either `self` or `other` is complex
|
|
return False
|
|
|
|
# Non-Complex Alpha
|
|
return True
|
|
|
|
# Samples with alpha (scalar version) covers the following cases
|
|
# self | other | alpha
|
|
# -----------------------------------------
|
|
# real | real | real (int and float)
|
|
# real | complex | real and complex
|
|
# complex | real | real and complex
|
|
# complex | complex | real and complex
|
|
#
|
|
# It does not cover
|
|
# real | real | complex
|
|
# x = torch.randn(2, requires_grad=True, dtype=torch.float64)
|
|
# torch.rsub(x, 1, alpha=1. + 1.6j)
|
|
# RuntimeError: value cannot be converted to type double without overflow: (-1,-1.6)
|
|
|
|
samples += tuple(_samples_with_alpha_helper(scalar_args, alphas, filter_fn=filter_fn)) # type: ignore[assignment]
|
|
else:
|
|
raise Exception("Invalid variant!")
|
|
|
|
return samples
|
|
|
|
def sample_inputs_cumulative_ops(op_info, device, dtype, requires_grad, supports_dtype_kwargs=True, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
samples = [
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(0,)),
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(1,)),
|
|
SampleInput(_make_tensor_helper(()), args=(0,)),
|
|
]
|
|
|
|
if supports_dtype_kwargs:
|
|
# NOTE: if `dtype` is not same as input, then inplace variants fail with
|
|
# `provided dtype must match the dtype of self tensor in cumsum`
|
|
samples.append(SampleInput(_make_tensor_helper((S, S, S)), args=(1,), kwargs={'dtype': dtype}))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_unfold(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((), (0, 1, 1)),
|
|
((S, S, S, S), (0, 3, 1)),
|
|
((S, S, S, S), (1, 3, 1)),
|
|
((S, S, S, S), (2, 3, 1)),
|
|
((S, S, S, S), (3, 3, 1)),
|
|
((S, S, S, S), (0, 3, 2)),
|
|
((S, S, S, S), (1, 3, 2)),
|
|
((S, S, S, S), (2, 3, 2)),
|
|
((S, S, S, S), (3, 3, 2)),
|
|
((S, S, S, S), (0, 4, 1)),
|
|
((S, S, S, S), (1, 4, 1)),
|
|
((S, S, S, S), (2, 4, 1)),
|
|
((S, S, S, S), (3, 4, 1)),
|
|
((M,), (0, 3, 1)),
|
|
((M,), (0, 3, 2)),
|
|
((M,), (0, 3, 3)),
|
|
((1000,), (0, 3, 11)),
|
|
((1000,), (0, 2, 27)),
|
|
((10, 10), (0, 1, 2)),
|
|
((10, 10), (1, 2, 3)),
|
|
((10, 10), (1, 2, 2)),
|
|
((S, S, S), (2, 3, 2)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for shape, arguments in test_cases:
|
|
sample_inputs += [SampleInput(make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=arguments)]
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_atan2(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
cases = (
|
|
((S, S, S), (S, S, S), False),
|
|
((), (), False),
|
|
((S, S, S), (S,), False),
|
|
((S,), (S, S, S), True),
|
|
((S, 1, S), (S, S), True),
|
|
)
|
|
|
|
def generator():
|
|
for x_shape, y_shape, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(x_shape), args=(make_arg(y_shape),),
|
|
broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_split(op_info, device, dtype, requires_grad, *, list_args=False, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
if list_args:
|
|
cases = (
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],)),
|
|
((S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], 2),),
|
|
((S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], -2),)
|
|
)
|
|
else:
|
|
cases = ( # type: ignore[assignment]
|
|
((S, S, S), (2,)),
|
|
((S, S, S), (S, 1)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_split_with_sizes(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3), 0],)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)], 2)),
|
|
((S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)], -2)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_msort(op_info, device, dtype, requires_grad):
|
|
def apply_grad(t):
|
|
if dtype in floating_types_and(torch.float16, torch.bfloat16):
|
|
t.requires_grad_(requires_grad)
|
|
|
|
def large_1d_unique(dtype, device):
|
|
res = torch.randperm(L * L * L, dtype=torch.int64, device=device)
|
|
res = res.to(dtype)
|
|
apply_grad(res)
|
|
return res
|
|
|
|
samples = []
|
|
# Test case for large tensor.
|
|
largesample = SampleInput(large_1d_unique(dtype, device))
|
|
|
|
sample = SampleInput(make_tensor((S, M, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
|
|
return [largesample, sample]
|
|
|
|
def sample_inputs_lerp(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs with weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), make_arg((S, S)))),
|
|
# broadcast rhs and weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, 1)), make_arg((S,)))),
|
|
# broadcast_lhs
|
|
SampleInput(make_arg((S,)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# scalar broadcast_lhs
|
|
SampleInput(make_arg(()), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# tensor broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), make_arg((S, 1))),
|
|
broadcasts_input=True),
|
|
)
|
|
|
|
if dtype.is_complex:
|
|
samples = samples + ( # type: ignore[assignment]
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 1.2 + 0.1j)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 5.4 + 9j)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg(()), args=(make_arg(()), 6.1 + 0.004j)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 1 + 2j)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_tensordot(self, device, dtype, requires_grad, **kwargs):
|
|
cases = (
|
|
((2, 2, 2), (2, 2, 2), (2)),
|
|
((2, 2, 1), (2, 1, 2), ([0, 1], [2, 0])),
|
|
)
|
|
samples = []
|
|
for first_shape, second_shape, dims in cases:
|
|
samples.append(SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),),
|
|
kwargs=dict(dims=dims,)))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_kron(op_info, device, dtype, requires_grad):
|
|
test_cases = (
|
|
((S, S), (M, L)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for input_shape, other_shape in test_cases:
|
|
input = make_tensor(input_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
other = make_tensor(other_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
sample = SampleInput(input, args=(other,))
|
|
sample_inputs.append(sample)
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_inner(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, ), device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_scatter(op_info, device, dtype, requires_grad):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _gather(shape, index_dim, max_indices):
|
|
return gather_variable(shape, index_dim, max_indices, device=device)
|
|
|
|
zero = torch.tensor(0, dtype=torch.long, device=device)
|
|
test_cases = (
|
|
(_tensor((M, S)), (0, _gather((S, S), 1, M), _tensor((S, S)))),
|
|
(_tensor((M, S)), (1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (-1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (0, _gather((M, S // 2), 1, M), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (-1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor(()), (0, zero.clone().detach(), _tensor(()))),
|
|
(_tensor(()), (0, zero.clone().detach(), 2.5)),
|
|
)
|
|
|
|
samples = []
|
|
for tensor, args in test_cases:
|
|
samples.append(SampleInput(tensor, args=args))
|
|
|
|
if not requires_grad:
|
|
samples.append(SampleInput(
|
|
tensor.clone().detach(),
|
|
args=args, kwargs={'reduce': 'add'}
|
|
))
|
|
|
|
if dtype.is_floating_point:
|
|
samples.append(SampleInput(
|
|
tensor.clone().detach(),
|
|
args=args, kwargs={'reduce': 'multiply'}
|
|
))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_scatter_add(op_info, device, dtype, requires_grad):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _gather(shape, index_dim, max_indices):
|
|
return gather_variable(shape, index_dim, max_indices, device=device)
|
|
|
|
zero = torch.tensor(0, dtype=torch.long, device=device)
|
|
test_cases = (
|
|
(_tensor((M, S)), (0, _gather((S, S), 1, M), _tensor((S, S)))),
|
|
(_tensor((M, S)), (1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (-1, _gather((S, S), 0, S), _tensor((S, S)))),
|
|
(_tensor((M, S)), (0, _gather((M, S // 2), 1, M), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor((M, S)), (-1, _gather((M, S // 2), 0, S), _tensor((M, S // 2)))),
|
|
(_tensor(()), (0, zero.clone().detach(), _tensor(()))),
|
|
)
|
|
|
|
return [SampleInput(tensor, args=args) for tensor, args in test_cases]
|
|
|
|
|
|
def sample_inputs_ravel(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),)
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_tril_triu(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
cases = (((M, M), ()),
|
|
((M, M), (2,),),
|
|
((S, M, M), ()),
|
|
((S, M, M), (2,)),
|
|
((3, 3, S, S), ()),)
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_clone(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def generator():
|
|
yield SampleInput(make_arg((S, M, S)))
|
|
yield SampleInput(make_arg(()))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_contiguous(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def generator():
|
|
yield SampleInput(make_arg((S, S)))
|
|
yield SampleInput(make_arg((S, S), noncontiguous=True))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_resize_ops(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((), ()),
|
|
((), (1, 1, 1)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, args_or_shape in cases:
|
|
# Update `args` based on operator
|
|
if op_info.name == 'resize_':
|
|
# resize_ takes shape/tuple of ints,
|
|
args = (args_or_shape, )
|
|
elif op_info.name == 'resize_as_':
|
|
# resize_as_ takes another tensor
|
|
args = (make_arg(shape, requires_grad=False), ) # type:ignore[assignment]
|
|
else:
|
|
raise ValueError("sample_inputs_resize_ops is being used with incorrect operator")
|
|
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad), args=args))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_view_reshape(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((S * S, S), (S, S, S)),
|
|
((S * S, S), (S, -1, S)),
|
|
((S * S * 2, S), (S, -1)),
|
|
((S,), (S,)),
|
|
((), ()),
|
|
((), (1,)))
|
|
|
|
def generator():
|
|
for case in cases:
|
|
shape, args = case
|
|
inp = make_arg(shape, requires_grad=requires_grad)
|
|
yield(SampleInput(inp, args=(args, )))
|
|
|
|
if op_info.name != "view" and len(shape) >= 2:
|
|
yield(SampleInput(inp.transpose(0, 1), args=(args, )))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_view_as_reshape_as(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, S, S), (S * S, S)),
|
|
((), ()),
|
|
((), (1, 1)),
|
|
)
|
|
|
|
def generator():
|
|
for case in cases:
|
|
shape, shape_other = case
|
|
inp = make_arg(shape, requires_grad=requires_grad)
|
|
yield(SampleInput(inp, args=(make_arg(shape_other, requires_grad=False),)))
|
|
|
|
if op_info.name != "view_as" and len(shape) >= 2:
|
|
yield(SampleInput(inp.transpose(0, 1), args=(make_arg(shape_other, requires_grad=False),)))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, S, S), (1, 2)),
|
|
((S, S, S), (-1, 2)),
|
|
((S, S, S), (-1, -1)),
|
|
((S, S, S), (1, -1)),
|
|
((S,), (0, 2))
|
|
)
|
|
|
|
def generator():
|
|
for shape, args in cases:
|
|
yield SampleInput(make_arg(shape), args=args)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_rbinops(op_info, device, dtype, requires_grad, supports_dtype_kwargs=True, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
scalar: Union[int, float, complex] = 3
|
|
|
|
if dtype.is_floating_point:
|
|
scalar = 3.14
|
|
elif dtype.is_complex:
|
|
scalar = 3.14j
|
|
|
|
samples = [
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(scalar,)),
|
|
SampleInput(_make_tensor_helper(()), args=(scalar,)),
|
|
]
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_expand(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
cases = (((S, 1, 1), (S, S, S)),
|
|
((S, 1, S), (S, S, S)),
|
|
((S, 1, S), (-1, S, -1)),
|
|
((S, 1, S), (-1, S, S)),
|
|
((S, 1), (S, S, S)),
|
|
((1,), (S, S, S)),
|
|
((1, S), (1, 1, S)),
|
|
((), ()),
|
|
((), (1, 3, 2)),
|
|
)
|
|
|
|
def generator():
|
|
for case in cases:
|
|
shape, args = case
|
|
yield(SampleInput(make_arg(shape), args=(args, )))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_conversion(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
shapes = ((),
|
|
(2, 3))
|
|
memory_format_options = [None, torch.preserve_format, torch.contiguous_format]
|
|
|
|
def generator():
|
|
for shape, memory_format in itertools.product(shapes, memory_format_options):
|
|
yield SampleInput(make_arg(shape),
|
|
kwargs={'memory_format': memory_format} if memory_format else {})
|
|
# Channels last case: input must be 4d
|
|
yield SampleInput(make_arg((2, 3, 2, 3)),
|
|
kwargs={'memory_format': torch.channels_last})
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_expand_as(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, 1, 1), (S, S, S)),
|
|
((), ()),
|
|
((), (1, 1)),
|
|
)
|
|
|
|
def generator():
|
|
for shape, shape_other in cases:
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad),
|
|
args=(make_arg(shape_other, requires_grad=False), )))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_where(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
def make_bool_mask(shape):
|
|
# Make sure atleast one element is nonzero,
|
|
# except for empty tensor
|
|
mask_t = make_tensor(shape, dtype=torch.bool, device=device, requires_grad=False)
|
|
|
|
if mask_t.numel() == 0:
|
|
return mask_t
|
|
elif mask_t.numel() == 1:
|
|
mask_t.fill_(True)
|
|
return mask_t
|
|
|
|
if mask_t.sum() == 0:
|
|
def random_index(shape):
|
|
return tuple(map(lambda max_idx: random.randint(0, max_idx), shape))
|
|
|
|
mask_t[random_index(mask_t.shape)] = True
|
|
return mask_t
|
|
|
|
return mask_t
|
|
|
|
cases = (((M, M), (M, M), (M, M), False),
|
|
((M, 1, M), (M, M), (M, M, 1), True),
|
|
((), (), (), False),
|
|
((M, 1, M), (), (M, M, 1), True),
|
|
((), (M, M), (), True),)
|
|
|
|
def generator():
|
|
for shape, mask_shape, other_shape, broadcasts_input in cases:
|
|
yield SampleInput(make_arg(shape),
|
|
args=(make_bool_mask(mask_shape), make_arg(other_shape)),
|
|
broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_chunk(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device)
