mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Currently OutputGraphGuardsState is separated out as a serializable interface for OutputGraph, but some of the typing around it is incorrect in dynamo's guards.py and output_graph.py: more fields are used by code than claimed by OutputGraphGuardsState, and it works because either the full OutputGraph is passed in or the parts that use those fields are dead when OutputGraphGuardsState is passed in. In this PR we try to further separate the necessary fields of OutputGraph that should be retained by a full graph capture mechanism, not just limited to dynamo (as it is currently) but also something like make_fx (in the future). Since these fields do not need to be serialized, the result is an intermediate "common" data structure that is between OutputGraphGuardsState and OutputGraph in the inheritance hierarchy. Differential Revision: D81718791 Pull Request resolved: https://github.com/pytorch/pytorch/pull/162211 Approved by: https://github.com/zhxchen17
1061 lines
38 KiB
Python
1061 lines
38 KiB
Python
"""
|
|
This module provides the infrastructure for creating and managing compile package
|
|
for torch.compile. We mainly have two abstractions here:
|
|
- CompilePackage: Overarching data structure for store and lookup a list of compiled codes.
|
|
- CodeCacheEntry: Data structure for a single code being compiled by torch.compile.
|
|
The caching behavior is always under user control explicitly so that a stronger guarantee can
|
|
be provided about cache hit for a specific compiled model. Users can load the compile package
|
|
from a different process or host.
|
|
"""
|
|
|
|
import abc
|
|
import ast
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import inspect
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import platform
|
|
import shutil
|
|
import sys
|
|
import types
|
|
from collections.abc import Generator, Iterator
|
|
from typing import Any, Callable, NewType, Optional
|
|
from typing_extensions import Never
|
|
|
|
import torch
|
|
from torch._dynamo.exc import PackageError
|
|
from torch._dynamo.graph_utils import _graph_device_type
|
|
|
|
from .bytecode_transformation import get_code_keys
|
|
from .utils import dynamo_timed, increment_frame
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class SerializedCode:
|
|
co_argcount: int
|
|
co_posonlyargcount: int
|
|
co_kwonlyargcount: int
|
|
co_nlocals: int
|
|
co_stacksize: int
|
|
co_flags: int
|
|
co_code: bytes
|
|
co_consts: tuple[Any, ...]
|
|
co_names: tuple[str, ...]
|
|
co_varnames: tuple[str, ...]
|
|
co_filename: str
|
|
co_name: str
|
|
co_firstlineno: int
|
|
co_cellvars: tuple[str, ...]
|
|
co_freevars: tuple[str, ...]
|
|
co_linetable: Optional[bytes] = None
|
|
co_qualname: Optional[str] = None
|
|
co_exceptiontable: Optional[bytes] = None
|
|
co_lnotab: Optional[str] = None
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def from_code_object(cls, code: types.CodeType) -> "SerializedCode":
|
|
kwargs = {key: getattr(code, key) for key in get_code_keys()}
|
|
kwargs["co_consts"] = tuple(
|
|
cls.from_code_object(c) if isinstance(c, types.CodeType) else c
|
|
for c in kwargs["co_consts"]
|
|
)
|
|
return cls(**kwargs)
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def to_code_object(cls, serialized_code: "SerializedCode") -> types.CodeType:
|
|
kwargs = {key: getattr(serialized_code, key) for key in get_code_keys()}
|
|
kwargs["co_consts"] = tuple(
|
|
cls.to_code_object(c) if isinstance(c, SerializedCode) else c
|
|
for c in kwargs["co_consts"]
|
|
)
|
|
return types.CodeType(
|
|
*kwargs.values(),
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _GuardedCodeCacheEntry:
|
|
"""
|
|
Contains the serializable information associated with a single compilation in dynamo.
|
|
To restore an execution of compiled code, we will need to serialize the following data:
|
|
- Dynamo bytecode for mapping Python inputs/outputs.
|
|
- Dynamo guards.
|
|
"""
|
|
|
|
guards_state: bytes
|
|
dynamo_code: SerializedCode
|
|
|
|
|
|
_BackendId = NewType("_BackendId", str) # __compiled_fn
|
|
_FunctionId = NewType("_FunctionId", str) # __resume_at
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class InlinedSource:
|
|
module: str
|
|
firstlineno: int
|
|
lastlineno: int
|
|
checksum: str
|
|
content: str
|
|
|
|
|
|
@functools.cache
|
|
def _get_module_content(module: types.ModuleType) -> str:
|
|
return inspect.getsource(module)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class SourceInfo:
|
|
inlined_sources: set[InlinedSource]
|
|
|
|
def add_code(self, code: types.CodeType) -> None:
|
|
module = inspect.getmodule(code)
|
|
if module is None:
|
|
return
|
|
sourcelines, firstlineno = inspect.getsourcelines(code)
|
|
lastlineno = firstlineno + len(sourcelines)
|
|
source = "".join(sourcelines)
|
|
assert source == "".join(_get_sourcelines(module, firstlineno, lastlineno))
|
|
self.inlined_sources.add(
|
|
InlinedSource(
|
|
module=module.__name__,
|
|
firstlineno=firstlineno,
|
|
lastlineno=lastlineno,
|
|
checksum=_hash_source(source),
|
|
content=_get_module_content(module),
|
|
)
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class DynamoCaptureOutput:
|
|
"""
|
|
Core information generated from Dynamo for fullgraph=True.
