Files
pytorch/torch/_inductor/aoti_eager.py

299 lines
11 KiB
Python

import json
import logging
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
from unittest import mock
import torch
import torch._export
from torch._inductor.utils import is_cpu_device
from .runtime.runtime_utils import cache_dir
log = logging.getLogger(__name__)
def aoti_eager_cache_dir(namespace: str, device: str) -> Path:
return Path(cache_dir()) / "aoti_eager" / namespace / device
def aoti_eager_op_conf_lock(op_func_name_with_overload: str) -> Any:
# Avoid circular import
from torch._inductor.codecache import get_lock_dir, LOCK_TIMEOUT
from torch.utils._filelock import FileLock
op_conf_lock_file = f"{op_func_name_with_overload}.lock"
lock_dir = get_lock_dir()
return FileLock(os.path.join(lock_dir, op_conf_lock_file), timeout=LOCK_TIMEOUT)
def load_aoti_eager_cache(
ns: str, op_func_name_with_overload: str, device_type: str
) -> List[Optional[Dict[str, Any]]]:
device_kernel_cache = aoti_eager_cache_dir(ns, device_type)
op_conf = device_kernel_cache / f"{op_func_name_with_overload}.json"
if not op_conf.exists():
return []
try:
with aoti_eager_op_conf_lock(op_func_name_with_overload):
with open(op_conf) as f:
json_data = json.load(f)
for item in json_data:
# Get absolution path for kernel library
kernel_lib_abs_path = device_kernel_cache / item["kernel_path"]
item["kernel_path"] = kernel_lib_abs_path.as_posix()
# Check if the kernel library exists
if not kernel_lib_abs_path.exists():
return []
for metadata in item["meta_info"]:
if metadata.get("is_dynamic"):
raise NotImplementedError(
"Only support static shape for now"
)
if (
"device_type" in metadata
and metadata["device_type"] == "cpu"
):
metadata["device_index"] = -1
for dtype_key in ["dtype", "dtype_value"]:
if dtype_key in metadata:
metadata[dtype_key] = getattr(
torch, metadata[dtype_key].split(".")[-1]
)
if "layout_value" in metadata:
metadata["layout_value"] = getattr(
torch, metadata["layout_value"].split(".")[-1]
)
if "memory_format_value" in metadata:
metadata["memory_format_value"] = getattr(
torch, metadata["memory_format_value"].split(".")[-1]
)
return json_data
except Exception as e:
err_msg = f"Failed to load aoti eager cache: {e}"
log.exception(err_msg)
return []
def supported_builtin_dtype_torch_dtype() -> Dict[type, torch.dtype]:
return {int: torch.int32, float: torch.float, bool: torch.bool}
def supported_scalar_types() -> Tuple[type, ...]:
type_to_torch_dtype = supported_builtin_dtype_torch_dtype()
return tuple(type_to_torch_dtype.keys())
def extract_tensor_metadata(dynamic: bool, input: torch.Tensor) -> Dict[str, Any]:
metadata: Dict[str, Any] = {}
metadata["is_dynamic"] = dynamic
assert isinstance(input, torch.Tensor)
metadata["device_type"] = f"{input.device.type}"
if is_cpu_device([input]):
metadata["device_index"] = -1
else:
metadata["device_index"] = input.device.index
metadata["dtype"] = f"{input.dtype}"
metadata["sizes"] = list(input.size())
metadata["strides"] = list(input.stride())
metadata["requires_grad"] = input.requires_grad
metadata["dispatch_key_set"] = torch._C._dispatch_keys(input).raw_repr()
return metadata
def extract_tensor_list_metadata(
dynamic: bool,
input: List[torch.Tensor],
) -> Dict[str, Any]:
metadata_list = []
for item in input:
assert isinstance(item, torch.Tensor)
metadata_list.append(extract_tensor_metadata(dynamic, item))
metadata: Dict[str, Any] = {}
metadata["tensor_list"] = metadata_list
return metadata
def extract_scalar_metadata(device_type: str, input: Any) -> Dict[str, Any]:
assert isinstance(input, supported_scalar_types())
metadata: Dict[str, Any] = {}
metadata["is_dynamic"] = False
# Scalar tensor
metadata["device_type"] = device_type
metadata["device_index"] = -1 if device_type == "cpu" else 0
type_to_torch_dtype = supported_builtin_dtype_torch_dtype()
metadata["dtype"] = f"{type_to_torch_dtype[type(input)]}"
metadata["scalar_value"] = input
return metadata
def extract_string_metadata(input: str) -> Dict[str, Any]:
assert isinstance(input, str)
metadata: Dict[str, Any] = {}
metadata["string_value"] = input
return metadata
def extract_dtype_metadata(input: torch.dtype) -> Dict[str, Any]:
assert isinstance(input, torch.dtype)
metadata: Dict[str, Any] = {}
metadata["dtype_value"] = f"{input}"
return metadata
def extract_device_metadata(input: torch.device) -> Dict[str, Any]:
assert isinstance(input, torch.device)
metadata: Dict[str, Any] = {}
metadata["device_type_value"] = f"{input.type}"
metadata["device_index_value"] = input.index
return metadata
def extract_layout_metadata(input: torch.layout) -> Dict[str, Any]:
assert isinstance(input, torch.layout)
metadata: Dict[str, Any] = {}
metadata["layout_value"] = f"{input}"
return metadata
def aoti_compile_with_persistent_cache(
ns: str,
op_func_name_with_overload: str,
device_type: str,
dynamic: bool,
f: Callable[..., Any],
args: Tuple[Any],
kwargs: Dict[str, Any],
*,
dynamic_shapes: Optional[Dict[str, Any]] = None,
options: Optional[Dict[str, Any]] = None,
remove_runtime_assertions: bool = False,
disable_constraint_solver: bool = False,
) -> str:
"""
Compile the given function with persistent cache for AOTI eager mode.