|
|
|
|
cases = (((S, S, S), (2,)),
|
|
((S, S, S), (S, 1)),
|
|
((S, S, S), (S, -1)))
|
|
|
|
def generator():
|
|
for case in cases:
|
|
shape, args = case
|
|
yield(SampleInput(make_arg(shape, requires_grad=requires_grad), args=args))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_kthvalue(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _tensor(shape, dtype=dtype, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
test_cases = [
|
|
(_tensor((S, S, S)), (2,)),
|
|
(_tensor((S, S, S)), (2, 1,)),
|
|
(_tensor((S, S, S)), (2, -1,)),
|
|
(_tensor((S, S, S)), (2, 1, True,)),
|
|
(_tensor((S, S, S)), (2, -1, True,)),
|
|
(_tensor((S,)), (2, 0,)),
|
|
(_tensor((S,)), (2, 0, True,)),
|
|
(_tensor(()), (1,)),
|
|
(_tensor(()), (1, 0,)),
|
|
(_tensor(()), (1, 0, True))
|
|
]
|
|
|
|
return [SampleInput(tensor, args=args) for tensor, args in test_cases]
|
|
|
|
def sample_inputs_dropout(op_info, device, dtype, requires_grad, **kwargs):
|
|
input = make_tensor((S,), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(input),
|
|
SampleInput(input, kwargs=dict(p=0.0)),
|
|
SampleInput(input, kwargs=dict(p=1.0)),
|
|
SampleInput(input, kwargs=dict(training=False)),
|
|
]
|
|
|
|
def sample_inputs_one_hot(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_input(shape, *, low, high):
|
|
return make_tensor(shape, device=device, dtype=dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
shapes = ((), (S,), (L, M, S))
|
|
num_classess = (-1, 10)
|
|
|
|
return [
|
|
SampleInput(
|
|
make_input(
|
|
shape,
|
|
low=0,
|
|
high=10 if num_classes == -1 else num_classes // 2,
|
|
),
|
|
kwargs=dict(num_classes=num_classes),
|
|
)
|
|
for shape, num_classes in itertools.product(shapes, num_classess)
|
|
]
|
|
|
|
def sample_inputs_softplus(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, (S,), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(make_input()),
|
|
SampleInput(make_input(), kwargs=dict(beta=3)),
|
|
SampleInput(make_input(low=1), kwargs=dict(threshold=1)),
|
|
]
|
|
|
|
def sample_inputs_tensorinv(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_input():
|
|
input = make_fullrank_matrices_with_distinct_singular_values(12, 12, device=device, dtype=dtype)
|
|
return input.requires_grad_(requires_grad)
|
|
|
|
# lhs / rhs shape can have any number of dimensions as long as their product equals 12
|
|
shapes = [
|
|
((2, 2, 3), (12, 1)),
|
|
((4, 3), (6, 1, 2)),
|
|
]
|
|
|
|
return [
|
|
SampleInput(make_input().reshape(*shape_lhs, *shape_rhs), kwargs=dict(ind=len(shape_lhs)))
|
|
for shape_lhs, shape_rhs in shapes
|
|
]
|
|
|
|
def sample_inputs_mse_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
shapes_and_kwargs = [
|
|
((), None),
|
|
((S,), dict(reduction="mean")),
|
|
((S,), dict(reduction="sum")),
|
|
((S,), dict(reduction="none")),
|
|
((S, S), None),
|
|
((S, S, S), None),
|
|
]
|
|
|
|
return [
|
|
SampleInput(_make_tensor(shape), args=(_make_tensor(shape),), kwargs=kwargs)
|
|
for shape, kwargs in shapes_and_kwargs
|
|
]
|
|
|
|
def sample_inputs_grid_sample(op_info, device, dtype, requires_grad, **kwargs):
|
|
_make_tensor = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
batch_size = 2
|
|
num_channels = 3
|
|
modes = ("bilinear", "nearest")
|
|
align_cornerss = (False, True)
|
|
padding_modes = ("zeros", "border", "reflection")
|
|
|
|
sample_inputs = []
|
|
for dim in (2, 3):
|
|
input = _make_tensor((batch_size, num_channels, *[S] * dim))
|
|
grid = _make_tensor((batch_size, *[S] * dim, dim))
|
|
|
|
modes_ = (*modes, "bicubic") if dim == 2 else modes
|
|
|
|
for mode, padding_mode, align_corners in itertools.product(modes_, padding_modes, align_cornerss):
|
|
sample_inputs.append(
|
|
SampleInput(
|
|
input,
|
|
args=(grid,),
|
|
kwargs=dict(
|
|
mode=mode,
|
|
padding_mode=padding_mode,
|
|
align_corners=align_corners,
|
|
)
|
|
)
|
|
)
|
|
|
|
return sample_inputs
|
|
|
|
def sample_inputs_nll_loss(op_info, device, dtype, requires_grad, **kwargs):
|
|
shape = (2, 3)
|
|
num_classes = shape[1]
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_weight = partial(make_tensor, shape=(num_classes,), device=device, dtype=dtype)
|
|
|
|
def make_target(shape, zeros=False):
|
|
s = (shape[0], *shape[2:]) if len(shape) > 1 else ()
|
|
if zeros:
|
|
return torch.zeros(s, device=device, dtype=torch.long)
|
|
else:
|
|
return make_tensor(s,
|
|
low=0,
|
|
high=shape[1] if len(shape) > 1 else shape[0],
|
|
device=device,
|
|
dtype=torch.long)
|
|
|
|
|
|
def gen_shape_kwargs():
|
|
# Batched, non-batched and 2d
|
|
shapes = (shape, (num_classes,), shape + (2, 2))
|
|
reductions = ('none', 'mean', 'sum')
|
|
for reduction, s in product(reductions, shapes):
|
|
yield make_input(s), make_target(s), dict(reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(), reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(low=0), reduction=reduction)
|
|
yield make_input(s), make_target(s), dict(weight=make_weight(high=0), reduction=reduction)
|
|
t = make_target(s)
|
|
ignore = num_classes // 2
|
|
# If "mean", nll returns NaN, so it's not differentiable at those points
|
|
if t.eq(ignore).all() and reduction == "mean":
|
|
t.fill_(0)
|
|
yield make_input(s), t, dict(ignore_index=num_classes // 2, reduction=reduction)
|
|
# Test ignoring all the targets
|
|
# If "mean", nll returns NaN, so it's not differentiable at those points
|
|
if reduction != "mean":
|
|
yield make_input(s), make_target(s, zeros=True), dict(ignore_index=0, reduction=reduction)
|
|
|
|
def gen_inputs():
|
|
for input, target, kwargs in gen_shape_kwargs():
|
|
yield SampleInput(input, args=(target,), kwargs=kwargs)
|
|
|
|
return list(gen_inputs())
|
|
|
|
foreach_unary_op_db: List[OpInfo] = [
|
|
ForeachFuncInfo('exp'),
|
|
ForeachFuncInfo('acos'),
|
|
ForeachFuncInfo('asin'),
|
|
ForeachFuncInfo('atan'),
|
|
ForeachFuncInfo('cos'),
|
|
ForeachFuncInfo('cosh'),
|
|
ForeachFuncInfo('log'),
|
|
ForeachFuncInfo('log10'),
|
|
ForeachFuncInfo('log2'),
|
|
ForeachFuncInfo('tan'),
|
|
ForeachFuncInfo('tanh'),
|
|
ForeachFuncInfo('sin'),
|
|
ForeachFuncInfo('sinh'),
|
|
|
|
ForeachFuncInfo(
|
|
'neg',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex(),
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
safe_casts_outputs=False,
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'sqrt',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'ceil',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'erf',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'erfc',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'expm1',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'floor',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'log1p',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'round',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'frac',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'reciprocal',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'sigmoid',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'trunc',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
),
|
|
|
|
ForeachFuncInfo(
|
|
'abs',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
safe_casts_outputs=False,
|
|
supports_forward_ad=True,
|
|
),
|
|
]
|
|
|
|
foreach_binary_op_db: List[OpInfo] = [
|
|
ForeachFuncInfo(
|
|
"add",
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_alpha_param=True,
|
|
),
|
|
ForeachFuncInfo(
|
|
"sub",
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_alpha_param=True,
|
|
),
|
|
ForeachFuncInfo(
|
|
"mul",
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
),
|
|
ForeachFuncInfo(
|
|
"div",
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
),
|
|
]
|
|
|
|
foreach_pointwise_op_db: List[ForeachFuncInfo] = [
|
|
ForeachFuncInfo(
|
|
"addcmul",
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
),
|
|
ForeachFuncInfo(
|
|
"addcdiv",
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
),
|
|
]
|
|
|
|
foreach_minmax_op_db: List[ForeachFuncInfo] = [
|
|
ForeachFuncInfo(
|
|
"maximum",
|
|
dtypesIfCPU=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bool),
|
|
),
|
|
ForeachFuncInfo(
|
|
"minimum",
|
|
dtypesIfCPU=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bool),
|
|
),
|
|
]
|
|
|
|
def reference_sign(x):
|
|
if x.dtype == np.bool_:
|
|
# `np.sign` doesn't support `bool`.
|
|
# >>> np.sign(True)
|
|
# ufunc 'sign' did not contain a loop
|
|
# with signature matching types dtype('bool') -> dtype('bool')
|
|
return np.sign(x, dtype=np.uint8).astype(np.bool_)
|
|
return np.sign(x)
|
|
|
|
|
|
def reference_sgn(x):
|
|
# NumPy doesn't have an equivalent to `torch.sgn` when the dtype is complex.
|
|
# For complex inputs, `np.sign` returns sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.
|
|
# while `torch.sgn` returns, 0 if abs(input) == 0 else input/abs(input)
|
|
if x.dtype not in [np.complex64, np.complex128]:
|
|
return reference_sign(x)
|
|
|
|
out = (x / np.abs(x))
|
|
if out.ndim == 0:
|
|
# Handle x == 0 case
|
|
if (x == 0):
|
|
# Can't assign to np.complex object
|
|
# So make a new one.
|
|
return np.array(complex(0, 0), dtype=x.dtype)
|
|
return out
|
|
|
|
# Handle x == 0 case
|
|
mask = (x == 0)
|
|
out[mask] = complex(0, 0)
|
|
return out
|
|
|
|
|
|
def reference_sigmoid(x):
|
|
# 'scipy.special.expit' not supported for the input types
|
|
if x.dtype in [np.complex64, np.complex128]:
|
|
return (1 / (1 + np.exp(-x)))
|
|
return scipy.special.expit(x)
|
|
|
|
|
|
def reference_logsigmoid(x):
|
|
return np.where(
|
|
x < 0,
|
|
x - np.log1p(np.exp(x)),
|
|
-np.log1p(np.exp(-x)))
|
|
|
|
|
|
def reference_lgamma(x):
|
|
# scipy.special.gammaln returns `-inf` when input is `-inf`.
|
|
# While Pytorch, C and C++, all return `inf` when input is `-inf`.
|
|
# Reference:
|
|
# https://en.cppreference.com/w/cpp/numeric/math/lgamma
|
|
# https://en.cppreference.com/w/c/numeric/math/lgamma
|
|
|
|
# To handle the above discrepancy,
|
|
# we replace -inf with inf so values
|
|
# that were originally -inf map to inf as expected
|
|
if x.dtype.kind == 'f':
|
|
x = np.where(x == float('-inf'), np.array(float('inf'), dtype=x.dtype), x)
|
|
|
|
out = scipy.special.gammaln(x)
|
|
|
|
if x.dtype == np.float16:
|
|
# `scipy.special.gammaln` returns output of float32 when input is float16,
|
|
# while `torch.lgamma` preserves `float16`. But due to smaller range of float16,
|
|
# Pytorch version outputs `inf` while SciPy returns finite values.
|
|
out = out.astype(np.float16)
|
|
|
|
return out
|
|
|
|
def reference_polygamma(x, n):
|
|
# WEIRD `scipy.special.polygamma` behavior
|
|
# >>> scipy.special.polygamma(0, np.array(501, dtype=np.float32)).dtype
|
|
# dtype('float64')
|
|
# >>> scipy.special.polygamma(0, np.array([501], dtype=np.float32)).dtype
|
|
# dtype('float32')
|
|
#
|
|
# Thus we cast output to the default torch dtype.
|
|
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
return scipy.special.polygamma(n, x).astype(np_dtype)
|
|
|
|
|
|
def reference_mvlgamma(x, d):
|
|
if x.dtype == np.float16:
|
|
return scipy.special.multigammaln(x, d).astype(np.float16)
|
|
|
|
return scipy.special.multigammaln(x, d)
|
|
|
|
def reference_softplus(input, beta=1, threshold=20):
|
|
non_linear = input * beta <= threshold
|
|
output = input.copy()
|
|
output[non_linear] = np.log(1 + np.exp(beta * input[non_linear])) / beta
|
|
return output
|
|
|
|
|
|
def reference_one_hot(a: np.ndarray, num_classes: int = -1) -> np.ndarray:
|
|
if num_classes == -1:
|
|
num_classes = int(np.amax(a) + 1)
|
|
|
|
idcs = a.reshape(-1) + np.arange(0, a.size, dtype=np.int64) * num_classes
|
|
one_hot = np.zeros((a.size, num_classes), dtype=a.dtype)
|
|
np.put(one_hot, idcs, 1)
|
|
return one_hot.reshape(*a.shape, -1)
|
|
|
|
|
|
def reference_mse_loss(input, target, reduction="mean"):
|
|
se = (input - target) ** 2
|
|
if reduction == "mean":
|
|
return np.mean(se)
|
|
elif reduction == "sum":
|
|
return np.sum(se)
|
|
else: # reduction == "none"
|
|
return se
|
|
|
|
|
|
def wrapper_set_seed(op, input, *args, **kwargs):
|
|
"""Wrapper to set seed manually for some functions like dropout
|
|
See: https://github.com/pytorch/pytorch/pull/62315#issuecomment-896143189 for more details.
|
|
"""
|
|
torch.manual_seed(42)
|
|
return op(input, *args, **kwargs)
|
|
|
|
|
|
def reference_layer_norm(inp: np.ndarray, normalized_shape: Tuple[int], weight=None, bias=None, eps=1e-5):
|
|
feature_size = np.prod(normalized_shape)
|
|
inp_view = inp.reshape(-1, feature_size) # type: ignore[call-overload]
|
|
mean = inp_view.mean(axis=-1, keepdims=True)
|
|
var = inp_view.var(axis=-1, ddof=0, keepdims=True)
|
|
Y = (inp_view - mean) / np.sqrt(var + eps)
|
|
if weight is None and bias is not None:
|
|
Y = Y + bias.reshape(-1)
|
|
elif weight is not None and bias is None:
|
|
Y = Y * weight.reshape(-1)
|
|
elif weight is not None and bias is not None:
|
|
Y = Y * weight.reshape(-1) + bias.reshape(-1)
|
|
return Y.reshape(*inp.shape)
|
|
|
|
|
|
def gradcheck_wrapper_hermitian_input(op, input, *args, **kwargs):
|
|
"""Gradcheck wrapper for functions that take Hermitian matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the Hermitian property of the input.
|
|
"""
|
|
return op(input + input.conj().transpose(-2, -1), *args, **kwargs)
|
|
|
|
|
|
def gradcheck_wrapper_triangular_input(op, *args, upper=False, idx=0, **kwargs):
|
|
"""Gradcheck wrpper for functions that take lower or upper triangular matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the triangular property of the input.
|
|
`idx` is used to specific which `args[idx]` is to be triangularized.
|
|
"""
|
|
triangular_arg = args[idx].triu() if upper else args[idx].tril()
|
|
modified_args = args[:idx] + (triangular_arg,) + args[idx + 1:]
|
|
return op(*modified_args, upper)
|
|
|
|
|
|
def reference_reduction_numpy(f, supports_keepdims=True):
|
|
"""Wraps a NumPy reduction operator.
|
|
|
|
The wrapper function will forward dim and keepdim kwargs to the wrapped
|
|
function as the NumPy equivalent axis and keepdims kwargs.