|
|
"""
|
|
|
|
guarded_codes: list[_GuardedCodeCacheEntry]
|
|
backend_ids: list[_BackendId]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _DynamoCodeCacheEntry(DynamoCaptureOutput):
|
|
"""
|
|
Contains the serializable information associated with a single code object
|
|
in dynamo. To restore an execution of compiled code, we will need the following
|
|
ingredients:
|
|
1. The "original" code object, which serves as the entry point for eager
|
|
execution, i.e. the code only executed when there's no cache entry hit.
|
|
2. The python module name this code object belongs to, for identifying the
|
|
enclosing global scope to inject compiled and resume functions.
|
|
3. A list of function names that pointing to this code object. There could be
|
|
multiple function objects pointing to the same code such as recursive functions.
|
|
4. A list of guarded code that eval frame dispatches to.
|
|
5. A list of imported module objects unioned from all compiled branches.
|
|
6. A list of "backends" (compiled fx graph) unioned from all compield branches.
|
|
7. A string path used to access the original code object users defined.
|
|
A code object can be accessed by "{python_module}.{function_name}.{code_source}" .
|
|
8. A boolean flag indicating whether the function is installed to global scope.
|
|
9. A boolean flag indicating whether the function has a compile id.
|
|
10. Whether or not this code entry was bypassed
|
|
"""
|
|
|
|
python_code: SerializedCode
|
|
python_module: str
|
|
function_names: list[_FunctionId]
|
|
import_sources: dict[str, str]
|
|
code_source: Optional[str]
|
|
install_to_global: bool
|
|
has_compile_id: bool = False
|
|
bypassed: bool = False
|
|
|
|
|
|
def _lookup_code(entry: _DynamoCodeCacheEntry) -> types.CodeType:
|
|
assert len(entry.function_names) == 1
|
|
fn: Any = sys.modules[entry.python_module]
|
|
parts = entry.function_names[0].split(".")
|
|
for part in parts:
|
|
fn = getattr(fn, part)
|
|
if entry.code_source:
|
|
parts = entry.code_source.split(".")
|
|
for part in parts:
|
|
if part.endswith("]"):
|
|
index_begin = part.rfind("[")
|
|
assert isinstance(index_begin, int) and index_begin >= 0
|
|
attr = getattr(fn, part[:index_begin], None)
|
|
if attr is None:
|
|
raise PackageError(f"Cannot find source for code entry {entry}")
|
|
fn = attr[ast.literal_eval(part[index_begin + 1 : -1])]
|
|
else:
|
|
fn = getattr(fn, part)
|
|
else:
|
|
raise PackageError(f"Cannot find source for code entry {entry}")
|
|
assert isinstance(fn, types.CodeType)
|
|
return fn
|
|
|
|
|
|
def _raise_resolution_error(code: types.CodeType, scope: Any) -> Never:
|
|
raise PackageError(
|
|
f"Cannot resolve a fully qualified name for {code}. Lookup scope: {scope}"
|
|
)
|
|
|
|
|
|
def _get_code_source(code: types.CodeType) -> tuple[str, str]:
|
|
"""
|
|
Given a code object, return a fully qualified name which will be used as
|
|
a serialized handle to access the code object from the new process.
|
|
This is normally a straightforward process, but there are some corner cases:
|
|
1. When a function is defined with decorator, then this function will be captured
|
|
inside a closure with the wrapper object.
|
|
2. When a function is defined as a nested function, then the code object will be
|
|
stored on the co_consts field of the parent code object by Python compiler.
|
|
This function handles all of the corner cases above.
|
|
"""
|
|
|
|
module = inspect.getmodule(code)
|
|
if module is None:
|
|
raise PackageError(f"Cannot find module for code {code}")
|
|
|
|
toplevel: Any = module
|
|
if sys.version_info >= (3, 11):
|
|
parts = code.co_qualname.split(".")
