Files
pytorch/tools/linter/adapters/test_device_bias_linter.py
xinan.lin 8047421fbb [Linter] Expanding the scope of detecting device-bias code. (#159949)
Currently, the device-bias linter only targets functions decorated with @requires_gpu. This PR adds support for two new detection scenarios:
1. Detect device-bias code in functions decorated with @requires_triton.
2. Detect device-bias code for entire test suites that are defined as shared across GPUs. For example:
```
if __name__ == "__main__":
    if HAS_GPU:
        run_tests()

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159949
Approved by: https://github.com/EikanWang, https://github.com/jansel
2025-08-09 09:41:16 +00:00

240 lines
8.3 KiB
Python

#!/usr/bin/env python3
"""
This lint verifies that every Python test file (file that matches test_*.py or
*_test.py in the test folder) has a cuda hard code in `requires_gpu()` or
`requires_triton()` decorated function or `if HAS_GPU:` guarded main section,
to ensure that the test not fail on other GPU devices.
"""
from __future__ import annotations
import argparse
import ast
import json
import multiprocessing as mp
from enum import Enum
from typing import NamedTuple
LINTER_CODE = "TEST_DEVICE_BIAS"
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: str | None
line: int | None
char: int | None
code: str
severity: LintSeverity
name: str
original: str | None
replacement: str | None
description: str | None
DEVICE_BIAS = ["cuda", "xpu", "mps"]
GPU_RELATED_DECORATORS = {"requires_gpu", "requires_triton"}
def is_main_has_gpu(tree: ast.AST) -> bool:
def _contains_has_gpu(node: ast.AST) -> bool:
if isinstance(node, ast.Name) and node.id in ["HAS_GPU", "RUN_GPU"]:
return True
elif isinstance(node, ast.BoolOp):
return any(_contains_has_gpu(value) for value in node.values)
elif isinstance(node, ast.UnaryOp):
return _contains_has_gpu(node.operand)
elif isinstance(node, ast.Compare):
return _contains_has_gpu(node.left) or any(
_contains_has_gpu(comp) for comp in node.comparators
)
elif isinstance(node, (ast.IfExp, ast.Call)):
return False
return False
for node in ast.walk(tree):
# Detect if __name__ == "__main__":
if isinstance(node, ast.If):
if (
isinstance(node.test, ast.Compare)
and isinstance(node.test.left, ast.Name)
and node.test.left.id == "__name__"
):
if any(
isinstance(comp, ast.Constant) and comp.value == "__main__"
for comp in node.test.comparators
):
for inner_node in node.body:
if isinstance(inner_node, ast.If) and _contains_has_gpu(
inner_node.test
):
return True
return False
class DeviceBiasVisitor(ast.NodeVisitor):
def __init__(self, filename: str, is_gpu_test_suite: bool) -> None:
self.filename = filename
self.lint_messages: list[LintMessage] = []
self.is_gpu_test_suite = is_gpu_test_suite
def _has_proper_decorator(self, node: ast.FunctionDef) -> bool:
for d in node.decorator_list:
if isinstance(d, ast.Name) and d.id in GPU_RELATED_DECORATORS:
return True
if (
isinstance(d, ast.Call)
and isinstance(d.func, ast.Name)
and d.func.id in GPU_RELATED_DECORATORS
):
return True
return False
# check device = "cuda" or torch.device("cuda")
def _check_keyword_device(self, subnode: ast.keyword, msg_prefix: str) -> None:
if subnode.arg != "device":
return
val = subnode.value
if isinstance(val, ast.Constant) and any(
bias in val.value for bias in DEVICE_BIAS
):
self.record(
subnode,
f"{msg_prefix} device='{val.value}', suggest to use device=GPU_TYPE",
)
elif isinstance(val, ast.Call):
if (