|
|
|
|
Args:
|
|
f: NumPy reduction operator to wrap
|
|
supports_keepdims (bool, optional): Whether the NumPy operator accepts
|
|
keepdims parameter. If it does not, the wrapper will manually unsqueeze
|
|
the reduced dimensions if it was called with keepdim=True. Defaults to True.
|
|
|
|
Returns:
|
|
Wrapped function
|
|
"""
|
|
@wraps(f)
|
|
def wrapper(x: np.ndarray, *args, **kwargs):
|
|
# Copy keys into a set
|
|
keys = set(kwargs.keys())
|
|
|
|
dim = kwargs.pop('dim', None)
|
|
keepdim = kwargs.pop('keepdim', False)
|
|
|
|
if 'dim' in keys:
|
|
dim = tuple(dim) if isinstance(dim, Sequence) else dim
|
|
|
|
# NumPy reductions don't accept dim=0 for scalar inputs
|
|
# so we convert it to None if and only if dim is equivalent
|
|
if x.ndim == 0 and dim in {0, -1, (0,), (-1,)}:
|
|
kwargs['axis'] = None
|
|
else:
|
|
kwargs['axis'] = dim
|
|
|
|
if 'keepdim' in keys and supports_keepdims:
|
|
kwargs['keepdims'] = keepdim
|
|
|
|
result = f(x, *args, **kwargs)
|
|
|
|
# Unsqueeze reduced dimensions if NumPy does not support keepdims
|
|
if keepdim and not supports_keepdims and x.ndim > 0:
|
|
dim = list(range(x.ndim)) if dim is None else dim
|
|
result = np.expand_dims(result, dim)
|
|
|
|
return result
|
|
|
|
return wrapper
|
|
|
|
|
|
def reference_std_var(f):
|
|
"""Forwards unbiased/correction kwargs as NumPy's equivalent ddof"""
|
|
g = reference_reduction_numpy(f)
|
|
|
|
@wraps(g)
|
|
def wrapper(x: np.ndarray, *args, **kwargs):
|
|
assert not ('unbiased' in kwargs and 'correction' in kwargs)
|
|
|
|
if 'unbiased' in kwargs:
|
|
kwargs['ddof'] = int(kwargs.pop('unbiased'))
|
|
elif 'correction' in kwargs:
|
|
kwargs['ddof'] = kwargs.pop('correction')
|
|
|
|
return g(x, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def generate_std_var_kwargs(t: torch.Tensor, **kwargs):
|
|
"""Generates unbiased/correction kwargs for std/var operators"""
|
|
yield ((), {'unbiased': True})
|
|
yield ((), {'unbiased': False})
|
|
|
|
# Currently, calling std with correction is only enabled when
|
|
# both dim and keepdim are provided.
|
|
if 'dim' in kwargs and 'keepdim' in kwargs:
|
|
yield ((), {'correction': 0})
|
|
yield ((), {'correction': 1})
|
|
|
|
numel = torch.tensor(t.shape)[kwargs.get('dim')].prod()
|
|
yield ((), {'correction': numel // 2})
|
|
|
|
|
|
# Operator database (sorted alphabetically)
|
|
op_db: List[OpInfo] = [
|
|
UnaryUfuncInfo('abs',
|
|
aliases=('absolute', ),
|
|
ref=np.abs,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49224
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.int8], active_if=TEST_WITH_ASAN),
|
|
# TODO: Fix test_out_arg_all_dtypes as torch.empty_like(expected_output) where expected_output=op(input)
|
|
# We can break the logic of the loop over all possible types but it is OK.
|
|
# https://github.com/pytorch/pytorch/blob/master/test/test_unary_ufuncs.py#L440-L449
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True),
|
|
# NOTE: CPU complex acos produces incorrect outputs (https://github.com/pytorch/pytorch/issues/42952)
|
|
UnaryUfuncInfo('acos',
|
|
aliases=('arccos', ),
|
|
ref=np.arccos,
|
|
domain=(-1, 1),
|
|
handles_complex_extremals=False,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
# "rsqrt_cpu" not implemented for 'BFloat16'
|
|
backward_dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-1,
|
|
torch.complex64: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_method_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_inplace_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_inplace_forward_mode_AD',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
)),
|
|
# NOTE: the derivative for inplace acosh is not implemented
|
|
UnaryUfuncInfo('acosh',
|
|
aliases=('arccosh', ),
|
|
ref=np.arccosh,
|
|
domain=(1, None),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
# "rsqrt_cuda" not implemented for 'BFloat16'
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50692
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_method_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=[torch.cdouble]),
|
|
)),
|
|
BinaryUfuncInfo('add',
|
|
# NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate
|
|
ref=lambda input, other, *, alpha=1: np.add(input, np.multiply(alpha, other)),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=partial(sample_inputs_add_sub, alpha=2),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True),
|
|
BinaryUfuncInfo('mul',
|
|
aliases=('multiply',),
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16, torch.bool),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_binary_pwise),
|
|
BinaryUfuncInfo('sub',
|
|
# NumPy has no builtin reference for the alpha kwarg, but it is easy enough to emulate
|
|
ref=lambda input, other, *, alpha=1: np.subtract(input, np.multiply(alpha, other)),
|
|
aliases=('subtract',),
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=partial(sample_inputs_add_sub, alpha=2),
|
|
supports_inplace_autograd=False),
|
|
OpInfo('addmm',
|
|
# This addmm OpInfo is for when alpha and beta are not both equal to 1.
|
|
# alpha=beta=1 is tested in the following opinfo, because that special case will
|
|
# trigger addmm being decomposed by a jit pass.
|
|
dtypes=floating_and_complex_types_and(torch.float16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_addmm),
|
|
OpInfo('addmm',
|
|
# When alpha=beta=1 as compile-time constants, JIT will decompose addmm into mm and add.
|
|
variant_test_name='decomposed',
|
|
dtypes=floating_and_complex_types_and(torch.float16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
autodiff_nonfusible_nodes=['aten::add', 'aten::mm'],
|
|
sample_inputs_func=partial(sample_inputs_addmm, alpha=1, beta=1)),
|
|
OpInfo('addmv',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.half),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_addmv),
|
|
OpInfo('addbmm',
|
|
ref=lambda M, batch1, batch2, beta=1, alpha=1: np.add(np.multiply(np.asarray(beta, dtype=M.dtype), M),
|
|
np.multiply(np.asarray(alpha, dtype=batch1.dtype),
|
|
np.sum(np.matmul(batch1, batch2), axis=0))),
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if SM53OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.half),
|
|
backward_dtypesIfROCM=floating_types_and(torch.half),
|
|
supports_forward_ad=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1.3e-05, rtol=1.3e-05),
|
|
torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestCommon', 'test_reference_testing')],
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+
|
|
# and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', active_if=IS_WINDOWS),
|
|
# addbmm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# https://github.com/pytorch/pytorch/issues/55907
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_addbmm),
|
|
OpInfo('baddbmm',
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16,
|
|
*[torch.bfloat16] if SM53OrLater else [],
|
|
torch.complex64, torch.complex128),
|
|
supports_forward_ad=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda'),
|
|
DecorateInfo(
|
|
toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestMathBits', 'test_conj_view', device_type='cuda')],
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+
|
|
# and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', active_if=IS_WINDOWS),
|
|
),
|
|
sample_inputs_func=sample_inputs_baddbmm),
|
|
OpInfo('dot',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_dot_vdot,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('vdot',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=sample_inputs_dot_vdot,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('bmm',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if SM53OrLater else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# FIXME: bfloat16 backward support likely depends on CUDA11+
|
|
# and SM53+
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes', active_if=IS_WINDOWS),
|
|
),
|
|
sample_inputs_func=sample_inputs_bmm),
|
|
OpInfo('mv',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
skips=(
|
|
# bmm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_mv),
|
|
OpInfo('addr',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
backward_dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16)),
|
|
),
|
|
sample_inputs_func=sample_inputs_addr,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('addcmul',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
OpInfo('addcdiv',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
UnaryUfuncInfo('asin',
|
|
aliases=('arcsin', ),
|
|
ref=np.arcsin,
|
|
domain=(-1, 1),
|
|
supports_sparse=True,
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float16: tol(atol=1e-05, rtol=1e-03)}),
|
|
'TestUnaryUfuncs', device_type='cuda'),
|
|
precisionOverride({torch.bfloat16: 1e-2}),
|
|
],
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
# NOTE: derivative for inplace asinh is not implemented
|
|
UnaryUfuncInfo('asinh',
|
|
aliases=('arcsinh', ),
|
|
ref=np.arcsinh,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Complex gradcheck tests asinh at points 0 + ix for x > 1 which are points
|
|
# where asinh is not differentiable
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD',
|
|
dtypes=complex_types()),
|
|
)),
|
|
UnaryUfuncInfo('atan',
|
|
aliases=('arctan', ),
|
|
ref=np.arctan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('atan2',
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_atan2,
|
|
),
|
|
UnaryUfuncInfo('atanh',
|
|
aliases=('arctanh', ),
|
|
ref=np.arctanh,
|
|
domain=(-1, 1),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cfloat],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('broadcast_to',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_broadcast_to),
|
|
OpInfo('broadcast_tensors',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_broadcast_tensors),
|
|
OpInfo('block_diag',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_block_diag),
|
|
OpInfo('bitwise_and',
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_binary_pwise),
|
|
UnaryUfuncInfo('bitwise_not',
|
|
ref=np.bitwise_not,
|
|
dtypes=integral_types_and(torch.bool),
|
|
supports_autograd=False),
|
|
OpInfo('bitwise_left_shift',
|
|
op=torch.bitwise_left_shift,
|
|
dtypesIfCPU=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_bitwise_shift),
|
|
OpInfo('bitwise_right_shift',
|
|
op=torch.bitwise_right_shift,
|
|
dtypesIfCPU=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_bitwise_shift),
|
|
OpInfo('cdist',
|
|
dtypes=floating_types(),
|
|
supports_out=False,
|
|
supports_gradgrad=False,
|
|
assert_autodiffed=False,
|
|
sample_inputs_func=sample_inputs_cdist,
|
|
),
|
|
UnaryUfuncInfo('ceil',
|
|
ref=np.ceil,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck for complex generates invalid inputs for this function
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', dtypes=complex_types()),)),
|
|
OpInfo('cholesky_inverse',
|
|
dtypes=floating_and_complex_types(),
|
|
backward_dtypes=floating_types(),
|
|
# TODO: RuntimeError: cholesky_inverse does not support automatic differentiation for outputs
|
|
# with complex dtype.
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky_inverse,
|
|
gradcheck_wrapper=gradcheck_wrapper_triangular_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# TODO: FIXME: cholesky_inverse throws an error in forward when requires_grad=True
|
|
# for complex tensors
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# cholesky_inverse does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),)),
|
|
OpInfo('cholesky_solve',
|
|
op=torch.cholesky_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_cholesky_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs),
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cholesky_solve does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# Gradcheck for complex generates invalid inputs for this function, i.e. NaNs.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', dtypes=complex_types()),)),
|
|
OpInfo('chunk',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_chunk,
|
|
supports_out=False),
|
|
OpInfo('clone',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_clone,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('contiguous',
|
|
op=lambda x, *args, **kwargs: x.contiguous(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_contiguous,
|
|
supports_forward_ad=True,
|
|
autodiff_fusible_nodes=['aten::contiguous'],
|
|
assert_jit_shape_analysis=True,
|
|
supports_out=False),
|
|
OpInfo('symeig',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_symeig,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
# NOTE: clamp has seperate opinfos for scalar min/max (unary op) vs. tensors
|
|
OpInfo('clamp',
|
|
aliases=('clip',),
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_clamp),
|
|
UnaryUfuncInfo('clamp',
|
|
variant_test_name='scalar',
|
|
aliases=('clip', ),
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2, torch.float16: 1e-2}),),
|
|
ref=np.clip,
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54841
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
),
|
|
sample_kwargs=sample_kwargs_clamp_scalar,
|
|
sample_inputs_func=sample_inputs_clamp_scalar),
|
|
UnaryUfuncInfo('positive',
|
|
ref=np.positive,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
),
|
|
UnaryUfuncInfo('conj',
|
|
ref=np.conj,
|
|
dtypes=all_types_and_complex_and(torch.bool,
|
|
torch.bfloat16, torch.half),
|
|
supports_sparse=True,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('conj_physical',
|
|
ref=np.conj,
|
|
dtypes=all_types_and_complex_and(torch.bool,
|
|
torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError: inputSet && outputSet
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":118,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, )),
|
|
)),
|
|
OpInfo('resolve_conj',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('resolve_neg',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('view_as_real',
|
|
dtypes=complex_types(),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_view_as_real,
|
|
test_conjugated_samples=False,
|
|
),
|
|
OpInfo('view_as_complex',
|
|
dtypes=floating_types_and(torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_view_as_complex),
|
|
OpInfo('complex',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_complex,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('copysign',
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_copysign,
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('corrcoef',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=sample_inputs_corrcoef,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('cos',
|
|
ref=np.cos,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
UnaryUfuncInfo('cosh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.cosh),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
OpInfo('cov',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=sample_inputs_cov,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# JIT test not working for tensor kwargs (https://github.com/pytorch/pytorch/issues/58507)
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.cov(i0, correction=0, fweights=None, aweights=tensor([0.0518, 0.4681], dtype=torch.float32, requires_grad=True)) # noqa: B950
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('cross',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half),
|
|
sample_inputs_func=sample_inputs_cross,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# AssertionError: UserWarning not triggered :
|
|
# Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('cumsum',
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# cumsum does not handle correctly out= dtypes
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
),
|
|
sample_inputs_func=sample_inputs_cumulative_ops),
|
|
OpInfo('cumprod',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# cumprod does not handle correctly out= dtypes
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out',
|
|
dtypes=[torch.float32]),
|
|
),
|
|
# gradgradcheck fails in fast_mode=True: #56275
|
|
sample_inputs_func=sample_inputs_cumprod,
|
|
gradcheck_fast_mode=False),
|
|
OpInfo('cummax',
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False),
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('cummin',
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False),
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
UnaryUfuncInfo('deg2rad',
|
|
ref=np.radians,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
),
|
|
safe_casts_outputs=True),
|
|
OpInfo('diff',
|
|
op=torch.diff,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_diff),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='no_rounding_mode',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_binary_pwise,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True)),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='trunc_rounding',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_binary_pwise, rounding_mode="trunc"),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True)),
|
|
BinaryUfuncInfo('div',
|
|
aliases=('divide',),
|
|
variant_test_name='floor_rounding',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_binary_pwise, rounding_mode="floor"),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True)),
|
|
BinaryUfuncInfo('true_divide',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_binary_pwise,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True)),
|
|
UnaryUfuncInfo('exp',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50093#pullrequestreview-561791547
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48010
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True),
|
|
OpInfo('expand',
|
|
op=lambda self, shape: self.expand(shape),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_expand,
|
|
supports_forward_ad=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_out=False),
|
|
OpInfo('expand_as',
|
|
op=lambda self, other: self.expand_as(other),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_expand_as,
|
|
supports_out=False),
|
|
OpInfo('diag',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_diag),
|
|
OpInfo('diag_embed',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_diagonal_diag_embed),
|
|
OpInfo('diagonal',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_diagonal_diag_embed),
|
|
OpInfo('eq',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('fmax',
|
|
op=torch.fmax,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
OpInfo('fmin',
|
|
op=torch.fmin,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
OpInfo('fmod',
|
|
ref=np.fmod,
|
|
dtypes=all_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_fmod_remainder),
|
|
OpInfo('fmod',
|
|
ref=np.fmod,
|
|
variant_test_name='autodiffed',
|
|
dtypes=all_types_and(torch.float16, torch.bool),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=partial(sample_inputs_fmod_remainder, autodiffed=True)),