|
|
|
|
for part in parts:
|
|
if not hasattr(toplevel, part):
|
|
_raise_resolution_error(code, toplevel)
|
|
toplevel = getattr(toplevel, part)
|
|
if inspect.isfunction(toplevel):
|
|
break
|
|
seen = set()
|
|
|
|
def _find_code_source(obj: Any) -> Optional[str]:
|
|
nonlocal toplevel
|
|
nonlocal seen
|
|
if obj in seen:
|
|
return None
|
|
|
|
seen.add(obj)
|
|
|
|
if inspect.iscode(obj):
|
|
if obj is code:
|
|
return ""
|
|
|
|
for i, const in enumerate(obj.co_consts):
|
|
if (res := _find_code_source(const)) is not None:
|
|
return f".co_consts[{i}]{res}"
|
|
|
|
if inspect.isfunction(obj):
|
|
if (res := _find_code_source(obj.__code__)) is not None:
|
|
toplevel = obj
|
|
return f".__code__{res}"
|
|
if obj.__closure__ is not None:
|
|
for i, cell in enumerate(obj.__closure__):
|
|
try:
|
|
cell_contents = cell.cell_contents
|
|
except ValueError:
|
|
continue
|
|
if not (
|
|
inspect.isfunction(cell_contents)
|
|
or inspect.iscode(cell_contents)
|
|
):
|
|
continue
|
|
if (res := _find_code_source(cell_contents)) is not None:
|
|
toplevel = obj
|
|
return f".__closure__[{i}].cell_contents{res}"
|
|
|
|
if sys.version_info < (3, 11):
|
|
if inspect.ismodule(obj):
|
|
for value in obj.__dict__.values():
|
|
if not (inspect.isfunction(value) or inspect.isclass(value)):
|
|
continue
|
|
if (res := _find_code_source(value)) is not None:
|
|
return res
|
|
|
|
if inspect.isclass(obj):
|
|
for name, value in obj.__dict__.items():
|
|
value = getattr(obj, name)
|
|
if not (inspect.isfunction(value) or inspect.isclass(value)):
|
|
continue
|
|
if (res := _find_code_source(value)) is not None:
|
|
if value.__name__ != name:
|
|
_raise_resolution_error(code, toplevel)
|
|
return res
|
|
return None
|
|
|
|
code_source = _find_code_source(toplevel)
|
|
if code_source is None:
|
|
_raise_resolution_error(code, toplevel)
|
|
return toplevel.__qualname__, code_source.strip(".")
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class SystemInfo:
|
|
"""
|
|
System information including Python, PyTorch, and GPU details.
|
|
This information is used to ensure compiled artifacts can only be loaded
|
|
with compatible system configurations.
|
|
"""
|
|
|
|
python_version: str
|
|
torch_version: str
|
|
toolkit_version: Optional[str]
|
|
triton_version: Optional[tuple[int, int]]
|
|
gpu_name: Optional[str]
|
|
CHECK_GPUS = ("cuda", "xpu")
|
|
|
|
@classmethod
|
|
def current(cls) -> "SystemInfo":
|
|
"""Create a SystemInfo instance with current system information."""
|
|
# Get GPU name if CUDA or XPU is available
|
|
gpu_name = None
|
|
from torch.utils._triton import get_triton_version
|
|
|
|
gpu_name, toolkit_version = None, None
|
|
for device_type in cls.CHECK_GPUS:
|
|
if getattr(torch, device_type).is_available():
|
|
try:
|
|
gpu_name = getattr(torch, device_type).get_device_name()
|
|
toolkit_version = getattr(torch.version, device_type)
|
|
break
|
|
except Exception:
|
|
pass
|
|
|
|
return cls(
|
|
python_version=platform.python_version(),
|
|
torch_version=torch.__version__,
|
|
toolkit_version=toolkit_version,
|
|
triton_version=get_triton_version((0, 0)),
|
|
gpu_name=gpu_name,
|
|
)
|
|
|
|
def check_compatibility(
|
|
self, other: "SystemInfo", device_type: str = "cpu"
|
|
) -> None:
|
|
"""
|
|
Check if this SystemInfo is compatible with another SystemInfo.
|
|
Raises RuntimeError if incompatible.
|
|
"""
|
|
if self.python_version != other.python_version:
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different Python version: {self.python_version}"
|
|
)
|
|
|
|
if self.torch_version != other.torch_version:
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different PyTorch version: {self.torch_version}"
|
|
)
|
|
if device_type in self.CHECK_GPUS:
|
|
if not getattr(torch, device_type).is_available():
|
|
raise RuntimeError(f"{device_type} is not available")
|
|
|
|
if self.toolkit_version != other.toolkit_version:
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different toolkit version: {self.toolkit_version}"
|
|
)
|
|
|
|
if (
|
|
other.triton_version != (0, 0)
|
|
and self.triton_version != other.triton_version
|
|
):
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different Triton version: {self.triton_version}"
|
|
)
|
|
|
|
# Check GPU name if CUDA/XPU was used
|
|
if other.gpu_name is not None and self.gpu_name != other.gpu_name:
|
|
raise RuntimeError(
|
|
f"Compile package was created with different GPU: "
|
|
f"cached={self.gpu_name}, current={other.gpu_name}"
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _DynamoCacheEntry:
|
|
codes: list[_DynamoCodeCacheEntry]
|
|
source_info: SourceInfo
|
|
device_type: str
|
|
system_info: SystemInfo = dataclasses.field(default_factory=SystemInfo.current)
|
|
fn_name: Optional[str] = None
|
|
fn_first_lineno: Optional[str] = None
|
|
|
|
@property
|
|
def backend_ids(self) -> set[_BackendId]:
|
|
return {backend_id for code in self.codes for backend_id in code.backend_ids}
|
|
|
|
def check_versions(self) -> None:
|
|
"""Check if the current system is compatible with the system used to create this cache entry."""