isinstance(val.func, ast.Attribute)
and val.func.attr == "device"
and len(val.args) > 0
and isinstance(val.args[0], ast.Constant)
and any(bias in val.args[0].value for bias in DEVICE_BIAS)
):
self.record(
val,
f"{msg_prefix} torch.device('{val.args[0].value}'), suggest to use torch.device(GPU_TYPE)",
)
# check .cuda() or .to("cuda")
def _check_device_methods(self, subnode: ast.Call, msg_prefix: str) -> None:
func = subnode.func
if not isinstance(func, ast.Attribute):
return
method_name = func.attr
if method_name in DEVICE_BIAS:
self.record(
subnode,
f"{msg_prefix} .{method_name}(), suggest to use .to(GPU_TYPE)",
)
elif method_name == "to" and subnode.args:
arg = subnode.args[0]
if isinstance(arg, ast.Constant) and any(
bias in arg.value for bias in DEVICE_BIAS
):
self.record(
subnode,
f"{msg_prefix} .to('{arg.value}'), suggest to use .to(GPU_TYPE)",
)
def _check_with_statement(self, node: ast.With, msg_prefix: str) -> None:
for item in node.items:
ctx_expr = item.context_expr
if isinstance(ctx_expr, ast.Call):
func = ctx_expr.func
if (
isinstance(func, ast.Attribute)
and func.attr == "device"
and isinstance(func.value, ast.Name)
and func.value.id == "torch"
and ctx_expr.args
and isinstance(ctx_expr.args[0], ast.Constant)
and any(bias in ctx_expr.args[0].value for bias in DEVICE_BIAS)
):
self.record(
ctx_expr,
f"{msg_prefix} `with torch.device('{ctx_expr.args[0].value}')`, suggest to use torch.device(GPU_TYPE)",
)
def _check_node(self, node: ast.AST, msg_prefix: str) -> None:
for subnode in ast.walk(node):
if isinstance(subnode, ast.keyword):
self._check_keyword_device(subnode, msg_prefix)
elif isinstance(subnode, ast.Call) and isinstance(
subnode.func, ast.Attribute
):
self._check_device_methods(subnode, msg_prefix)
elif isinstance(subnode, ast.With):
self._check_with_statement(subnode, msg_prefix)
def visit_FunctionDef(self, node: ast.FunctionDef) -> None:
if self._has_proper_decorator(node):
msg_prefix = (
"`@requires_gpu` or `@requires_triton` function should not hardcode"
)
self._check_node(node, msg_prefix)
elif self.is_gpu_test_suite:
# If the function is guarded by HAS_GPU in main(), we still need to check for device bias
msg_prefix = "The test suites is shared amount GPUS, should not hardcode"
self._check_node(node, msg_prefix)
self.generic_visit(node)
def record(self, node: ast.AST, message: str) -> None:
self.lint_messages.append(
LintMessage(
path=self.filename,
line=getattr(node, "lineno", None),
char=None,
code=LINTER_CODE,
severity=LintSeverity.ERROR,
name="[device-bias]",
original=None,
replacement=None,
description=message,
)
)
def check_file(filename: str) -> list[LintMessage]:
with open(filename) as f:
source = f.read()
tree = ast.parse(source, filename=filename)
is_gpu_test_suite = is_main_has_gpu(tree)
checker = DeviceBiasVisitor(filename, is_gpu_test_suite)
checker.visit(tree)
return checker.lint_messages
def main() -> None:
parser = argparse.ArgumentParser(
description="Detect Device bias in functions decorated with requires_gpu/requires_triton"
" or guarded by HAS_GPU block in main() that may break other GPU devices.",
fromfile_prefix_chars="@",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
with mp.Pool(8) as pool:
lint_messages = pool.map(check_file, args.filenames)
flat_lint_messages = []
for sublist in lint_messages:
flat_lint_messages.extend(sublist)
for lint_message in flat_lint_messages:
print(json.dumps(lint_message._asdict()), flush=True)
if __name__ == "__main__":
main()