|
|
OpInfo('remainder',
|
|
ref=np.remainder,
|
|
dtypesIfCPU=all_types_and(torch.float16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_fmod_remainder),
|
|
OpInfo('remainder',
|
|
ref=np.remainder,
|
|
variant_test_name='autodiffed',
|
|
dtypesIfCPU=all_types_and(torch.float16, torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bool, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=partial(sample_inputs_fmod_remainder, autodiffed=True)),
|
|
UnaryUfuncInfo('frac',
|
|
ref=lambda x: np.modf(x)[0],
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
# Reference for disabling extremals
|
|
# https://github.com/pytorch/pytorch/issues/51948
|
|
handles_extremals=False),
|
|
SpectralFuncInfo('fft.fft',
|
|
aten_name='fft_fft',
|
|
ref=np.fft.fft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types()),
|
|
SpectralFuncInfo('fft.fft2',
|
|
aten_name='fft_fft2',
|
|
ref=np.fft.fft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
decorators=[precisionOverride(
|
|
{torch.float: 1e-4, torch.cfloat: 1e-4})],),
|
|
SpectralFuncInfo('fft.fftn',
|
|
aten_name='fft_fftn',
|
|
ref=np.fft.fftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
decorators=[precisionOverride(
|
|
{torch.float: 1e-4, torch.cfloat: 1e-4})],),
|
|
SpectralFuncInfo('fft.hfft',
|
|
aten_name='fft_hfft',
|
|
ref=np.fft.hfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.hfft2',
|
|
aten_name='fft_hfft2',
|
|
ref=scipy.fft.hfft2 if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4, torch.cfloat: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.hfftn',
|
|
aten_name='fft_hfftn',
|
|
ref=scipy.fft.hfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4, torch.cfloat: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.rfft',
|
|
aten_name='fft_rfft',
|
|
ref=np.fft.rfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.rfft2',
|
|
aten_name='fft_rfft2',
|
|
ref=np.fft.rfft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[precisionOverride({torch.float: 1e-4})],),
|
|
SpectralFuncInfo('fft.rfftn',
|
|
aten_name='fft_rfftn',
|
|
ref=np.fft.rfftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[precisionOverride({torch.float: 1e-4})],),
|
|
SpectralFuncInfo('fft.ifft',
|
|
aten_name='fft_ifft',
|
|
ref=np.fft.ifft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types()),
|
|
SpectralFuncInfo('fft.ifft2',
|
|
aten_name='fft_ifft2',
|
|
ref=np.fft.ifft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.ifftn',
|
|
aten_name='fft_ifftn',
|
|
ref=np.fft.ifftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.ihfft',
|
|
aten_name='fft_ihfft',
|
|
ref=np.fft.ihfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_types(),
|
|
check_batched_grad=False),
|
|
SpectralFuncInfo('fft.ihfft2',
|
|
aten_name='fft_ihfft2',
|
|
ref=scipy.fft.ihfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.ihfftn',
|
|
aten_name='fft_ihfftn',
|
|
ref=scipy.fft.ihfftn if has_scipy_fft else None,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 2e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.irfft',
|
|
aten_name='fft_irfft',
|
|
ref=np.fft.irfft,
|
|
ndimensional=SpectralFuncType.OneD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.irfft2',
|
|
aten_name='fft_irfft2',
|
|
ref=np.fft.irfft2,
|
|
ndimensional=SpectralFuncType.TwoD,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
SpectralFuncInfo('fft.irfftn',
|
|
aten_name='fft_irfftn',
|
|
ref=np.fft.irfftn,
|
|
ndimensional=SpectralFuncType.ND,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4}),
|
|
'TestFFT', 'test_reference_nd')],
|
|
),
|
|
UnaryUfuncInfo('floor',
|
|
ref=np.floor,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('flip',
|
|
op=torch.flip,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_flip,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('fliplr',
|
|
op=torch.fliplr,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('flipud',
|
|
op=torch.flipud,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('i0',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(
|
|
scipy.special.i0) if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.i0',),
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 5e-1}),),
|
|
backward_dtypesIfCPU=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types(),
|
|
backward_dtypesIfROCM=floating_types(),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_i0_i1),
|
|
UnaryUfuncInfo('special.i0e',
|
|
aten_name='special_i0e',
|
|
ref=scipy.special.i0e if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 3e-1}),),
|
|
backward_dtypesIfCPU=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types(),
|
|
backward_dtypesIfROCM=floating_types(),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('special.i1',
|
|
aten_name='special_i1',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(scipy.special.i1) if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float: 1e-4}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('special.i1e',
|
|
aten_name='special_i1e',
|
|
ref=scipy.special.i1e if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_i0_i1,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('special.ndtr',
|
|
aten_name='special_ndtr',
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-3,
|
|
torch.float16: 5e-4}),),
|
|
ref=scipy.special.ndtr if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
safe_casts_outputs=True),
|
|
BinaryUfuncInfo('floor_divide',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_binary_pwise,
|
|
supports_autograd=False,
|
|
rhs_make_tensor_kwargs=dict(exclude_zero=True),
|
|
),
|
|
UnaryUfuncInfo('frexp',
|
|
op=torch.frexp,
|
|
ref=np.frexp,
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.half, torch.bfloat16),
|
|
# skip testing torch.frexp as it is not supported by ROCm platform yet
|
|
decorators=[skipCUDAIfRocm],
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# skips below tests as torch.frexp returns tuple-like (mantissa, exponent) as outputs,
|
|
# while theses tests currently requires output to a single tensor.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_batch_vs_slicing'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_every_other'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_contig_vs_transposed'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_non_contig_expand'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency'),
|
|
|
|
# skips test_reference_numerics due to error in Windows CI.
|
|
# The np.frexp returns exponent as np.intc dtype on Windows platform,
|
|
# and np.intc does not have the correspond torch dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('ge',
|
|
aliases=('greater_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('geqrf',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCPU=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_geqrf,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],),
|
|
OpInfo('gt',
|
|
aliases=('greater',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
UnaryUfuncInfo('imag',
|
|
ref=np.imag,
|
|
dtypes=complex_types(),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
OpInfo('gradient',
|
|
dtypes=floating_and_complex_types_and(torch.int8, torch.int16,
|
|
torch.int32, torch.int64,
|
|
torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# following tests give a runtime error with undefined value tensor
|
|
# see discussion : https://github.com/pytorch/pytorch/issues/56660
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32, torch.complex64)), # noqa: B950
|
|
),
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=sample_inputs_gradient),
|
|
OpInfo('inverse',
|
|
op=torch.inverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('isin',
|
|
dtypesIfCPU=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.half),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_isin),
|
|
OpInfo('kthvalue',
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_kthvalue),
|
|
OpInfo('le',
|
|
aliases=('less_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('linalg.det',
|
|
op=torch.linalg.det,
|
|
aliases=('det', ),
|
|
dtypes=floating_and_complex_types(),
|
|
backward_dtypes=floating_and_complex_types(),
|
|
aten_name='linalg_det',
|
|
sample_inputs_func=sample_inputs_linalg_det,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
supports_inplace_autograd=False),
|
|
OpInfo('linalg.det',
|
|
op=torch.linalg.det,
|
|
variant_test_name='singular',
|
|
aliases=('det', ),
|
|
dtypes=double_types(),
|
|
backward_dtypes=double_types(),
|
|
aten_name='linalg_det',
|
|
sample_inputs_func=sample_inputs_linalg_det_singular,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# Will be removed once https://github.com/pytorch/pytorch/issues/62328 is fixed
|
|
# Probable fix (open PR): https://github.com/pytorch/pytorch/pull/62570
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad', device_type='cuda',
|
|
dtypes=(torch.complex128,)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
# This test fails because singular inputs cannot be reliably
|
|
# generated unless we're using double types
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', 'test_unsupported_dtypes'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOpInfo', 'test_unsupported_backward',
|
|
dtypes=(torch.float32, torch.complex64,)),
|
|
)),
|
|
OpInfo('linalg.cholesky',
|
|
aten_name='linalg_cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: RuntimeError: While computing batched gradients,
|
|
# got: vmap: Calling Tensor.as_strided is not supported
|
|
# unless the batch dims being vmapped over are at the front of the tensor (in memory layout).
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck for complex generates invalid inputs for this function
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', dtypes=complex_types()),),
|
|
),
|
|
OpInfo('linalg.cholesky_ex',
|
|
aten_name='linalg_cholesky_ex',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck for complex generates invalid inputs for this function
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', dtypes=complex_types()),),
|
|
),
|
|
OpInfo('linalg.cond',
|
|
aten_name='linalg_cond',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_cond,
|
|
check_batched_gradgrad=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
),
|
|
OpInfo('linalg.eig',
|
|
aten_name='linalg_eig',
|
|
op=torch.linalg.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_eig,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.eigvals',
|
|
aten_name='linalg_eigvals',
|
|
op=torch.linalg.eigvals,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.eigh',
|
|
aten_name='linalg_eigh',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_eigh,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck for complex hangs for this function, therefore it raises NotImplementedError for now
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', dtypes=complex_types()),),
|
|
),
|
|
OpInfo('linalg.eigvalsh',
|
|
aten_name='linalg_eigvalsh',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_eigh,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck hangs for this function
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),),
|
|
),
|
|
OpInfo('linalg.householder_product',
|
|
aten_name='linalg_householder_product',
|
|
op=torch.linalg.householder_product,
|
|
aliases=('orgqr', ),
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: backward uses in-place operations that vmap doesn't like
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_householder_product,
|
|
decorators=[skipCUDAIfNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.lstsq',
|
|
aten_name='linalg_lstsq',
|
|
op=torch.linalg.lstsq,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_linalg_lstsq,
|
|
supports_autograd=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.matrix_power',
|
|
aliases=('matrix_power',),
|
|
aten_name='linalg_matrix_power',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
sample_inputs_func=sample_inputs_linalg_matrix_power,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('linalg.multi_dot',
|
|
# Need this lambda because gradcheck does not work with TensorList inputs
|
|
aten_name='linalg_multi_dot',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
supports_inplace_autograd=False,
|
|
# Batched grad checks fail for empty input tensors (see https://github.com/pytorch/pytorch/issues/53407)
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_multi_dot,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
),
|
|
OpInfo('linalg.norm',
|
|
op=torch.linalg.norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_norm,
|
|
aten_name='linalg_norm',
|
|
skips=(
|
|
# linalg.norm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.matrix_norm',
|
|
aten_name='linalg_matrix_norm',
|
|
dtypes=floating_and_complex_types(),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_matrix_norm,
|
|
skips=(
|
|
# linalg.matrix_norm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.qr',
|
|
aten_name='linalg_qr',
|
|
op=torch.linalg.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
# batched gradients do not work for empty inputs
|
|
# https://github.com/pytorch/pytorch/issues/50743#issuecomment-767376085
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_qr,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.slogdet',
|
|
aten_name='linalg_slogdet',
|
|
op=torch.linalg.slogdet,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_slogdet,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.vector_norm',
|
|
op=torch.linalg.vector_norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_vector_norm,
|
|
aten_name='linalg_vector_norm',
|
|
skips=(
|
|
# linalg.vector_norm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
UnaryUfuncInfo('log',
|
|
ref=np.log,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
UnaryUfuncInfo('log10',
|
|
ref=np.log10,
|
|
domain=(0, None),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
UnaryUfuncInfo('log1p',
|
|
ref=np.log1p,
|
|
aliases=('special.log1p',),
|
|
domain=(-1, None),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('log2',
|
|
ref=np.log2,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
)),
|
|
OpInfo('logaddexp',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_types_and(torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), device, dtype, requires_grad=requires_grad),)),)),
|
|
OpInfo('logaddexp2',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16),
|
|
dtypesIfROCM=floating_types_and(torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), device, dtype, requires_grad=requires_grad),)),)),
|
|
UnaryUfuncInfo('logical_not',
|
|
ref=np.logical_not,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# The function variant always returns BoolTensor
|
|
# while the inplace variant preserves the input dtype.
|
|
# >>> t = torch.randn(3)
|
|
# >>> torch.logical_not(t)
|
|
# tensor([False, False, False])
|
|
# >>> torch.logical_not(t).dtype
|
|
# torch.bool
|
|
# >>> t.logical_not_().dtype
|
|
# torch.float32
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_variant_consistency',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
)),
|
|
OpInfo('lt',
|
|
aliases=('less',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('lu',
|
|
op=torch.lu,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
# we use in-place operations which cannot be avoided.
|
|
# This causes vmap failures, hence we skip batched gradient checks
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_lu,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# we skip jit tests because `lu` is a torch function
|
|
# RuntimeError:
|
|
# 'Tensor (inferred)' object has no attribute or method 'lu'.:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return i0.lu(True, True)
|
|
# ~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('lu_solve',
|
|
op=torch.lu_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_lu_solve,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('lu_unpack',
|
|
op=torch.lu_unpack,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
# we use in-place operations which cannot be avoided.
|
|
# This causes vmap failures, hence we skip batched gradient checks
|
|
check_batched_grad=False,
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_lu_unpack,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad', device_type='cuda'),
|
|
)),
|
|
OpInfo('masked_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_fill,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('masked_scatter',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_scatter,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
OpInfo('masked_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_masked_select),
|
|
OpInfo('matrix_exp',
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=sample_inputs_matrix_exp,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('matmul',
|
|
aliases=('linalg.matmul',),
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if (SM60OrLater and CUDA11OrLater) else []),
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
sample_inputs_func=sample_inputs_matmul,
|
|
skips=(
|
|
# matmul does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('max',
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# max does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),)),
|
|
OpInfo('max',
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim,),
|
|
OpInfo('median',
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
# TODO: some signatures of median do support out
|
|
supports_out=False,
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)),
|
|
OpInfo('nanmedian',
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
# TODO: some signatures of nanmedian do support out
|
|
supports_out=False,
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False)),
|
|
OpInfo('var_mean',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False),
|
|
backward_dtypes=floating_types_and(torch.half),
|
|
backward_dtypesIfCPU=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.half),
|
|
# TODO: some signatures of var_mean do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: FIXME: complex inputs requiring grad error in forward
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# TODO: review with var_mean tests in test_autograd.py
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'))),
|
|
OpInfo('std_mean',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_reduction, supports_multiple_dims=False),
|
|
backward_dtypes=floating_types_and(torch.half),
|
|
backward_dtypesIfCPU=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.half),
|
|
# TODO: some signatures of std_mean do support out
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: FIXME: complex inputs requiring grad error in forward
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# TODO: fix along with var_mean autograd tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'))),
