mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55532 Test Plan: Imported from OSS Reviewed By: mruberry Differential Revision: D27729682 Pulled By: nikithamalgifb fbshipit-source-id: d2517ee68b83e59cde87b8fb7d5bf7203f02cbc6
293 lines
9.5 KiB
Python
293 lines
9.5 KiB
Python
import os
|
|
import sys
|
|
import inspect
|
|
import unittest
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
from torch.testing import FileCheck
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
|
|
class TestBuiltins(JitTestCase):
|
|
"""
|
|
Tests for TorchScript support of Python builtin functions.
|
|
"""
|
|
|
|
def test_has_attr(self):
|
|
class HasA(torch.nn.Module):
|
|
def __init__(self):
|
|
super(HasA, self).__init__()
|
|
self.a = 0
|
|
|
|
class HasB(torch.nn.Module):
|
|
def __init__(self):
|
|
super(HasB, self).__init__()
|
|
self.b = 1
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
self.mods = torch.nn.ModuleList([HasA(), HasB()])
|
|
|
|
def forward(self):
|
|
# use a list to encode hasattr results
|
|
l = torch.jit.annotate(List[int], [])
|
|
for mod in self.mods:
|
|
l.append(int(hasattr(mod, "a")))
|
|
l.append(int(hasattr(mod, "b")))
|
|
# actually retrieve the attr to test static refinement
|
|
if hasattr(mod, "a"):
|
|
l.append(mod.a)
|
|
if hasattr(mod, "b"):
|
|
l.append(mod.b)
|
|
return l
|
|
|
|
self.checkModule(Mod(), ())
|
|
|
|
def test_has_attr_invalid_args(self):
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
self.mod = torch.nn.Linear(1, 1)
|
|
|
|
def forward(self, name):
|
|
# not allowed, `name` must be static.
|
|
return hasattr(self.mod, name)
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
|
|
torch.jit.script(Mod())
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Mod, self).__init__()
|
|
|
|
def forward(self, name):
|
|
# not allowed, `torch.rand` is not a class type
|
|
return hasattr(torch.rand(2, 3), name)
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
|
|
torch.jit.script(Mod())
|
|
|
|
def test_del(self):
|
|
def fn(x: List[int]) -> List[int]:
|
|
a = x * 2
|
|
del a
|
|
return x
|
|
|
|
self.checkScript(fn, ([1, 2, 3],))
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
|
|
@torch.jit.script
|
|
def fn(x):
|
|
a = x ** 2
|
|
del a
|
|
return a
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
|
|
@torch.jit.script
|
|
def fn(x):
|
|
a = x ** 2
|
|
if a:
|
|
del a
|
|
return a
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "b"):
|
|
@torch.jit.script
|
|
def fn(x):
|
|
a = x ** 2
|
|
del b
|
|
return a
|
|
|
|
def test_del_multiple_operands(self):
|
|
def fn(x: List[int]) -> List[int]:
|
|
a, b, c = x[0], x[1], x[2]
|
|
del a, b, c
|
|
return x
|
|
|
|
self.checkScript(fn, ([1, 2, 3],))
|
|
|
|
def del_list_multiple_operands(x: List[int]) -> List[int]:
|
|
del x[0], x[1]
|
|
return x
|
|
|
|
py_out = del_list_multiple_operands([0, 1, 2])
|
|
jit_out = torch.jit.script(del_list_multiple_operands)([0, 1, 2])
|
|
self.assertEquals(py_out, jit_out)
|
|
|
|
def del_dict_multiple_operands(x: Dict[str, int]) -> Dict[str, int]:
|
|
del x['hi'], x['there']
|
|
return x
|
|
|
|
py_out = del_dict_multiple_operands({"hi": 5, "there": 6})
|
|
jit_out = torch.jit.script(del_dict_multiple_operands)({"hi": 5, "there": 6})
|
|
self.assertEquals(py_out, jit_out)
|
|
|
|
|
|
class TestTensorBuiltins(JitTestCase):
|
|
def test_tensor_properties(self):
|
|
def should_keep(tensor, name):
|
|
if inspect.isroutine(getattr(tensor, name)):
|
|
return False
|
|
if name.startswith('_'):
|
|
return False
|
|
return True
|
|
|
|
tensor = torch.arange(4, dtype=torch.float).view(2, 2)
|
|
keys = dir(tensor)