|
|
current_system_info = SystemInfo.current()
|
|
self.system_info.check_compatibility(current_system_info, self.device_type)
|
|
|
|
def debug_info(self) -> dict[str, Any]:
|
|
assert len(self.codes) > 0
|
|
return {
|
|
"num_codes": str(len(self.codes)),
|
|
"fn_name": self.fn_name,
|
|
"fn_first_lineno": self.fn_first_lineno,
|
|
"device_type": self.device_type,
|
|
"backend_ids": list(self.backend_ids),
|
|
}
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class PrecompileCacheEntry:
|
|
"""
|
|
A full cache entry for caching precompile, for a toplevel torch.compile.
|
|
Consists of a _DynamoCacheEntry, which contains all the dynamo related contents,
|
|
and a set of backends content. In general, the backend content here will always
|
|
be of type precompile_context.BackendCacheArtifact
|
|
"""
|
|
|
|
dynamo: _DynamoCacheEntry
|
|
backends: dict[_BackendId, Any]
|
|
|
|
|
|
def _hash_source(source: str) -> str:
|
|
sha256_hash = hashlib.sha256()
|
|
sha256_hash.update(source.encode())
|
|
return sha256_hash.hexdigest()
|
|
|
|
|
|
def _get_sourcelines(
|
|
m: types.ModuleType, firstlineno: int, lastlineno: int
|
|
) -> list[str]:
|
|
return inspect.getsourcelines(m)[0][firstlineno - 1 : lastlineno - 1]
|
|
|
|
|
|
def _hash_sourcelines(m: types.ModuleType, firstlineno: int, lastlineno: int) -> str:
|
|
return _hash_source("".join(_get_sourcelines(m, firstlineno, lastlineno)))
|
|
|
|
|
|
def _compile_frame_context(
|
|
code: types.CodeType,
|
|
) -> contextlib.AbstractContextManager[None]:
|
|
from torch._dynamo.convert_frame import get_compile_id, log_dynamo_start
|
|
from torch._guards import compile_context, CompileContext
|
|
|
|
# Each code represents a new compile frame
|
|
# recompiles on the same frame are all saved
|
|
# under the same cache entry, so we don't have recompile ids
|
|
# i.e. If cold start had 0/0, 0/1, 1/0, 1/1, these would be
|
|
# collapsed into 0/0, 1/0 on warm.
|
|
@contextlib.contextmanager
|
|
def _ctx() -> Iterator[None]:
|
|
increment_frame()
|
|
compile_id = get_compile_id(frame_state={})
|
|
with (
|
|
compile_context(CompileContext(compile_id)),
|
|
dynamo_timed(
|
|
"_compile.compile_inner",
|
|
phase_name="entire_frame_compile",
|
|
dynamo_compile_column_us="dynamo_cumulative_compile_time_us",
|
|
# TODO: save all relevant compilation metrics
|
|
metadata={
|
|
"frame_key": str(torch._dynamo.utils.curr_frame),
|
|
"co_name": code.co_name,
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
},
|
|
),
|
|
):
|
|
log_dynamo_start(code)
|
|
yield
|
|
|
|
return _ctx()
|
|
|
|
|
|
class CompilePackage:
|
|
"""
|
|
CompilePackage is considered a low level component and should not be directly exposed to
|
|
end users. It has the following interface:
|
|
|
|
1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states.
|
|
a. when `dynamo` argument is None, it will construct a brand new CompilePackage object.
|
|
b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state.
|
|
2. `package.save()` which dumps the dynamo and backend states to a DynamoCacheEntry object.
|
|
3. `package.install(backends) which will handle all the side-effectful global scope
|
|
updates with compiled functions and resume functions.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fn: Optional[Callable[..., Any]],
|
|
dynamo: Optional[_DynamoCacheEntry] = None,
|
|
ignore_inlined_sources: bool = False,
|
|
) -> None:
|
|
self._innermost_fn = None
|
|
self._codes: dict[types.CodeType, _DynamoCodeCacheEntry] = {}
|
|
|
|
self._current_entry: Optional[_DynamoCodeCacheEntry] = None
|
|
self._installed_globals: dict[types.ModuleType, list[str]] = {}
|
|
# device_type that model compiled with.
|
|
self._device_type = "cpu"