|
|
OpInfo('meshgrid',
|
|
variant_test_name='variadic_tensors',
|
|
ref=np.meshgrid,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16),
|
|
sample_inputs_func=partial(sample_inputs_meshgrid, variant='variadic'),
|
|
skips=[
|
|
# JIT does not support variadic tensors.
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# meshgrid is defined in torch.functional to take a
|
|
# variadic list of tensors. Variadic parameters are not
|
|
# compatible with the normalize operator tests.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
],
|
|
supports_out=False,
|
|
supports_forward_ad=True),
|
|
OpInfo('meshgrid',
|
|
variant_test_name='list_of_tensors',
|
|
# Unlike the variant above, we do not use np.meshgrid as a
|
|
# ref since it does not officially support list of numpy
|
|
# arrays.
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool, torch.float16),
|
|
sample_inputs_func=partial(sample_inputs_meshgrid, variant='list'),
|
|
skips=[
|
|
# meshgrid is defined in torch.functional to take a
|
|
# variadic list of tensors. Variadic parameters are not
|
|
# compatible with the normalize operator tests.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestNormalizeOperators', 'test_normalize_operator_exhaustive'),
|
|
],
|
|
assert_autodiffed=True,
|
|
supports_out=False,
|
|
autodiff_nonfusible_nodes=[],
|
|
supports_forward_ad=True),
|
|
OpInfo('min',
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# min does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('min',
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim,),
|
|
OpInfo('quantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile),
|
|
OpInfo('nanquantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile),
|
|
BinaryUfuncInfo(
|
|
'max',
|
|
aliases=('maximum',),
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
ref=np.maximum,
|
|
skips=(
|
|
# FIXME: maximum does not accept scalar inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_broadcast_python_scalar'),
|
|
),
|
|
),
|
|
BinaryUfuncInfo(
|
|
'maximum',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
ref=np.maximum,
|
|
skips=(
|
|
# FIXME: maximum does not accept scalar inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_broadcast_python_scalar'),
|
|
),
|
|
),
|
|
BinaryUfuncInfo(
|
|
'min',
|
|
aliases=('minimum',),
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
ref=np.minimum,
|
|
skips=(
|
|
# FIXME: min does not accept scalar inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_broadcast_python_scalar'),
|
|
),
|
|
),
|
|
BinaryUfuncInfo(
|
|
'minimum',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
ref=np.minimum,
|
|
skips=(
|
|
# FIXME: minimum does not accept scalar inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestBinaryUfuncs', 'test_broadcast_python_scalar'),
|
|
),
|
|
),
|
|
# `softmax` supports different dtypes based on whether `dtype` argument,
|
|
# is passed or not. Hence two OpInfo entries, one with dtype and other without.
|
|
OpInfo('softmax',
|
|
aliases=('special.softmax', 'nn.functional.softmax',),
|
|
aten_name='softmax',
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_softmax_variant,
|
|
assert_jit_shape_analysis=True,
|
|
assert_autodiffed=True,
|
|
supports_out=False),
|
|
OpInfo('softmax',
|
|
aliases=('special.softmax', 'nn.functional.softmax',),
|
|
variant_test_name="with_dtype",
|
|
aten_name='softmax',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True),
|
|
assert_autodiffed=True,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.normalize',
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_normalize),
|
|
OpInfo('aminmax',
|
|
ref=lambda x, dim=None, keepdim=False: (np.amin(x, axis=dim, keepdims=keepdim), np.amax(x, axis=dim, keepdims=keepdim)),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
decorators=(onlyOnCPUAndCUDA,),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_aminmax,
|
|
skips=(
|
|
# FIXME: aminmax does not check for safe casting to output
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('nn.functional.cosine_similarity',
|
|
aten_name="cosine_similarity",
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_cosine_similarity),
|
|
OpInfo('nn.functional.adaptive_avg_pool2d',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
skips=(
|
|
# RuntimeError:
|
|
# adaptive_avg_pool2d(Tensor input, int[2] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, int]'. :
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_avg_pool2d(i0, (None, 7))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool2d),
|
|
OpInfo('nn.functional.adaptive_avg_pool1d',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
skips=(
|
|
# RuntimeError:
|
|
# adaptive_avg_pool3d(Tensor input, int[3] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, NoneType]'. :
|
|
# File "<string>", line 3
|
|
#
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_avg_pool2d(i0, (None, None, None))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
#
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool1d),
|
|
OpInfo('nn.functional.adaptive_avg_pool3d',
|
|
dtypesIfCPU=floating_types_and(torch.half),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
skips=(
|
|
# RuntimeError:
|
|
# adaptive_avg_pool3d(Tensor input, int[3] output_size) -> (Tensor):
|
|
# Expected a value of type 'List[int]' for argument 'output_size' but
|
|
# instead found type 'Tuple[NoneType, NoneType, NoneType]'. :
|
|
# File "<string>", line 3
|
|
#
|
|
# def the_method(i0):
|
|
# return torch.nn.functional.adaptive_avg_pool3d(i0, (None, None, None))
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
#
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_adaptive_avg_pool3d),
|
|
OpInfo('nn.functional.avg_pool1d',
|
|
aten_name='avg_pool1d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
dtypesIfCPU=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_avgpool1d),
|
|
OpInfo('nn.functional.avg_pool3d',
|
|
aten_name='avg_pool3d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
dtypesIfCPU=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=sample_inputs_avgpool3d),
|
|
OpInfo('nn.functional.relu',
|
|
aten_name="relu",
|
|
supports_autograd=True,
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_nn_activation_relu,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.conv_transpose2d',
|
|
aten_name='conv_transpose2d',
|
|
aliases=('conv_transpose2d',),
|
|
dtypesIfCPU=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=sample_inputs_conv_transpose2d,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1.3e-06), }),
|
|
'TestCommon', 'test_variant_consistency_eager', device_type='cuda')],
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":104, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.conv2d',
|
|
aliases=('conv2d',),
|
|
aten_name='conv2d',
|
|
dtypes=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
sample_inputs_func=partial(sample_inputs_conv2d),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: !lhs.isAliasOf(rhs)INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":103, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False,),
|
|
OpInfo('nn.functional.layer_norm',
|
|
aten_name='layer_norm',
|
|
aliases=('layer_norm',),
|
|
ref=reference_layer_norm,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.float32: tol(atol=1e-05, rtol=1e-03)}),
|
|
'TestCommon', 'test_reference_testing'
|
|
)
|
|
],
|
|
sample_inputs_func=sample_inputs_layer_norm,),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='constant',
|
|
aten_name='constant_pad_nd',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='constant'),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='reflect',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='reflect'),
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='replicate',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='replicate'),
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False),
|
|
OpInfo('nn.functional.pad',
|
|
variant_test_name='circular',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_nn_pad, mode='circular'),
|
|
supports_forward_ad=True,
|
|
check_batched_grad=False,
|
|
skips=(
|
|
# Doesn't have a corresponding aten operator.
|
|
# RuntimeError: falseINTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185, please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.float32,)),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.hardswish',
|
|
aten_name="hardswish",
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_hardswish,
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
autodiff_nonfusible_nodes=["aten::hardswish"]),
|
|
OpInfo('nn.functional.unfold',
|
|
aten_name='im2col',
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_nn_unfold,
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='nearest',
|
|
supports_autograd=True,
|
|
dtypesIfCPU=floating_types_and(torch.uint8),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.uint8),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'nearest'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='linear',
|
|
supports_autograd=True,
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'linear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='bilinear',
|
|
supports_autograd=True,
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'bilinear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='bicubic',
|
|
supports_autograd=True,
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'bicubic'),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='trilinear',
|
|
supports_autograd=True,
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'trilinear'),
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.interpolate',
|
|
aten_name="interpolate",
|
|
variant_test_name='area',
|
|
supports_autograd=True,
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_interpolate, 'area'),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
skips=(
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":185,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
supports_out=False),
|
|
OpInfo('nn.functional.leaky_relu',
|
|
aliases=None,
|
|
aten_name="leaky_relu",
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_leaky_relu,
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=["aten::leaky_relu"]),
|
|
OpInfo('nn.functional.avg_pool2d',
|
|
aten_name='avg_pool2d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
dtypesIfCPU=floating_types_and(torch.int64),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_avgpool2d),
|
|
OpInfo('nn.functional.max_pool2d',
|
|
aten_name='max_pool2d',
|
|
supports_autograd=True,
|
|
supports_out=False,
|
|
assert_jit_shape_analysis=True,
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_scripting=False, # TODO: fix aliasing test
|
|
sample_inputs_func=sample_inputs_max_pool2d),
|
|
OpInfo('nn.functional.linear',
|
|
aten_name='linear',
|
|
supports_autograd=True,
|
|
sample_inputs_func=sample_inputs_linear,
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.float16,
|
|
*[torch.bfloat16] if CUDA11OrLater else []),
|
|
# linear calls mm under the hood which is nondeterministic on CUDA
|
|
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo(
|
|
'nn.functional.logsigmoid',
|
|
aten_name="log_sigmoid",
|
|
ref=reference_logsigmoid,
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=False,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
),
|
|
OpInfo('nextafter',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_nextafter),
|
|
OpInfo('topk',
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_topk,
|
|
skips=(
|
|
# Topk is not raising a warning when the out is resized
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
# Multiple variants for batch_norm to test with and without cuDNN disabled
|
|
# See https://github.com/pytorch/pytorch/pull/63218#discussion_r688549391 for more details
|
|
OpInfo('nn.functional.batch_norm',
|
|
aten_name='batch_norm',
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError: deepEquals(input.iValue, deepCopiedInput) INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":142, please report a bug to PyTorch
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_inputs_func=sample_inputs_batch_norm),
|
|
# This variant tests batch_norm with cuDNN disabled only on CUDA devices
|
|
OpInfo('nn.functional.batch_norm',
|
|
variant_test_name='without_cudnn',
|
|
aten_name='batch_norm',
|
|
dtypesIfCPU=empty_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError: deepEquals(input.iValue, deepCopiedInput) INTERNAL ASSERT FAILED at
|
|
# "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":142, please report a bug to PyTorch
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
decorators=[onlyCUDA, disablecuDNN],
|
|
sample_inputs_func=sample_inputs_batch_norm),
|
|
# We have to add 2 OpInfo entry for `igamma` and `igammac`.First is the
|
|
# standard entry, second is to run gradcheck tests on the second argument.
|
|
OpInfo('igamma',
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
aliases=('torch.special.gammainc',),
|
|
dtypesIfCUDA=floating_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_igamma_igammac),
|
|
OpInfo('igamma',
|
|
variant_test_name='grad_other',
|
|
# Since autograd formula is implemented only for other and
|
|
# gradcheck test verifies the formula for input in SampleInput,
|
|
# we permute the arguments.
|
|
op=lambda self, other, **kwargs: torch.igamma(other, self, **kwargs),
|
|
inplace_variant=None,
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
backward_dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types(),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
# AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# test fails are we permute the arguments function variant
|
|
# but not for inplace or method.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_igamma_igammac),
|
|
OpInfo('igammac',
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
aliases=('torch.special.gammaincc',),
|
|
dtypesIfCUDA=floating_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_igamma_igammac),
|
|
OpInfo('igammac',
|
|
variant_test_name='grad_other',
|
|
# Since autograd formula is implemented only for other and
|
|
# gradcheck test verifies the formula for input in SampleInput,
|
|
# we permute the arguments
|
|
op=lambda self, other, **kwargs: torch.igammac(other, self, **kwargs),
|
|
inplace_variant=None,
|
|
method_variant=None,
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
backward_dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types(),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
# AssertionError: False is not true : Tensors failed to compare as equal!
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# test fails are we permute the arguments function variant
|
|
# but not for inplace or method.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_igamma_igammac),
|
|
OpInfo('nn.functional.hardshrink',
|
|
aten_name="hardshrink",
|
|
dtypes=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=["aten::hardshrink"]),
|
|
OpInfo('nn.functional.hardtanh',
|
|
aten_name="hardtanh",
|
|
dtypesIfCPU=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64, torch.bfloat16),
|
|
backward_dtypesIfCPU=all_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.int8, torch.int16, torch.int32, torch.int64, torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=["aten::hardtanh"],
|
|
),
|
|
OpInfo('nn.functional.gelu',
|
|
aten_name="gelu",
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_gelu,
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
autodiff_nonfusible_nodes=["aten::gelu"]),
|
|
OpInfo('nn.functional.relu6',
|
|
aten_name="relu6",
|
|
dtypes=all_types(),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
backward_dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_autograd=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_hardshrink_hardtanh,
|
|
supports_gradgrad=True,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=["aten::relu6"]),
|
|
OpInfo('mm',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_mm,
|
|
skips=(
|
|
# mm does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('mode',
|
|
op=torch.mode,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_mode,),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_1',
|
|
domain=(1, None),
|
|
skips=skips_mvlgamma(),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 1}, {'d': 1})),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_3',
|
|
domain=(2, None),
|
|
skips=skips_mvlgamma(skip_redundant=True) + (
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=(torch.float16,)),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 3}, {'d': 3})),
|
|
MvlGammaInfo(variant_test_name='mvlgamma_p_5',
|
|
domain=(3, None),
|
|
skips=skips_mvlgamma(skip_redundant=True) + (
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=(torch.float16,)),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'p': 5}, {'d': 5})),
|
|
OpInfo('ne',
|
|
aliases=('not_equal',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('narrow',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_narrow),