|
|
|
|
# real and imag are only implemented for complex tensors.
|
|
self.assertRaises(RuntimeError, lambda: should_keep(tensor, 'imag'))
|
|
keys.remove('imag')
|
|
self.assertRaises(RuntimeError, lambda: should_keep(tensor, 'real'))
|
|
keys.remove('real')
|
|
|
|
properties = [p for p in keys if should_keep(tensor, p)]
|
|
|
|
code_template = """
|
|
def fn(x):
|
|
return x.{}
|
|
"""
|
|
|
|
EQUALITY_MISMATCH = set([
|
|
# TorchScript doesn't have real enums so they return an int instead
|
|
# of the actual value
|
|
'dtype',
|
|
'layout',
|
|
])
|
|
MISSING_PROPERTIES = set([
|
|
'grad_fn',
|
|
# This is an undocumented property so it's not included
|
|
"output_nr",
|
|
# This has a longer implementation, maybe not worth copying to
|
|
# TorchScript if named tensors don't work there anyways
|
|
'names',
|
|
])
|
|
|
|
for p in properties:
|
|
if p in MISSING_PROPERTIES:
|
|
continue
|
|
code = code_template.format(p)
|
|
cu = torch.jit.CompilationUnit()
|
|
cu.define(code)
|
|
if p in EQUALITY_MISMATCH:
|
|
continue
|
|
self.assertEqual(getattr(tensor, p), cu.fn(tensor))
|
|
|
|
def test_tensor_subscript_assign(self):
|
|
def fn1(x):
|
|
a = torch.zeros_like(x, dtype=torch.uint8)
|
|
a[torch.tensor(0)] = torch.tensor(2, dtype=torch.uint8)
|
|
return a
|
|
|
|
def fn2(x):
|
|
a = torch.zeros_like(x, dtype=torch.uint8)
|
|
a[0] = 2
|
|
return a
|
|
|
|
def fn3(x):
|
|
a = torch.zeros_like(x, dtype=torch.uint8)
|
|
a[torch.tensor(0)] = 2
|
|
return a
|
|
|
|
def fn4(x):
|
|
a = torch.zeros_like(x, dtype=torch.uint8)
|
|
a[0] = torch.tensor(2, dtype=torch.uint8)
|
|
return a
|
|
|
|
def fn5(x):
|
|
a = torch.zeros_like(x, dtype=torch.float32)
|
|
a[torch.tensor(0)] = 2
|
|
return a
|
|
|
|
for fn in (fn1, fn2, fn3, fn4, fn5):
|
|
self.checkScript(fn, (torch.zeros(2, dtype=torch.uint8),))
|
|
|
|
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
|
|
def test_tensor_subscript_assign_device(self):
|
|
def fn6(x):
|
|
a = torch.zeros_like(x, dtype=torch.float32, device="cuda")
|
|
a[torch.tensor(0)] = 2
|
|
return a
|
|
|
|
self.checkScript(fn6, (torch.zeros(2, dtype=torch.float32, device="cuda"),))
|
|
|
|
def test_tensor_item(self):
|
|
def test_scalar_cast(x):
|
|
scalar = x.item()
|
|
return int(scalar), float(scalar)
|
|
|
|
graph = torch.jit.script(test_scalar_cast).graph
|
|
FileCheck().check("(int, float) = prim::TupleConstruct").run(graph)
|
|
self.checkScript(test_scalar_cast, (torch.tensor(1.0),))
|
|
self.checkScript(test_scalar_cast, (torch.tensor(1),))
|
|
|
|
def test_method_on_number(self):
|
|
def func():
|
|
c = 1
|
|
return c.add(1)
|
|
with self.assertRaisesRegex(RuntimeError, 'nonexistent attribute or method'):
|
|
torch.jit.script(func)
|
|
|
|
# testing implicit conversion of tensors to scalars to match function arguments
|
|
def test_scalar_to_num_conversions(self):
|
|
@torch.jit.script
|
|
def multiple_defs(x):
|
|
c = 1
|
|
x = x + c
|
|
return x
|
|
|
|
self.assertTrue("ImplicitTensorToNum" not in str(multiple_defs.graph))
|
|
|
|
@torch.jit.script
|
|
def tensor_to_int_script(x, tensor):
|
|
return x.unsqueeze(tensor)
|
|
|
|
# location present in error message
|
|
with self.assertRaisesRegex(RuntimeError, "x.unsqueeze"):
|
|
tensor_to_int_script(torch.tensor([2]), torch.tensor([2, 2]))
|
|
|
|
def tensor_to_int(x, tensor):
|
|
return x.unsqueeze(tensor)
|
|
|
|
@torch.jit.script
|
|
def tensor_to_float_script(x, tensor):
|
|
return x.addcmul(tensor, tensor, value=tensor)
|
|
|
|
def tensor_to_float(x, tensor):
|
|
return x.addcmul(tensor, tensor, value=tensor)
|
|
|
|
x = torch.zeros(10)
|
|
# float tensor, float tensor with grad, int tensor (can't set grad on int tensor)
|
|
tensors = [torch.tensor(1.1),
|
|
torch.tensor(1.1, requires_grad=True),
|
|
torch.tensor(0),
|
|
torch.tensor([2])]
|
|
|
|
script_funs = [tensor_to_int_script, tensor_to_float_script]
|
|
funs = [tensor_to_int, tensor_to_float]
|
|
|
|
# return the result, or whether exception was thrown
|
|
def test_func(func, x, tensor):
|
|
try:
|
|
result = func(x, tensor)
|
|
except RuntimeError as e:
|
|
result = True
|
|
except TypeError as e:
|
|
result = True
|
|
return result
|
|
|
|
# assert result or exception equal for each (function, inputs)
|
|
for tensor in tensors:
|
|
for i in range(len(script_funs)):
|
|
self.assertEqual(test_func(script_funs[i], x, tensor), test_func(funs[i], x, tensor))
|