|
|
|
|
# For debugging/testing purpose only.
|
|
self._cached_backends: dict[_BackendId, Any] = {}
|
|
self._source_info: SourceInfo = SourceInfo(inlined_sources=set())
|
|
self._resume_codes: set[types.CodeType] = set()
|
|
self._initialized = False
|
|
if fn is not None:
|
|
self.initialize(fn, dynamo, ignore_inlined_sources)
|
|
self.uninstall()
|
|
self.validate()
|
|
|
|
def is_initialized(self) -> bool:
|
|
return self._initialized
|
|
|
|
def initialize(
|
|
self,
|
|
fn: Any,
|
|
dynamo: Optional[_DynamoCacheEntry] = None,
|
|
ignore_inlined_sources: bool = False,
|
|
) -> None:
|
|
from .eval_frame import innermost_fn
|
|
|
|
assert not self._initialized
|
|
self._source_info = SourceInfo(inlined_sources=set())
|
|
self._innermost_fn = innermost_fn(fn) # type: ignore[assignment]
|
|
assert self._innermost_fn is not None
|
|
if dynamo is not None:
|
|
assert isinstance(dynamo, _DynamoCacheEntry)
|
|
dynamo.check_versions()
|
|
if not ignore_inlined_sources:
|
|
for code in dynamo.source_info.inlined_sources:
|
|
m = importlib.import_module(code.module)
|
|
checksum = _hash_sourcelines(m, code.firstlineno, code.lastlineno)
|
|
if checksum != code.checksum:
|
|
raise RuntimeError(
|
|
f"Source code changes detected for {code.module} (line {code.firstlineno} - line {code.lastlineno})"
|
|
)
|
|
|
|
self._source_info = dynamo.source_info
|
|
|
|
main, *codes = dynamo.codes
|
|
self._codes = {self._innermost_fn.__code__: main}
|
|
for code in codes:
|
|
self._codes[SerializedCode.to_code_object(code.python_code)] = code
|
|
else:
|
|
self._add_function(
|
|
self._innermost_fn.__code__, self._innermost_fn.__module__
|
|
)
|
|
self._initialized = True
|
|
|
|
def _add_function(
|
|
self,
|
|
python_code: types.CodeType,
|
|
python_module: str,
|
|
function_name: Optional[_FunctionId] = None,
|
|
code_source: Optional[str] = None,
|
|
install_to_global: bool = False,
|
|
) -> None:
|
|
if python_code not in self._codes:
|
|
code = _DynamoCodeCacheEntry(
|
|
python_code=SerializedCode.from_code_object(python_code),
|
|
python_module=python_module,
|
|
function_names=[],
|
|
guarded_codes=[],
|
|
import_sources={},
|
|
backend_ids=[],
|
|
code_source=code_source,
|
|
install_to_global=install_to_global,
|
|
)
|
|
self._codes[python_code] = code
|
|
else:
|
|
code = self._codes[python_code]
|
|
assert code.python_module == python_module
|
|
assert code.install_to_global == install_to_global
|
|
assert code.code_source == code_source
|
|
|
|
if function_name is not None:
|
|
code.function_names.append(function_name)
|
|
|
|
@property
|
|
def cached_backends(self) -> dict[_BackendId, Any]:
|
|
return self._cached_backends
|
|
|
|
@functools.cached_property
|
|
def source_id(self) -> str:
|
|
assert self._innermost_fn is not None
|
|
return CompilePackage.source_id_from_fn(self._innermost_fn)
|
|
|
|
def _add_user_function(self, code: types.CodeType) -> None:
|
|
function_name, code_source = _get_code_source(code)
|
|
module = inspect.getmodule(code)
|
|
if module is None:
|
|
raise PackageError(f"Cannot find module for code {code}")
|
|
self._add_function(
|
|
code,
|
|
module.__name__,
|
|
function_name=_FunctionId(function_name),
|
|
code_source=code_source,
|
|
)
|
|
|
|
@contextlib.contextmanager
|
|
def code_context(self, code: types.CodeType) -> Generator[None, None, None]:
|
|
assert self._current_entry is None
|
|
|
|
# Sometimes user code cannot be inlined in dynamo resulting in extra user code
|
|
# being compiled. We should record these as when they are actually invoked.
|
|
if code not in self._codes:
|
|
self._add_user_function(code)
|
|
|
|
entry = self._codes[code]
|
|
self._current_entry = entry
|
|
try:
|
|
yield
|
|
finally:
|
|
if (
|
|
entry.bypassed
|
|
): # Remove the code from the cache entry if it's been bypassed
|
|
del self._codes[code]
|
|
entry.has_compile_id = True
|
|
self._current_entry = None
|
|
|
|
def add_guarded_code(
|
|
self,
|
|
guards_state: bytes,
|
|
dynamo_code: types.CodeType,
|
|
) -> None:
|
|
assert self._current_entry is not None
|
|
if self._current_entry.bypassed:
|
|
return
|
|
guarded_code_entry = _GuardedCodeCacheEntry(
|
|
guards_state=guards_state,
|
|