|
|
UnaryUfuncInfo('neg',
|
|
aliases=('negative', ),
|
|
ref=np.negative,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,),
|
|
OpInfo('dist',
|
|
op=torch.dist,
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_dist,
|
|
skips=(
|
|
# dist does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('outer',
|
|
op=torch.outer,
|
|
aliases=('ger', ),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_outer,),
|
|
OpInfo('ormqr',
|
|
op=torch.ormqr,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_ormqr,
|
|
decorators=[skipCUDAIfNoCusolver, skipCPUIfNoLapack]),
|
|
OpInfo('permute',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_permute),
|
|
OpInfo('pow',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool),
|
|
# Due to AVX2 curently not being fully supported for Float16, log_vml_cpu can't be enabled
|
|
# for Float16, causing this test to fail. pow's autograd for Float16 is thus currently
|
|
# unsupported on CPU.
|
|
backward_dtypes=all_types_and_complex_and(torch.bfloat16, torch.bool),
|
|
backward_dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
sample_inputs_func=sample_inputs_pow,
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
),
|
|
OpInfo('float_power',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_pow,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view', device_type='cuda'),),),
|
|
OpInfo('qr',
|
|
op=torch.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_qr,
|
|
# batched gradients do not work for empty inputs
|
|
# https://github.com/pytorch/pytorch/issues/50743#issuecomment-767376085
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
UnaryUfuncInfo('rad2deg',
|
|
ref=np.degrees,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
),
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('real',
|
|
ref=np.real,
|
|
dtypes=complex_types(),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
OpInfo('roll',
|
|
ref=np.roll,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_roll),
|
|
OpInfo('rot90',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_rot90),
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
aliases=('special.round',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('sin',
|
|
ref=np.sin,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
handles_complex_extremals=False,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),)),
|
|
UnaryUfuncInfo('sinc',
|
|
ref=np_sinc_with_fp16_as_fp32,
|
|
aliases=('special.sinc',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
handles_large_floats=False,
|
|
handles_complex_extremals=False,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2,
|
|
torch.float16: 1e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49133
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.cfloat]),
|
|
)),
|
|
UnaryUfuncInfo('sinh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.sinh),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2}),),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
)),
|
|
UnaryUfuncInfo('sign',
|
|
ref=reference_sign,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
)),
|
|
UnaryUfuncInfo('sgn',
|
|
ref=reference_sgn,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53958
|
|
# Test fails in comparison on Nan as the `equal_nan` is True for
|
|
# comparing the CPU tensors.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.complex64, torch.complex128]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48486
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.complex64])
|
|
)),
|
|
OpInfo('split',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=partial(sample_inputs_split, list_args=False),
|
|
supports_out=False,
|
|
assert_autodiffed=True),
|
|
OpInfo('split',
|
|
variant_test_name='list_args',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=partial(sample_inputs_split, list_args=True),
|
|
supports_out=False),
|
|
OpInfo('split_with_sizes',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_split_with_sizes,
|
|
supports_out=False,
|
|
assert_autodiffed=True),
|
|
OpInfo('__radd__',
|
|
op=torch.Tensor.__radd__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __radd__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__radd__(i0, 3.14j)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=['aten::add'],),
|
|
OpInfo('__rdiv__',
|
|
op=torch.Tensor.__rdiv__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rdiv__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__rdiv__(i0, 3.14j)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::mul', 'aten::reciprocal'],),
|
|
OpInfo('__rmul__',
|
|
op=torch.Tensor.__rmul__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rmul__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__rmul__(i0, 3.14j)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
autodiff_nonfusible_nodes=['aten::mul'],),
|
|
OpInfo('__rand__',
|
|
op=torch.Tensor.__rand__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,),
|
|
OpInfo('__ror__',
|
|
op=torch.Tensor.__ror__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,),
|
|
OpInfo('__rxor__',
|
|
op=torch.Tensor.__rxor__,
|
|
dtypes=integral_types_and(torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
supports_forward_ad=True,),
|
|
OpInfo('__rmatmul__',
|
|
op=torch.Tensor.__rmatmul__,
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else [],
|
|
torch.complex64, torch.complex128),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16,
|
|
*[torch.bfloat16] if (SM60OrLater and CUDA11OrLater) else [],
|
|
torch.complex64, torch.complex128),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_matmul,
|
|
supports_out=False,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({torch.complex64: tol(atol=1e-05, rtol=1.2e-03)}),
|
|
'TestMathBits', 'test_conj_view')],
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rmatmul__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0, i1):
|
|
# return torch.__rmatmul__(i0, i1)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
)),
|
|
OpInfo('__rmod__',
|
|
op=torch.Tensor.__rmod__,
|
|
dtypes=all_types_and(torch.bfloat16, torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.half,),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rmod__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__rmod__(i0, 3.14)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
# Support autograd after torch.remainder(Tensor, Tensor) supports
|
|
# autograd of the second argument.
|
|
# https://github.com/pytorch/pytorch/pull/58476/files#r637167630
|
|
supports_autograd=False,
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::remainder'],),
|
|
OpInfo('__rpow__',
|
|
op=torch.Tensor.__rpow__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54774
|
|
# "log2" "_vml_cpu" not implemented for Half
|
|
backward_dtypesIfCPU=all_types_and_complex_and(torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rpow__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__rpow__(i0, 3.14j)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::pow'],),
|
|
OpInfo('__rsub__',
|
|
op=torch.Tensor.__rsub__,
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
sample_inputs_func=sample_inputs_rbinops,
|
|
supports_out=False,
|
|
skips=(
|
|
# RuntimeError:
|
|
# object has no attribute __rsub__:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.__rsub__(i0, 3.14j)
|
|
# ~~~~~~~~~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit',),
|
|
),
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::rsub'],),
|
|
OpInfo('rsub',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
variant_test_name='rsub_tensor',
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53797
|
|
# JIT doesn't understand complex literals
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":52,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.cfloat, torch.cdouble]), # noqa: B950
|
|
),
|
|
sample_inputs_func=partial(sample_inputs_rsub, variant='tensor'),),
|
|
OpInfo('rsub',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
variant_test_name='rsub_scalar',
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=partial(sample_inputs_rsub, variant='scalar'),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53797
|
|
# JIT doesn't understand complex literals
|
|
# RuntimeError: false
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":52,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=[torch.cfloat, torch.cdouble]), # noqa: B950
|
|
),
|
|
assert_autodiffed=True,),
|
|
OpInfo('select',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
sample_inputs_func=sample_inputs_select,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('signbit',
|
|
ref=np.signbit,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_autograd=False,),
|
|
OpInfo('solve',
|
|
op=torch.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
UnaryUfuncInfo('tan',
|
|
ref=np.tan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.float64],
|
|
active_if=TEST_WITH_ROCM),
|
|
)),
|
|
UnaryUfuncInfo('tanh',
|
|
ref=np.tanh,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
# "tanh_backward_cpu" not implemented for 'BFloat16'
|
|
backward_dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
)),
|
|
OpInfo('tensor_split',
|
|
ref=np.array_split,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_tensor_split,),
|
|
OpInfo('hsplit',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_hsplit,),
|
|
OpInfo('vsplit',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_vsplit,),
|
|
OpInfo('dsplit',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_dsplit,),
|
|
OpInfo('triangular_solve',
|
|
op=torch.triangular_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_wrapper=lambda *args, **kwargs: gradcheck_wrapper_triangular_input(*args, idx=1, **kwargs),
|
|
decorators=[skipCUDAIfNoMagma]),
|
|
UnaryUfuncInfo('trunc',
|
|
aliases=('fix', ),
|
|
ref=np.trunc,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('exp2',
|
|
aliases=('special.exp2', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp2),
|
|
dtypes=all_types_and(torch.bool, torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('expm1',
|
|
aliases=('special.expm1', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.expm1),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/48926#issuecomment-739734774
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
)),
|
|
UnaryUfuncInfo('nan_to_num',
|
|
ref=np.nan_to_num,
|
|
dtypes=all_types_and(torch.half, torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.half, torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bool, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
# Passing numpy_kwargs via sample_kwargs, as numpy does comparison
|
|
# with BFloat16 in float, since it currently doesn't support BFloat16.
|
|
# Ref: https://github.com/pytorch/pytorch/issues/57982#issuecomment-839150556
|
|
sample_kwargs=lambda device, dtype, input: ({},
|
|
{'posinf': torch.finfo(torch.bfloat16).max,
|
|
'neginf': torch.finfo(torch.bfloat16).min})
|
|
if dtype is torch.bfloat16 else ({}, {})),
|
|
UnaryUfuncInfo('reciprocal',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.reciprocal),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/45690
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49102#issuecomment-744604601
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.bfloat16]),
|
|
)),
|
|
UnaryUfuncInfo('rsqrt',
|
|
ref=lambda x: np.reciprocal(np.sqrt(x)),
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.half: 5e-2}),),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
handles_complex_extremals=False),
|
|
UnaryUfuncInfo('sqrt',
|
|
ref=np.sqrt,
|
|
supports_sparse=True,
|
|
domain=(0, None),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/47358
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_MACOS),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/47293#issuecomment-721774436
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16])),
|
|
safe_casts_outputs=True,
|
|
handles_complex_extremals=False),
|
|
UnaryUfuncInfo('square',
|
|
ref=np.square,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.complex64: 3e-4, torch.bfloat16: 3e-1}),),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/52549
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# >>> t = torch.tensor(complex(-0.01, float("inf")))
|
|
# >>> np.square(t.numpy())
|
|
# (-inf-infj)
|
|
# >>> t.square()
|
|
# tensor(-inf-infj)
|
|
# >>> t.cuda().square()
|
|
# tensor(inf+nanj, device='cuda:0')
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/52551#issuecomment-782596181
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
),),
|
|
OpInfo('lerp',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_lerp,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
OpInfo('linalg.inv',
|
|
aten_name='linalg_inv',
|
|
op=torch.linalg.inv,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
),
|
|
OpInfo('linalg.inv_ex',
|
|
aten_name='linalg_inv_ex',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
),
|
|
UnaryUfuncInfo('angle',
|
|
ref=np.angle,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
supports_complex_to_float=True),
|
|
OpInfo('linalg.solve',
|
|
aten_name='linalg_solve',
|
|
op=torch.linalg.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_solve,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.matrix_rank',
|
|
aten_name='linalg_matrix_rank',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.matrix_rank',
|
|
aten_name='linalg_matrix_rank',
|
|
variant_test_name='hermitian',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_hermitian,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
op=torch.linalg.pinv,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
variant_test_name='singular',
|
|
# pinv is Frechet-differentiable in a rank-preserving neighborhood,
|
|
# so we feed inputs that are the products of two full-rank factors,
|
|
# to avoid any rank changes caused by the perturbations in the gradcheck
|
|
op=lambda a, b: torch.linalg.pinv(a @ b.transpose(-1, -2)),
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_singular,
|
|
# Only large tensors show issues with implicit backward used prior to
|
|
# explicit backward implementation.
|
|
decorators=[slowTest, skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
variant_test_name='hermitian',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_hermitian,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# Gradcheck hangs for this function
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD'),),
|
|
),
|
|
OpInfo('eig',
|
|
op=torch.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_eig,
|
|
decorators=[
|
|
skipCUDAIfNoMagma,
|
|
skipCPUIfNoLapack,
|
|
skipCUDAIfRocm
|
|
],),
|
|
OpInfo('einsum',
|
|
# we need this lambda because SampleInput expects tensor input as the first argument
|
|
# TODO(@heitorschueroff) update SampleInput to handle such cases
|
|
op=lambda tensors, equation: torch.einsum(equation, tensors),
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
backward_dtypesIfCUDA=floating_and_complex_types_and(torch.half,
|
|
*[torch.bfloat16] if (SM60OrLater and CUDA11OrLater) else []),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_einsum,
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
# there's a test `test_einsum` in `test_jit.py` to handle this case
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('svd',
|
|
op=torch.svd,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_svd,
|
|
decorators=[
|
|
skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfRocm,
|
|
skipCPUIfNoLapack,
|
|
]),
|
|
OpInfo('linalg.svd',
|
|
op=torch.linalg.svd,
|
|
aten_name='linalg_svd',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_svd,
|
|
decorators=[
|
|
skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfRocm,
|
|
skipCPUIfNoLapack,
|
|
]),
|
|
OpInfo('linalg.svdvals',
|
|
op=torch.linalg.svdvals,
|
|
aten_name='linalg_svdvals',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_svdvals,
|
|
check_batched_gradgrad=False,
|
|
decorators=[
|
|
skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCPUIfNoLapack]),
|
|
OpInfo('polar',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_polar),
|
|
# TODO(@kshitij12345): Refactor similar to `mvlgamma` entries.
|
|
# To test reference numerics against multiple values of argument `n`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of n (currently 0 to 4).
|
|
# We run the op tests from test_ops.py only for `n=0` to avoid redundancy in testing.
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_0',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0})),
|
|
# A separate OpInfo entry for special.polygamma is needed to reorder the arguments
|
|
# for the alias. See the discussion here: https://github.com/pytorch/pytorch/pull/59691#discussion_r650261939
|
|
UnaryUfuncInfo('special.polygamma',
|
|
op=lambda x, n, **kwargs: torch.special.polygamma(n, x, **kwargs),
|
|
variant_test_name='special_polygamma_n_0',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_1',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal'),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 1}, {'n': 1})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_2',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 2}, {'n': 2})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_3',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 3}, {'n': 3})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_4',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 5e-4, torch.float32: 5e-4}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 4}, {'n': 4})),
|
|
OpInfo('ravel',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_ravel,
|
|
),
|
|
OpInfo('reshape',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_reshape,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('reshape_as',
|
|
op=lambda x, other: x.reshape_as(other),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_view_as_reshape_as,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('view',
|
|
op=lambda x, shape: x.view(shape),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
assert_jit_shape_analysis=True,
|
|
sample_inputs_func=sample_inputs_view_reshape,
|
|
),
|
|
OpInfo('view_as',
|
|
op=lambda x, other: x.view_as(other),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_view_as_reshape_as,
|
|
),
|
|
OpInfo('pinverse',
|
|
op=torch.pinverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_forward_ad=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('gather',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_gather,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo('index_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_index_fill),
|
|
OpInfo('index_copy',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_index_copy,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('index_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_index_select,
|
|
supports_forward_ad=True,
|
|
assert_jit_shape_analysis=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('index_add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_index_add,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
OpInfo('__getitem__',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
supports_scripting=False,
|
|
op=torch.Tensor.__getitem__,
|
|
skips=(
|
|
# AssertionError: False is not true : Scalars failed to compare as equal! 0 != 104448
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', device_type='cuda'),
|
|
),
|
|
assert_jit_shape_analysis=False, # TODO: support index.Tensor()
|
|
sample_inputs_func=sample_inputs_getitem,),
|
|
OpInfo('index_put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_inplace_autograd=True,