"""
assert not dynamic, "Only support static shape for now"
flattened_inputs = list(args) + list(kwargs.values())
if not all(
isinstance(
input,
(
supported_scalar_types(),
torch.Tensor,
list,
str,
torch.dtype,
torch.device,
torch.layout,
),
)
for input in flattened_inputs
):
err_msg = f"Unsupported input types: {flattened_inputs}"
log.exception(err_msg)
raise NotImplementedError(err_msg)
for input in flattened_inputs:
if isinstance(input, list) and not all(
isinstance(item, torch.Tensor) for item in input
):
err_msg = f"_impl_with_aoti_compile encounters unsupported input types: {flattened_inputs}"
log.exception(err_msg)
raise NotImplementedError(err_msg)
persistent_cache = aoti_eager_cache_dir(ns, device_type)
if not persistent_cache.exists():
persistent_cache.mkdir(parents=True)
persistent_cache_lib = persistent_cache / "lib"
if not persistent_cache_lib.exists():
persistent_cache_lib.mkdir()
with mock.patch.dict(
os.environ,
{"TORCHINDUCTOR_CACHE_DIR": persistent_cache_lib.absolute().as_posix()},
):
try:
kernel_lib_path = torch._export.aot_compile(
f,
args,
kwargs,
dynamic_shapes=dynamic_shapes,
remove_runtime_assertions=remove_runtime_assertions,
disable_constraint_solver=disable_constraint_solver,
# Some operations may have non-Tensor parameters like int, float, bool. These
# non-Tensor parameters will not be the input of the graph. Therefore, we do
# need to keep the same signature.
same_signature=False,
)
assert isinstance(kernel_lib_path, str)
kernel_metadata_items = []
for idx, input in enumerate(flattened_inputs):
if isinstance(input, torch.Tensor):
metadata = extract_tensor_metadata(dynamic, input)
elif isinstance(input, list):
assert all(isinstance(item, torch.Tensor) for item in input)
metadata = extract_tensor_list_metadata(dynamic, input)
elif isinstance(input, supported_scalar_types()):
metadata = extract_scalar_metadata(device_type, input)
elif isinstance(input, str):
metadata = extract_string_metadata(input)
elif isinstance(input, torch.dtype):
metadata = extract_dtype_metadata(input)
elif isinstance(input, torch.device):
metadata = extract_device_metadata(input)
elif isinstance(input, torch.layout):
metadata = extract_layout_metadata(input)
else:
raise NotImplementedError(f"Unsupported input type: {type(input)}")
metadata["arg_order"] = idx
kernel_metadata_items.append(metadata)
kernel_meta_info: Dict[str, Any] = {}
kernel_meta_info["meta_info"] = kernel_metadata_items
kernel_meta_info["kernel_path"] = (
Path(kernel_lib_path).relative_to(persistent_cache).as_posix()
)
json_data = []
update_json = True
op_conf = persistent_cache / f"{op_func_name_with_overload}.json"
mode = "r" if op_conf.exists() else "w"
with aoti_eager_op_conf_lock(op_func_name_with_overload):
with open(op_conf, mode) as op_conf_file:
try:
json_data = json.load(op_conf_file)
except Exception as e:
json_data = []
assert isinstance(json_data, list)
for item in json_data:
assert isinstance(item, dict)
# Same kernel meta info already exists in the json file
if item["meta_info"] == kernel_metadata_items:
update_json = False
break
if update_json:
json_data.append(kernel_meta_info)
with open(op_conf, "w") as op_conf_file:
json.dump(json_data, op_conf_file, indent=4)
return kernel_lib_path
except Exception as e:
err_msg = f"Failed to compile {op_func_name_with_overload}: {e}"
log.exception(err_msg)
return ""