Files
pytorch/torch/csrc/jit/passes/vulkan_rewrite.cpp
Ivan Kobzarev 26e6fa380e [vulkan] Remove constant duplication for Vulkan optimize_for_mobile (#59341)
ghstack-source-id: bb809586d27d1285660d1db2c3561b46d158f499
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59276
2021-06-03 09:45:56 -07:00

279 lines
10 KiB
C++

#include <ATen/core/jit_type.h>
#ifdef USE_VULKAN
#include <ATen/native/vulkan/VulkanOpContext.h>
#endif
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/prepack_folding.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
#include <torch/csrc/jit/runtime/graph_executor_impl.h>
namespace torch {
namespace jit {
#ifdef USE_VULKAN
namespace {
void insertPrePackedLinearOp(std::shared_ptr<Graph>& graph) {
// fuse decomposed linear into aten::linear
FuseLinear(graph);
std::string linear_before_inline = R"(
graph(%linear, %input, %weight, %bias):
%r = prim::CallFunction(%linear, %input, %weight, %bias)
return (%r))";
std::string prepacked_ops_pattern_before_inline = R"(
graph(%linear, %input, %weight, %bias):
%weight_t = aten::t(%weight)
%packed_weight_bias = vulkan_prepack::linear_prepack(
%weight_t, %bias)
%res = vulkan_prepack::linear_run(%input, %packed_weight_bias)
return (%res))";
std::string linear_pattern = R"(
graph(%input, %weight, %bias):
%r = aten::linear(%input, %weight, %bias)
return (%r))";
std::string prepacked_ops_pattern = R"(
graph(%input, %weight, %bias):
%weight_t = aten::t(%weight)
%packed_weight_bias = vulkan_prepack::linear_prepack(
%weight_t, %bias)
%res = vulkan_prepack::linear_run(%input, %packed_weight_bias)
return (%res))";
const auto filter = [](const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
const auto linear_value = match_vmap.at(vmap.at("linear"));
const auto func_name = graph_rewrite_helper::getFuncName(linear_value);
return (func_name == "linear");
};
SubgraphRewriter linear_call_fn_rewriter;
linear_call_fn_rewriter.RegisterRewritePattern(
linear_before_inline, prepacked_ops_pattern_before_inline);
linear_call_fn_rewriter.runOnGraph(graph, filter);
SubgraphRewriter linear_rewriter;
linear_rewriter.RegisterRewritePattern(linear_pattern, prepacked_ops_pattern);
linear_rewriter.runOnGraph(graph);
}
void insertPrePackedConv2dOp(std::shared_ptr<Graph>& graph) {
graph_rewrite_helper::replaceConvolutionWithAtenConv(graph);
std::string conv_2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
%r = aten::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string prepacked_ops_conv2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
%output_min_max : None = prim::Constant()
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min_max, %output_min_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(
conv_2d_pattern, prepacked_ops_conv2d_pattern);
rewriter.runOnGraph(graph);
}
void fuseHardtanhWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string conv2d_prepack_run_hardtanh_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dOpContext = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
std::string conv2d_prepack_run_hardtanh = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::hardtanh(%conv2d_res, %output_min, %output_max)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh, conv2d_prepack_run_hardtanh_fused);
std::string conv2d_prepack_run_hardtanh_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::hardtanh_(%conv2d_res, %output_min, %output_max)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh_inplace, conv2d_prepack_run_hardtanh_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
void fuseReluWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string conv2d_prepack_run_relu_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%output_min: float = prim::Constant[value=0.0]()
%output_max: None = prim::Constant()
%packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dOpContext = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
std::string conv2d_prepack_run_relu = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::relu(%conv2d_res)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu, conv2d_prepack_run_relu_fused);
std::string conv2d_prepack_run_relu_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::relu_(%conv2d_res)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu_inplace, conv2d_prepack_run_relu_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
} // namespace
void vulkanInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
insertPrePackedLinearOp(graph);
insertPrePackedConv2dOp(graph);
}
void vulkanInsertPrePackedOps(script::Module& module) {
for (auto& method : module.get_methods()) {
auto graph = method.graph();
vulkanInsertPrePackedOps(graph);
}
for (script::Module m : module.children()) {
vulkanInsertPrePackedOps(m);
}
}
void vulkanFusePrePackedConvWithClamp(script::Module& module) {
auto graph = module.get_method("forward").graph();
fuseReluWithPackedOps(graph);
fuseHardtanhWithPackedOps(graph);
}
void vulkanFoldPrePackingOps(script::Module& m) {
PrePackingOpsFilterFn filter_fn = [](const Node* n) -> bool {
return (
(n->kind() ==
Symbol::fromQualString("vulkan_prepack::conv2d_clamp_prepack")) ||
(n->kind() ==
Symbol::fromQualString("vulkan_prepack::linear_prepack")));
};
PrePackingOpsFolder(m, filter_fn, "prepack_folding");
}
void vulkanRemoveMutation(script::Module& module) {
auto graph = module.get_method("forward").graph();
RemoveTensorMutation(graph);
}
void vulkanRunCanonicalOptimizations(script::Module& module) {
auto graph = module.get_method("forward").graph();
for (const auto& method : module.get_methods()) {
auto graph = method.graph();
runOptimization(graph, false /* no loop unrolling */);
}
}
script::Module vulkanOptimizeForMobile(
const script::Module& m,
const std::vector<std::string>& preserved_methods) {
auto cloned_module = m.clone();
cloned_module.eval();
cloned_module = FoldConvBatchNorm(cloned_module);
vulkanInsertPrePackedOps(cloned_module);
cloned_module = freeze_module(cloned_module, preserved_methods);
vulkanFusePrePackedConvWithClamp(cloned_module);
vulkanFoldPrePackingOps(cloned_module);
removeDropout(cloned_module);
vulkanRemoveMutation(cloned_module);
// remove duplicated constants
vulkanRunCanonicalOptimizations(cloned_module);
cloned_module.register_attribute(
"optimized_for_vulkan", BoolType::get(), true);
return cloned_module;
}
#else
void vulkanInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanInsertPrePackedOps(script::Module& module) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanFusePrePackedConvWithClamp(script::Module& module) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanFoldPrePackingOps(script::Module& m) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
script::Module vulkanOptimizeForMobile(
const script::Module& module,
const std::vector<std::string>& preserved_methods) {
TORCH_INTERNAL_ASSERT(
"Mobile optimizaiton only available with Vulkan at the moment. "
"Vulkan is not enabled. Please build with USE_VULKAN=1");
return module;
}
#endif
} // namespace jit
} // namespace torch