|
|
supports_forward_ad=True,
|
|
test_neg_view=False,
|
|
sample_inputs_func=sample_inputs_index_put,
|
|
skips=(
|
|
# RuntimeError: The following operation failed in the TorchScript interpreter.
|
|
# Traceback of TorchScript (most recent call last):
|
|
# File "<string>", line 3, in forward
|
|
# def the_method(i0, i1: List[torch.Tensor], i2):
|
|
# return torch.index_put(i0, i1, i2, accumulate=False)
|
|
# ~~~~~~~~~~~~~~~ <--- HERE
|
|
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('sort',
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfROCM=all_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_sort,
|
|
skips=(
|
|
# sort does not correctly warn when resizing out= inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
check_batched_gradgrad=False, # vmap complains of the sizes
|
|
sample_inputs_func=sample_inputs_put),
|
|
OpInfo('take',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
check_batched_grad=False, # vmap complains of the sizes
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_take),
|
|
OpInfo('scatter',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter,),
|
|
OpInfo('bfloat16',
|
|
op=lambda x, *args, **kwargs: x.bfloat16(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('bool',
|
|
op=lambda x, *args, **kwargs: x.bool(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('byte',
|
|
op=lambda x, *args, **kwargs: x.byte(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('char',
|
|
op=lambda x, *args, **kwargs: x.char(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('double',
|
|
op=lambda x, *args, **kwargs: x.double(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('float',
|
|
op=lambda x, *args, **kwargs: x.float(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('half',
|
|
op=lambda x, *args, **kwargs: x.half(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
# The autograd test runner cannot handle functions that change dtype
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('int',
|
|
op=lambda x, *args, **kwargs: x.int(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('long',
|
|
op=lambda x, *args, **kwargs: x.long(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('short',
|
|
op=lambda x, *args, **kwargs: x.short(*args, **kwargs),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_conversion,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# RuntimeError: attribute lookup is not defined on builtin
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('empty_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_conj_view'),
|
|
# Empty tensor data is garbage so it's hard to make comparisons with it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view'),
|
|
)),
|
|
OpInfo('zeros_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False),
|
|
OpInfo('ones_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False),
|
|
OpInfo('randn_like',
|
|
dtypes=floating_types_and(torch.half, torch.bfloat16, torch.complex64, torch.complex128),
|
|
op=lambda inp, *args, **kwargs:
|
|
wrapper_set_seed(torch.randn_like, inp, *args, **kwargs),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_like_fns,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('full_like',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_full_like,
|
|
supports_autograd=False),
|
|
OpInfo('scatter_add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_scatter_add,
|
|
supports_out=False),
|
|
OpInfo('stack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_stack,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# TODO: see https://github.com/pytorch/pytorch/issues/64709
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('hstack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: see https://github.com/pytorch/pytorch/issues/64709
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('hypot',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_hypot,
|
|
),
|
|
OpInfo('histogram',
|
|
dtypes=_dispatch_dtypes(), # histogram is only implemented on CPU
|
|
dtypesIfCPU=floating_types(),
|
|
sample_inputs_func=sample_inputs_histogram,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
# https://github.com/pytorch/pytorch/issues/58507
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.histogram(i0, 1, weight=tensor(-0.5735, dtype=torch.float32), density=False)
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('bucketize',
|
|
dtypes=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types(),
|
|
sample_inputs_func=sample_inputs_bucketize,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# JIT tests don't work with Tensor keyword arguments
|
|
DecorateInfo(unittest.skip("Expected failure!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('cat',
|
|
ref=lambda input_seq, dim=0, **kwargs: np.concatenate(input_seq, axis=dim, **kwargs),
|
|
aliases=('concat',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_cat_concat,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# TODO: see https://github.com/pytorch/pytorch/issues/64709
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# RuntimeError: Arguments for call not valid.
|
|
# Expected a value of type 'List[Tensor]' for argument
|
|
# 'tensors' but instead found type 'Tensor (inferred)'.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_jit_alias_remapping'),)),
|
|
OpInfo('vstack',
|
|
aliases=('row_stack',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: see https://github.com/pytorch/pytorch/issues/64709
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# RuntimeError: _fn() Expected a value of type
|
|
# 'Tensor (inferred)' for argument 't0' but instead found type 'tuple'.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_jit_alias_remapping'),)),
|
|
OpInfo('dstack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# TODO: see https://github.com/pytorch/pytorch/issues/64709
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('unfold',
|
|
op=lambda x, *args: x.unfold(*args),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
sample_inputs_func=sample_inputs_unfold),
|
|
OpInfo('msort',
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
dtypesIfROCM=all_types_and(torch.float16),
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# msort does not correctly warn when resizing out= inputs.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16)),
|
|
),
|
|
sample_inputs_func=sample_inputs_msort),
|
|
OpInfo('movedim',
|
|
aliases=('moveaxis',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_movedim_moveaxis),
|
|
OpInfo('renorm',
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_renorm),
|
|
ShapeFuncInfo('repeat',
|
|
op=lambda x, dims: x.repeat(dims),
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_repeat_tile),
|
|
OpInfo('squeeze',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_squeeze),
|
|
OpInfo('fill_',
|
|
op=lambda x, scalar: torch.fill_(x.clone(), scalar),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.fill_,
|
|
supports_forward_ad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
skips=(
|
|
# JIT has issue when op is passed as lambda
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_inputs_func=sample_inputs_fill_),
|
|
OpInfo('resize_',
|
|
op=lambda x, shape: x.clone().resize_(shape),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.resize_,
|
|
# the test fails because resize_ doesn't work with imag views as expected by the test
|
|
# https://github.com/pytorch/pytorch/issues/65945
|
|
test_neg_view=False,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# resize_ is raising an error on input that requires grad on purpose
|
|
DecorateInfo(
|
|
unittest.skip('Skipped! Resizing of variables that require grad is not supported.'),
|
|
'TestGradients',
|
|
'test_nondifferentiable',
|
|
),
|
|
),
|
|
sample_inputs_func=sample_inputs_resize_ops),
|
|
OpInfo('resize_as_',
|
|
op=lambda x, other: torch.resize_as_(x.clone(), other),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.resize_as_,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# resize_ is raising an error on input that requires grad on purpose
|
|
DecorateInfo(
|
|
unittest.skip('Skipped! Resizing of variables that require grad is not supported.'),
|
|
'TestGradients',
|
|
'test_nondifferentiable',
|
|
),
|
|
),
|
|
sample_inputs_func=sample_inputs_resize_ops),
|
|
OpInfo('take_along_dim',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_take_along_dim,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL),
|
|
ShapeFuncInfo('tile',
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_repeat_tile),
|
|
OpInfo('trapz', # TODO: in the future, 'trapz' should be made a proper alias of 'trapezoid'
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_trapezoid),
|
|
OpInfo('trapezoid',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_trapezoid),
|
|
OpInfo('cumulative_trapezoid',
|
|
dtypes=all_types_and_complex_and(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_cumulative_trapezoid),
|
|
OpInfo('unsqueeze',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
assert_jit_shape_analysis=True,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_unsqueeze),
|
|
OpInfo('xlogy',
|
|
aliases=('special.xlogy',),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_xlogy),
|
|
OpInfo('zero_',
|
|
op=lambda x: torch.zero_(x.clone()),
|
|
method_variant=None,
|
|
inplace_variant=torch.Tensor.zero_,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# JIT has issue when op is passed as lambda
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
sample_inputs_func=sample_inputs_zero_),
|
|
OpInfo('special.xlog1py',
|
|
aten_name='special_xlog1py',
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
backward_dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_xlog1py),
|
|
OpInfo('special.zeta',
|
|
aten_name='special_zeta',
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_autograd=False,
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_binary_pwise),
|
|
# OpInfo entry to verify the gradient formula of `other`/`q`
|
|
OpInfo('special.zeta',
|
|
op=lambda q, x, **kwargs: torch.special.zeta(x, q, **kwargs),
|
|
aten_name='special_zeta',
|
|
variant_test_name='grad',
|
|
dtypes=all_types_and(torch.bool),
|
|
supports_autograd=True,
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
# Lambda doesn't work in JIT test
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),
|
|
),
|
|
sample_inputs_func=sample_inputs_zeta),
|
|
OpInfo('logsumexp',
|
|
aliases=('special.logsumexp',),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_logsumexp),
|
|
OpInfo('trace',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_trace),
|
|
OpInfo('transpose',
|
|
aliases=('swapdims', 'swapaxes'),
|
|
assert_jit_shape_analysis=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_transpose_swapdims),
|
|
OpInfo('T',
|
|
op=lambda x: x.T,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=( # Lambda doesn't work in JIT test
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_T),
|
|
OpInfo('H',
|
|
op=lambda x: x.H,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=( # Lambda doesn't work in JIT test
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_T),
|
|
OpInfo('mT',
|
|
op=lambda x: x.mT,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=( # Lambda doesn't work in JIT test
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_adjoint),
|
|
OpInfo('mH',
|
|
op=lambda x: x.mH,
|
|
aliases=('adjoint',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=( # Lambda doesn't work in JIT test
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"),),
|
|
sample_inputs_func=sample_inputs_adjoint),
|
|
OpInfo('tril',
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_tril_triu),
|
|
OpInfo('triu',
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_tril_triu),
|
|
OpInfo('kron',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_kron),
|
|
OpInfo('inner',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_inner,
|
|
),
|
|
OpInfo('tensordot',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
sample_inputs_func=sample_inputs_tensordot,
|
|
skips=(
|
|
# Skip operator schema test because this is a functional and not an operator.
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54574
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)
|
|
),
|
|
OpInfo('to_sparse',
|
|
op=lambda x, *args: x.to_sparse(*args),
|
|
sample_inputs_func=sample_inputs_to_sparse,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
backward_dtypes=floating_types(),
|
|
backward_dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# TODO: FIXME: complex inputs requiring grad error in forward
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# JIT has issue when op is passed as lambda
|
|
# NotImplementedError: Cannot access storage of SparseTensorImpl
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
)
|
|
),
|
|
OpInfo('logcumsumexp',
|
|
dtypes=floating_types_and(),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
backward_dtypesIfCUDA=floating_types_and(),
|
|
skips=(
|
|
# AssertionError: UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out', dtypes=(torch.float32,), device_type='cuda'),
|
|
),
|
|
sample_inputs_func=sample_inputs_logcumsumexp),
|
|
UnaryUfuncInfo('sigmoid',
|
|
aliases=('special.expit', ),
|
|
ref=reference_sigmoid if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.complex64: 1e-1,
|
|
torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
# TODO: FIXME: sigmoid fails on complex inputs that require grad
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_dtypes'),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/56012
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble])),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('digamma',
|
|
ref=scipy.special.digamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.psi', 'special.digamma',),
|
|
decorators=(precisionOverride({torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('special.entr',
|
|
ref=scipy.special.entr if TEST_SCIPY else _NOTHING,
|
|
aten_name='special_entr',
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-1,
|
|
torch.bfloat16: 1e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16, torch.float16]),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_entr),
|
|
UnaryUfuncInfo('special.ndtri',
|
|
ref=scipy.special.ndtri if TEST_SCIPY else _NOTHING,
|
|
domain=(0, 1),
|
|
aten_name='special_ndtri',
|
|
dtypes=all_types_and(torch.bool),
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('erf',
|
|
ref=scipy.special.erf if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erf', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
assert_jit_shape_analysis=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('erfc',
|
|
ref=scipy.special.erfc if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfc', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('erfinv',
|
|
ref=scipy.special.erfinv if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfinv', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2,
|
|
torch.float32: 1e-4}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
domain=(-1, 1),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49155#issuecomment-742664611
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=TEST_SCIPY and distutils.version.LooseVersion(scipy.__version__) < "1.4.0"),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_SCIPY and distutils.version.LooseVersion(scipy.__version__) < "1.4.0"),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_SCIPY and distutils.version.LooseVersion(scipy.__version__) < "1.4.0"),
|
|
)),
|
|
UnaryUfuncInfo('lgamma',
|
|
ref=reference_lgamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.gammaln', ),
|
|
decorators=(precisionOverride({torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#discussion_r552615345
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#issuecomment-756150214
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
),
|
|
safe_casts_outputs=True),
|
|
OpInfo(
|
|
'logdet',
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_logdet,
|
|
decorators=(skipCPUIfNoLapack, skipCUDAIfNoMagma, skipCUDAIfRocm)),
|
|
# `log_softmax` supports different dtypes based on whether `dtype` argument,
|
|
# is passed or not. Hence two OpInfo entries, one with dtype and other without.
|
|
OpInfo(
|
|
'log_softmax',
|
|
aliases=('special.log_softmax', 'nn.functional.log_softmax'),
|
|
supports_out=False,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_softmax_variant,
|
|
assert_autodiffed=True),
|
|
OpInfo(
|
|
'log_softmax',
|
|
variant_test_name='dtype',
|
|
aliases=('special.log_softmax', 'nn.functional.log_softmax'),
|
|
supports_out=False,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_softmax_variant, with_dtype=True),
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('logit',
|
|
ref=scipy.special.logit if TEST_SCIPY else _NOTHING,
|
|
domain=(0, 1),
|
|
aliases=('special.logit', ),
|
|
supports_forward_ad=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_logit,
|
|
safe_casts_outputs=True),
|
|
OpInfo('where',
|
|
# Currently only the `input` is tested in gradcheck.
|
|
# If we pass `condition` first, none of the input which supports
|
|
# autograd will be tested. Hence the following lambda.
|
|
op=lambda self, condition, other: torch.where(condition, self, other),
|
|
sample_inputs_func=sample_inputs_where,
|
|
supports_out=False,
|
|
skips=(
|
|
# test does not work with passing lambda for op
|
|
# AssertionError: False is not true :
|
|
# Failure in testing nodes' autodifferentiation.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)),
|
|
# `torch.norm` has multiple code paths depending on the value of `p`.
|
|
# These paths have different dtype support. Also JIT supports,
|
|
# most variants but not all of them. So we split the OpInfo entries,
|
|
# for `norm` based on the code-paths and JIT support.
|
|
OpInfo('norm',
|
|
sample_inputs_func=sample_inputs_norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# RuntimeError not raised :
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
)
|
|
),
|
|
OpInfo('norm',
|
|
variant_test_name='nuc',
|
|
sample_inputs_func=sample_inputs_norm_nuc,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types(),
|
|
skips=(
|
|
# RuntimeError not raised :
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.complex64, torch.float32,)), # noqa: B950
|
|
)
|
|
),
|
|
OpInfo('norm',
|
|
variant_test_name='fro',
|
|
sample_inputs_func=sample_inputs_norm_fro,
|
|
dtypes=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# RuntimeError not raised :
|
|
# Expected RuntimeError when calling with input.device=cpu and out.device=cuda
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestCommon', 'test_out'),
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit', dtypes=(torch.complex64, torch.float32,)), # noqa: B950
|
|
)
|
|
),
|
|
OpInfo('norm',
|
|
variant_test_name='inf',
|
|
sample_inputs_func=sample_inputs_norm_inf,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
backward_dtypesIfCPU=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# following 2 tests failed intermittenly
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_grad', device_type='cpu', dtypes=(torch.complex128,)), # noqa: B950
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_fn_gradgrad', device_type='cpu', dtypes=(torch.complex128,)), # noqa: B950
|
|
)
|
|
),
|
|
OpInfo('t',
|
|
sample_inputs_func=sample_inputs_t,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('special.erfcx',
|
|
ref=scipy.special.erfcx if TEST_SCIPY else _NOTHING,
|
|
aten_name='special_erfcx',
|
|
decorators=(toleranceOverride({torch.float32: tol(atol=0, rtol=4e-6), }),),
|
|
dtypes=all_types_and(torch.bool),
|
|
safe_casts_outputs=True),
|
|
OpInfo(
|
|
"nn.functional.dropout",
|
|
op=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs),
|
|
ref=_NOTHING,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# Probably because we have used lambda for the op here
|
|
# AssertionError: JIT Test does not execute any logic
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# inplace variant dispatches to dropout kernel, while on CUDA
|
|
# the op dispatches to _fused_dropout (with a few more conditions)
|
|
# hence, different values and this skip here
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestMathBits', 'test_neg_view', device_type='cuda'),
|
|
# On CUDA, the op is dispatched (and a few more conditions) to
|
|
# _fused_dropout, which doesn't support forward AD
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestGradients', 'test_forward_mode_AD', device_type='cuda'),),
|
|
gradcheck_wrapper=wrapper_set_seed,
|
|
supports_forward_ad=True,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_dropout,
|
|
inplace_variant=lambda input, *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.dropout, input, *args, **kwargs, inplace=True)),
|
|
OpInfo(
|
|
"nn.functional.one_hot",
|
|
ref=reference_one_hot,
|
|
supports_out=False,
|
|
dtypes=_dispatch_dtypes((torch.int64,)),
|
|
sample_inputs_func=sample_inputs_one_hot,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.softplus",
|
|
ref=reference_softplus,
|
|
sample_inputs_func=sample_inputs_softplus,
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
),
|
|
OpInfo(
|
|
"linalg.tensorinv",
|
|
ref=np.linalg.tensorinv,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_tensorinv,