dynamo_code=SerializedCode.from_code_object(dynamo_code),
|
|
)
|
|
self._current_entry.guarded_codes.append(guarded_code_entry)
|
|
|
|
def add_inlined_source(self, sources: list[types.CodeType]) -> None:
|
|
assert self._current_entry is not None
|
|
if self._current_entry.bypassed:
|
|
return
|
|
for code in sources:
|
|
if code in self._resume_codes:
|
|
continue
|
|
self._source_info.add_code(code)
|
|
|
|
def update_device_type(self, graph: Optional[torch.fx.Graph]) -> None:
|
|
self._device_type = _graph_device_type(graph)
|
|
|
|
def bypass_current_entry(self) -> None:
|
|
assert self._current_entry is not None
|
|
self._current_entry.bypassed = True
|
|
|
|
def add_resume_function(
|
|
self,
|
|
python_code: types.CodeType,
|
|
python_module: str,
|
|
function_name: Optional[str],
|
|
) -> None:
|
|
self._add_function(
|
|
python_code,
|
|
python_module,
|
|
function_name=_FunctionId(function_name) if function_name else None,
|
|
install_to_global=True,
|
|
)
|
|
self._resume_codes.add(python_code)
|
|
|
|
def add_import_source(self, alias: str, module_name: str) -> None:
|
|
assert self._current_entry is not None
|
|
self._current_entry.import_sources[alias] = module_name
|
|
|
|
def add_backend_id(self, backend_id: str, backend: Optional[Any] = None) -> None:
|
|
assert self._current_entry is not None
|
|
assert backend_id.startswith("__compiled_fn_") # sanity check
|
|
backend_id = _BackendId(backend_id)
|
|
self._current_entry.backend_ids.append(backend_id)
|
|
if backend is not None:
|
|
self._cached_backends[backend_id] = backend
|
|
|
|
def validate(self) -> None:
|
|
assert self._current_entry is None
|
|
assert self._innermost_fn is not None
|
|
assert self._initialized
|
|
assert next(iter(self._codes)) is self._innermost_fn.__code__
|
|
|
|
def _install_global(self, module: types.ModuleType, name: str, value: Any) -> None:
|
|
module.__dict__[name] = value
|
|
self._installed_globals.setdefault(module, []).append(name)
|
|
|
|
def uninstall(self) -> None:
|
|
from torch._C._dynamo.eval_frame import _reset_precompile_entries
|
|
|
|
assert self._innermost_fn is not None
|
|
for module, names in self._installed_globals.items():
|
|
for name in names:
|
|
module.__dict__.pop(name)
|
|
|
|
self._installed_globals = {}
|
|
|
|
_reset_precompile_entries(self._innermost_fn.__code__)
|
|
|
|
def install(self, backends: dict[_BackendId, Any]) -> None:
|
|
"""
|
|
Sync the package states to the compiled function. This includes the following actions:
|
|
1. Clean up the previously installed states.
|
|
2. Install the compiled functions to global scopes.
|
|
3. Install the precompiled cache entries to ExtraStates on the code object.
|
|
"""
|
|
from torch._C._dynamo.eval_frame import _load_precompile_entry
|
|
|
|
from .output_graph import get_builtins_dict, OutputGraphCommon
|
|
|
|
self.uninstall()
|
|
for code, entry in self._codes.items():
|
|
context = (
|
|
_compile_frame_context(code)
|
|
if entry.has_compile_id
|
|
else contextlib.nullcontext()
|
|
)
|
|
with context:
|
|
module = sys.modules[entry.python_module]
|
|
for alias, module_name in entry.import_sources.items():
|
|
self._install_global(
|
|
module, alias, importlib.import_module(module_name)
|
|
)
|
|
target_code = code
|
|
if entry.install_to_global:
|
|
for function_name in entry.function_names:
|
|
fn = types.FunctionType(code, module.__dict__, function_name)
|
|
self._install_global(module, function_name, fn)
|
|
if entry.code_source:
|
|
target_code = _lookup_code(entry)
|
|
|
|
for backend_id in entry.backend_ids:
|
|
if backend_id not in backends:
|
|
raise RuntimeError(
|
|
f"Backend {backend_id} is not found in the given backends"
|
|
)
|
|
with dynamo_timed(
|
|
"after_deserialization", phase_name="backend_compile"
|
|
):
|
|
backend = backends[backend_id].after_deserialization()
|
|
self._install_global(
|
|
module,
|
|
backend_id,
|
|
torch._dynamo.disable(backend),
|
|
)
|
|
|
|
if len(entry.guarded_codes) == 0:
|
|
# Dynamo generates empty graph for trivial functions, should just skip them
|
|
# in these cases.
|
|
torch._dynamo.eval_frame.skip_code(target_code)
|
|
|
|
for guarded_code in entry.guarded_codes:
|
|
guards_state = pickle.loads(guarded_code.guards_state)