|
|
supports_forward_ad=True,
|
|
),
|
|
OpInfo(
|
|
"nn.functional.mse_loss",
|
|
ref=reference_mse_loss,
|
|
sample_inputs_func=sample_inputs_mse_loss,
|
|
supports_out=False,
|
|
dtypesIfCPU=floating_types_and(torch.float16),
|
|
backward_dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.float16),
|
|
skips=(
|
|
# RuntimeError: input->type()->kind() == TypeKind::OptionalType
|
|
# INTERNAL ASSERT FAILED at "../torch/csrc/jit/passes/utils/check_alias_annotation.cpp":252,
|
|
# please report a bug to PyTorch.
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.grid_sample",
|
|
ref=_NOTHING,
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_grid_sample,
|
|
supports_gradgrad=False,
|
|
gradcheck_nondet_tol=1e-15,
|
|
),
|
|
ReductionOpInfo(
|
|
'all',
|
|
identity=True,
|
|
supports_multiple_dims=False,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.bool,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.all),
|
|
skips=(
|
|
# FIXME: does not support passing keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: does not support dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: uint8 input returns uint8 instead of bool
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'any',
|
|
identity=False,
|
|
supports_multiple_dims=False,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.bool,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.any),
|
|
skips=(
|
|
# FIXME: does not support passing keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: does not support dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: uint8 input returns uint8 instead of bool
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype', dtypes=[torch.uint8]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'amax',
|
|
nan_policy='propagate',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
ref=reference_reduction_numpy(np.amax),
|
|
skips=(
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'amin',
|
|
nan_policy='propagate',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
ref=reference_reduction_numpy(np.amin),
|
|
skips=(
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'argmax',
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmax, supports_keepdims=False),
|
|
skips=(
|
|
# FIXME: keepdim parameter is ignored when dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'argmin',
|
|
supports_multiple_dims=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.argmin, supports_keepdims=False),
|
|
skips=(
|
|
# FIXME: keepdim parameter is ignored when dim=None
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'count_nonzero',
|
|
identity=0,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
result_dtype=torch.int64,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_reduction_count_nonzero,
|
|
ref=reference_reduction_numpy(np.count_nonzero),
|
|
skips=(
|
|
# FIXME: count_nonzero does not accept keepdim kwarg
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_single_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_multi_unsorted_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_offbounds_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'mean',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.mean),
|
|
skips=(
|
|
# FIXME: mean does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: mean reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: mean does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_noncontiguous_all',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'nanmean',
|
|
nan_policy='omit',
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_nan_reduction(supports_multiple_dims=True),
|
|
ref=reference_reduction_numpy(np.nanmean),
|
|
skips=(
|
|
# AssertionError: False is not true :
|
|
# Failure in testing nodes' autodifferentiation.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestJit', 'test_variant_consistency_jit'),
|
|
# FIXME: prod reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_noncontiguous_all',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
device_type='cuda', dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_extremal_values',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'std',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
ref=reference_std_var(np.std),
|
|
generate_args_kwargs=generate_std_var_kwargs,
|
|
skips=(
|
|
# FIXME: cannot specify keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: dim=None not supported
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# TODO(@heitorschueroff) std return float for complex types
|
|
# need to find a better way to model result dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values'),
|
|
# NumPy is giving NaN for this
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_large_input'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'var',
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
assert_autodiffed=True,
|
|
promotes_int_to_float=True,
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
ref=reference_std_var(np.var),
|
|
generate_args_kwargs=generate_std_var_kwargs,
|
|
skips=(
|
|
# FIXME: cannot specify keepdim without dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: dim=None not supported
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: dim=[] reduces all dimensions
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# TODO(@heitorschueroff) std return float for complex types
|
|
# need to find a better way to model result dtype
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_result_dtype'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values'),
|
|
# NumPy is giving NaN for this
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_large_input'),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'prod',
|
|
identity=1,
|
|
nan_policy='propagate',
|
|
supports_multiple_dims=False,
|
|
supports_out=False,
|
|
promotes_int_to_int64=True,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_prod,
|
|
ref=reference_reduction_numpy(np.prod),
|
|
skips=(
|
|
# FIXME: prod does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: prod reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: prod does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16, torch.complex64]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=[torch.uint8, torch.float16, torch.complex64]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'sum',
|
|
identity=0,
|
|
nan_policy='propagate',
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
promotes_int_to_int64=True,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.sum),
|
|
skips=(
|
|
# FIXME: sum does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: sum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: sum does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_noncontiguous_all',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=[torch.float16]),
|
|
),
|
|
),
|
|
ReductionOpInfo(
|
|
'nansum',
|
|
identity=0,
|
|
nan_policy='omit',
|
|
supports_out=False,
|
|
promotes_int_to_int64=True,
|
|
dtypes=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
ref=reference_reduction_numpy(np.nansum),
|
|
skips=(
|
|
# FIXME: nansum does not support passing keepdim without passing dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_default_keepdim'),
|
|
# FIXME: nansum reduces all dimensions when dim=[]
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_empty_keepdim'),
|
|
# FIXME: nansum does not support passing None to dim
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none'),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_dim_none_keepdim'),
|
|
# FIXME: improve precision
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_noncontiguous_all',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_small_input',
|
|
dtypes=[torch.float16]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestReductions', 'test_ref_duplicate_values',
|
|
dtypes=[torch.float16]),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"nn.functional.nll_loss",
|
|
ref=_NOTHING,
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_nll_loss,
|
|
skips=(
|
|
# RuntimeError:
|
|
# undefined value tensor:
|
|
# File "<string>", line 3
|
|
# def the_method(i0, i1):
|
|
# return torch.nn.functional.nll_loss(i0, i1, weight=tensor([8.4784, 1.7658, 4.3228], dtype=torch.float32))
|
|
# ~~~~~~ <--- HERE
|
|
DecorateInfo(unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit", dtypes=(torch.float32,),),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"argsort",
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_argsort,
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32,),
|
|
),
|
|
),
|
|
),
|
|
OpInfo(
|
|
"repeat_interleave",
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_repeat_interleave,
|
|
supports_out=False,
|
|
supports_forward_ad=True,
|
|
skips=(
|
|
DecorateInfo(
|
|
unittest.skip("Skipped!"),
|
|
"TestJit",
|
|
"test_variant_consistency_jit",
|
|
dtypes=(torch.float32, torch.complex64),
|
|
),
|
|
),
|
|
),
|
|
]
|
|
|
|
# Common operator groupings
|
|
unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo)]
|
|
binary_ufuncs = [op for op in op_db if isinstance(op, BinaryUfuncInfo)]
|
|
spectral_funcs = [op for op in op_db if isinstance(op, SpectralFuncInfo)]
|
|
sparse_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse is True]
|
|
shape_funcs = [op for op in op_db if isinstance(op, ShapeFuncInfo)]
|
|
reduction_ops = [op for op in op_db if isinstance(op, ReductionOpInfo)]
|
|
|
|
# TODO: review porting these to make_tensor
|
|
def index_variable(shape, max_indices, device=torch.device('cpu')):
|
|
if not isinstance(shape, tuple):
|
|
shape = (shape,)
|
|
index = torch.rand(*shape, dtype=torch.double, device=device).mul_(max_indices).floor_().long()
|
|
return index
|
|
|
|
def gather_variable(shape, index_dim, max_indices, duplicate=False, device=torch.device('cpu')):
|
|
assert len(shape) == 2
|
|
assert index_dim < 2
|
|
batch_dim = 1 - index_dim
|
|
index = torch.zeros(*shape, dtype=torch.long, device=device)
|
|
for i in range(shape[index_dim]):
|
|
index.select(index_dim, i).copy_(
|
|
torch.randperm(max_indices, device=device)[:shape[batch_dim]])
|
|
if duplicate:
|
|
index.select(batch_dim, 0).copy_(index.select(batch_dim, 1))
|
|
return index
|
|
|
|
def bernoulli_scalar():
|
|
return torch.tensor(0, dtype=torch.bool).bernoulli_()
|
|
|
|
def mask_not_all_zeros(shape):
|
|
assert len(shape) > 0
|
|
while True:
|
|
result = torch.randn(shape).gt(0)
|
|
if result.sum() > 0:
|
|
return result
|
|
|
|
|
|
# TODO: move all tri/tril/triu testing to tensor creation op test suite and remove
|
|
# these from here
|
|
def _compare_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
if row == 0 or col == 0:
|
|
# have to handle this separately as tril and triu does not take
|
|
# empty matrix as input
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.triu_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
else:
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.tril(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.triu(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.triu_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
|
|
def _compare_large_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').tril(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.tril_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').triu(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.triu_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
# (
|
|
# row
|
|
# col
|
|
# offset (optional)
|
|
# dtype (optional)
|
|
# )
|
|
tri_tests_args = [
|
|
(1, 1),
|
|
(3, 3),
|
|
(3, 3, 1),
|
|
(3, 3, 2),
|
|
(3, 3, 200),
|
|
(3, 3, -1),
|
|
(3, 3, -2),
|
|
(3, 3, -200),
|
|
(0, 3, 0),
|
|
(0, 3, 1),
|
|
(0, 3, -1),
|
|
(3, 0, 0),
|
|
(3, 0, 1),
|
|
(3, 0, -1),
|
|
(0, 0, 0),
|
|
(0, 0, 1),
|
|
(0, 0, -1),
|
|
(3, 6, 0),
|
|
(3, 6, 1),
|
|
(3, 6, 3),
|
|
(3, 6, 9),
|
|
(3, 6, -1),
|
|
(3, 6, -3),
|
|
(3, 6, -9),
|
|
(6, 3, 0),
|
|
(6, 3, 1),
|
|
(6, 3, 3),
|
|
(6, 3, 9),
|
|
(6, 3, -1),
|
|
(6, 3, -3),
|
|
(6, 3, -9),
|
|
(258, 253, 1, torch.float32),
|
|
(257, 258, 1, torch.float64),
|
|
(258, 258, 1, torch.short),
|
|
(3, 513, 1, torch.long),
|
|
(513, 3, 1, torch.int),
|
|
(513, 0, 1, torch.double),
|
|
(1024, 1024),
|
|
(1024, 1024, 500, torch.float32),
|
|
(1024, 1024, 1023),
|
|
(1024, 1024, -500),
|
|
(1023, 1025),
|
|
(1025, 1023, 1022),
|
|
(1024, 1024, -500),
|
|
(3, 2028),
|
|
(3, 2028, 1),
|
|
(3, 2028, -1),
|
|
(2028, 3),
|
|
(2028, 1),
|
|
(2028, 1, -1)
|
|
]
|
|
|
|
tri_large_tests_args: List[Tuple[int, ...]] = [
|
|
# Large test cases below are deliberately commented out to speed up CI
|
|
# tests and to avoid OOM error. When modifying implementations of
|
|
# tril_indices and triu_indices, please enable these tests and make sure
|
|
# they pass.
|
|
#
|
|
# (1, 268435455),
|
|
# (5000, 5000),
|
|
# (10000, 10000),
|
|
# (268435455, 1),
|
|
# (134217727, 2, 1),
|
|
# (2, 134217727, 1),
|
|
# (536870901, 1),
|
|
# (1, 536870901),
|
|
# (268435455, 2, 1),
|
|
# (2, 268435455, 1)
|
|
]
|
|
|
|
|
|
def run_additional_tri_tests(self, device):
|
|
x = torch.ones(
|
|
3, 3, dtype=torch.long, device=device, layout=torch.strided)
|
|
l = x.tril(0).nonzero().transpose(0, 1)
|
|
u = x.triu(0).nonzero().transpose(0, 1)
|
|
self.assertEqual(l, torch.tril_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
l, torch.tril_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertEqual(u, torch.triu_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
u, torch.triu_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.triu_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.tril_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|
|
|
|
# TODO: move into common_utils.py or the test suite(s) that use this
|
|
def unpack_variables(args):
|
|
if isinstance(args, tuple):
|
|
return tuple(unpack_variables(elem) for elem in args)
|
|
else:
|
|
return args
|
|
|
|
|
|
class dont_convert(tuple):
|
|
pass
|
|
|
|
|
|
non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
|
|
|
|
|
|
# TODO: move into common_utils.py or the test suite(s) that use this
|
|
def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.double, device=None):
|
|
if not isinstance(call_args, tuple):
|
|
call_args = (call_args,)
|
|
|
|
def map_arg(arg):
|
|
def maybe_non_contig(tensor):
|
|
return tensor if not non_contiguous else make_non_contiguous(tensor)
|
|
|
|
def conjugate(tensor):
|
|
return tensor.conj()
|
|
|
|
if isinstance(arg, torch.Size) or isinstance(arg, dont_convert):
|
|
return arg
|
|
elif isinstance(arg, tuple) and len(arg) == 0:
|
|
var = conjugate(torch.randn((), dtype=dtype, device=device))
|
|
var.requires_grad = requires_grad
|
|
return var
|
|
elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
|
|
return conjugate(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device))).requires_grad_(requires_grad)
|
|
# double check casting
|
|
elif isinstance(arg, non_differentiable):
|
|
if isinstance(arg.tensor, torch.Tensor):
|
|
if arg.tensor.dtype == torch.float:
|
|
return maybe_non_contig(arg.tensor.to(dtype=torch.double, device=device))
|
|
if arg.tensor.dtype == torch.cfloat:
|
|
return conjugate(maybe_non_contig(arg.tensor.to(dtype=torch.cdouble, device=device)))
|
|
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
|
|
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
|
|
elif isinstance(arg, torch.Tensor):
|
|
if arg.dtype == torch.float:
|
|
arg = arg.double()
|
|
if arg.dtype == torch.cfloat:
|
|
arg = arg.to(torch.cdouble)
|
|
if arg.is_complex() != dtype.is_complex:
|
|
raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
|
|
"which is not supported for now")
|
|
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
|
|
v = conjugate(maybe_non_contig(arg)).detach().to(device=device).clone()
|
|
v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
|
|
return v
|
|
elif callable(arg):
|
|
return map_arg(arg(dtype=dtype, device=device))
|
|
else:
|
|
return arg
|
|
args_out = tuple(map_arg(arg) for arg in call_args)
|
|
kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
|
|
return args_out, kwargs_out
|