|
|
runtime_global_scope = sys.modules[entry.python_module].__dict__
|
|
# The installed builtins dict might be absent from the runtime
|
|
# while loading guards. Populate it if it's missing.
|
|
if (
|
|
builtin_dict_name
|
|
:= guards_state.output_graph.name_of_builtins_dict_key_in_fglobals
|
|
):
|
|
builtins_dict = get_builtins_dict(runtime_global_scope)
|
|
if builtin_dict_name in runtime_global_scope:
|
|
assert (
|
|
runtime_global_scope[builtin_dict_name] is builtins_dict
|
|
)
|
|
else:
|
|
runtime_global_scope[builtin_dict_name] = builtins_dict
|
|
assert isinstance(guards_state, torch._dynamo.guards.GuardsState)
|
|
check_fn_manager = torch._dynamo.guards.CheckFunctionManager(
|
|
target_code,
|
|
OutputGraphCommon(guards_state.output_graph),
|
|
shape_code_parts=guards_state.shape_code_parts,
|
|
runtime_global_scope=runtime_global_scope,
|
|
)
|
|
_load_precompile_entry(
|
|
target_code,
|
|
check_fn_manager.guard_manager,
|
|
SerializedCode.to_code_object(guarded_code.dynamo_code),
|
|
)
|
|
|
|
def cache_entry(self) -> _DynamoCacheEntry:
|
|
self.validate()
|
|
assert self._innermost_fn is not None
|
|
return _DynamoCacheEntry(
|
|
codes=list(self._codes.values()),
|
|
source_info=self._source_info,
|
|
device_type=self._device_type,
|
|
fn_name=self._innermost_fn.__qualname__,
|
|
fn_first_lineno=self._innermost_fn.__code__.co_firstlineno,
|
|
)
|
|
|
|
@staticmethod
|
|
def source_id_from_fn(fn: Callable[..., Any]) -> str:
|
|
from .eval_frame import innermost_fn
|
|
|
|
innermost_fn_ = innermost_fn(fn)
|
|
|
|
sha256_hash = hashlib.sha256()
|
|
sha256_hash.update(innermost_fn_.__qualname__.encode())
|
|
sha256_hash.update(str(innermost_fn_.__code__.co_firstlineno).encode())
|
|
return sha256_hash.hexdigest()
|
|
|
|
|
|
_Backends = dict[_BackendId, Any]
|
|
|
|
|
|
class DynamoStore(abc.ABC):
|
|
"""
|
|
A DynamoStore tracks active CompilePackages, and provides methods to store and retrieve them.
|
|
|
|
This is an abstract base class for different storage implementations.
|
|
"""
|
|
|
|
def record_package(self, package: CompilePackage) -> None:
|
|
"""
|
|
Records a package to PrecompileContext, so that it can be serialized later.
|
|
"""
|
|
from torch._dynamo.precompile_context import PrecompileContext
|
|
|
|
cache_entry = package.cache_entry()
|
|
PrecompileContext.record_dynamo_cache_entry(
|
|
cache_entry=cache_entry, key=package.source_id
|
|
)
|
|
|
|
def record_eager_backend(self, backend_id: _BackendId, backend: Any) -> None:
|
|
"""
|
|
Records eager fx graphs to PrecompileContext for testing purposes.
|
|
"""
|
|
from torch._dynamo.precompile_context import (
|
|
EagerCacheArtifact,
|
|
PrecompileContext,
|
|
)
|
|
|
|
result = EagerCacheArtifact(key=backend_id, content=backend)
|
|
PrecompileContext.record_artifact(result)
|
|
|
|
@abc.abstractmethod
|
|
def clear(self) -> None: ...
|
|
|
|
@abc.abstractmethod
|
|
def write(
|
|
self,
|
|
cache_entry: PrecompileCacheEntry,
|
|
path: str,
|
|
) -> None:
|
|
"""
|
|
Abstract method to write dynamo cache entry and backends to storage.
|
|
|
|
Args:
|
|
dynamo: The dynamo cache entry to write
|
|
backends: Dictionary of backend content to write
|
|
path: Path or key to identify where to write the data
|
|
"""
|
|
...
|
|
|
|
def save_cache_entry(self, cache_entry: _DynamoCacheEntry, key: str) -> None:
|
|
"""
|
|
Saves a package to a given path. Grabs backends from PrecompileContext.
|
|
"""
|
|
from torch._dynamo.precompile_context import (
|
|
BackendCacheArtifact,
|
|
PrecompileContext,
|
|
)
|
|
|
|
backend_content: _Backends = {}
|
|
for backend_id in cache_entry.backend_ids:
|
|
serialized_backend = PrecompileContext.serialize_artifact_by_key(backend_id)
|
|
if serialized_backend is None:
|
|
raise RuntimeError(
|
|
f"Backend {backend_id} is not found in the given backends"
|
|
)
|
|
assert isinstance(serialized_backend, BackendCacheArtifact)
|
|
backend_content[backend_id] = serialized_backend
|
|
|
|
entry = PrecompileCacheEntry(cache_entry, backend_content)
|
|
|
|
self.write(entry, key)
|
|
|
|
def save_package(self, package: CompilePackage, key: str) -> None:
|
|
"""
|
|
Saves a package to a given path. Grabs backends from PrecompileContext.
|
|
"""
|
|
self.record_package(package)
|
|
cache_entry = package.cache_entry()
|
|
self.save_cache_entry(cache_entry, key)
|
|
|
|
@abc.abstractmethod
|
|
def read(self, path: str) -> PrecompileCacheEntry:
|
|
"""
|
|
Abstract method to read dynamo cache entry and backends from storage.
|
|
|
|
Args:
|
|
path: Path or key to identify where to read the data from
|
|
|
|
Returns:
|
|
A tuple containing (dynamo_cache_entry, backend_content)
|
|
"""
|
|
...
|
|
|
|
def load_cache_entry(self, key: str) -> PrecompileCacheEntry:
|
|
from torch._dynamo.precompile_context import (
|
|
BackendCacheArtifact,
|
|
PrecompileContext,
|
|
)
|
|
|
|
precompile_entry = self.read(key)
|
|
for backend in precompile_entry.backends.values():
|
|
assert isinstance(backend, BackendCacheArtifact)
|
|
PrecompileContext.record_artifact(backend)
|
|
|
|
return precompile_entry
|
|
|
|
def load_package(
|
|
self, fn: Any, key: str
|
|
) -> tuple[CompilePackage, dict[_BackendId, Any]]:
|
|
"""
|
|
Loads a package from a given path and returns it plus a list of deserialized backends
|
|
"""
|
|
entry = self.load_cache_entry(key)
|
|
package = CompilePackage(fn, entry.dynamo)
|
|
return package, entry.backends
|
|
|
|
|
|
class InMemoryDynamoStore(DynamoStore):
|
|
"""
|
|
A DynamoStore implementation that keeps state about CompilePackages in memory.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.packages: dict[str, PrecompileCacheEntry] = {}
|
|
|
|
def clear(self) -> None:
|
|
self.packages.clear()
|
|
|
|
def write(
|
|
self,
|
|
entry: PrecompileCacheEntry,
|
|
path: str,
|
|
) -> None:
|
|
"""
|
|
Store the dynamo cache entry and backends in memory instead of writing to disk.
|
|
"""
|
|
self.packages[path] = entry
|
|
|
|
def read(self, path: str) -> PrecompileCacheEntry:
|
|
"""
|
|
Read dynamo cache entry and backends from memory.
|
|
"""
|
|
if path not in self.packages:
|
|
raise RuntimeError(f"No package found with key {path}")
|
|
|
|
return self.packages[path]
|
|
|
|
|
|
class DiskDynamoStore(DynamoStore):
|
|
"""
|
|
A DynamoStore implementation that keeps state about CompilePackages on disk.
|
|
"""
|
|
|
|
def __init__(self, path_prefix: str = ""):
|
|
"""
|
|
Initialize a DiskDynamoStore with a path prefix.
|
|
|
|
Args:
|
|
path_prefix: Prefix directory for where to put CompilePackages on disk
|
|
"""
|
|
self.path_prefix = path_prefix
|
|
|
|
def clear(self) -> None:
|
|
"""
|
|
Clear all CompilePackages from disk.
|
|
"""
|
|
if self.path_prefix:
|
|
shutil.rmtree(self.path_prefix, ignore_errors=True)
|
|
|
|
def write(
|
|
self,
|
|
entry: PrecompileCacheEntry,
|
|
path: str,
|
|
) -> None:
|
|
"""
|
|
Write dynamo cache entry and backends to disk.
|
|
"""
|
|
from torch._inductor.codecache import write_atomic
|
|
|
|
path = os.path.join(self.path_prefix, path) if self.path_prefix else path
|
|
try:
|
|
os.makedirs(path, exist_ok=True)
|
|
pickled_content: bytes = pickle.dumps(entry)
|
|
write_atomic(os.path.join(path, "entry"), pickled_content)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to save package to {path}: {e}") from e
|
|
|
|
def read(self, path: str) -> PrecompileCacheEntry:
|
|
"""
|
|
Read dynamo cache entry and backends from disk.
|
|
"""
|
|
path = os.path.join(self.path_prefix, path) if self.path_prefix else path
|
|
try:
|
|
with open(os.path.join(path, "entry"), "rb") as f:
|
|
pickled_content = f.read()
|
|
entry = pickle.loads(pickled_content)
|
|
return entry
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to load package from path {path}: {e}") from e
|
|
|
|
|
|
class DiskDynamoCache(DiskDynamoStore):
|
|
"""
|
|
Special DiskDynamoStore which adds some helper functions for automatically
|
|
tracking paths of packages
|
|
"""
|
|
|
|
def save(self, package: CompilePackage) -> None:
|
|
"""
|
|
Saves a package to a given path. Grabs backends from PrecompileContext.
|
|
"""
|
|
key = package.source_id
|
|
logger.info("Saving CompilePackage for %s", package.source_id)
|
|
super().save_package(package, key)
|
|
|
|
def load(self, fn: Callable[..., Any]) -> Optional[PrecompileCacheEntry]:
|
|
"""
|
|
Loads a package from a given path and returns it plus a list of deserialized backends
|
|
"""
|
|
key = CompilePackage.source_id_from_fn(fn)
|
|
logger.info("Loading CompilePackage for %s", key)
|
|
path = os.path.join(self.path_prefix, key)
|
|
if os.path.exists(path):
|
|
try:
|
|
result = super().load_cache_entry(key)
|
|
return result
|
|
except Exception as e:
|
|
logger.warning("Failed to load package from path %s: %s", path, str(e))
|
|
return None
|
|
logger.info("No package found for %s", key)
|
|
return None
|
|
|
|
def load_and_install_package(
|
|
self, fn: Callable[..., Any]
|
|
) -> Optional[CompilePackage]:
|
|
"""
|
|
Load directly into a package and install backends
|
|
"""
|
|
results = self.load(fn)
|
|
if results is None:
|
|
return None
|
|
else:
|
|
package = CompilePackage(fn, results.dynamo)
|
|
package.install(results.backends)
|
|
return package
|
|
|
|
|
|
def cache_dir() -> str:
|
|
from torch._inductor.runtime.cache_dir_utils import cache_dir
|
|
|
|
return cache_dir()
|
|
|
|
|
|
DynamoCache = DiskDynamoCache(os.path.join(cache_dir(), "dynamo"))
|