Files
pytorch/test/backward_compatibility/check_backward_compatibility.py
lixinyu d66c320b10 disable leaky_relu_ backward calculation with negative slope (#33639)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33639

Test Plan: Imported from OSS

Differential Revision: D20045735

Pulled By: glaringlee

fbshipit-source-id: b3becf30a8fe9ee178792bd88f6ee10102504ed5
2020-02-27 18:54:57 -08:00

136 lines
5.5 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import datetime
import re
import sys
import torch
from torch._C import parse_schema
# The date specifies how long the whitelist exclusion should apply to.
#
# - If we NEVER give BC guarantee for an operator, you can put the
# date arbitrarily far in the future.
# - Otherwise, pick a date that is far enough in the future that you
# believe you can land your diff before then.
#
# Whitelist entries can be removed after the date listed on them passes.
white_list = [
('c10_experimental', datetime.date(2222, 1, 1)),
# We export some functions and classes for test_jit.py directly from libtorch.so,
# it's not important to have BC for them
('_TorchScriptTesting.*', datetime.date(9999, 1, 1)),
('aten::tril_indices', datetime.date(2020, 3, 1)),
('aten::triu_indices', datetime.date(2020, 3, 1)),
('prim::Drop', datetime.date(2020, 3, 1)),
('prim::Store', datetime.date(2020, 3, 1)),
('aten::_ncf_view', datetime.date(2020, 3, 1)),
('aten::_ncf_unsqueeze', datetime.date(2020, 3, 1)),
('prim::Load', datetime.date(2020, 3, 1)),
('prim::ImplicitTensorToNum', datetime.date(2020, 3, 1)),
('aten::is_owner', datetime.date(2020, 3, 1)),
('aten::to_here', datetime.date(2020, 3, 1)),
('prim::isinstance', datetime.date(2020, 3, 1)),
('prim::CreateObject', datetime.date(2020, 3, 1)),
('prim::Uninitialized', datetime.date(2020, 3, 1)),
('prim::fork', datetime.date(2020, 3, 1)),
('prim::unchecked_cast', datetime.date(2020, 3, 1)),
('prim::DictConstruct', datetime.date(2020, 3, 1)),
('prim::ListConstruct', datetime.date(2020, 3, 1)),
('prim::ListUnpack', datetime.date(2020, 3, 1)),
('prim::TupleConstruct', datetime.date(2020, 3, 1)),
('prim::TupleIndex', datetime.date(2020, 3, 1)),
('prim::TupleSlice', datetime.date(2020, 3, 1)),
('prim::TupleUnpack', datetime.date(2020, 3, 1)),
('prim::AutogradAdd', datetime.date(2020, 3, 1)),
('prim::AutogradAnyNonZero', datetime.date(2020, 3, 1)),
('onnx::Shape', datetime.date(2020, 3, 1)),
('onnx::Reshape', datetime.date(2020, 3, 1)),
('prim::BroadcastSizes', datetime.date(2020, 3, 1)),
('prim::Print', datetime.date(2020, 3, 1)),
('prim::MMTreeReduce', datetime.date(2020, 3, 1)),
('prim::Constant', datetime.date(2020, 3, 1)),
('_prim::TupleUnpack', datetime.date(2020, 3, 1)),
('_aten::format', datetime.date(2020, 3, 1)),
('aten::random_', datetime.date(2020, 3, 1)),
('quantized::add_(scalar_)?(relu_)?out', datetime.date(2020, 3, 1)),
('quantized::cat_(relu_)?out', datetime.date(2020, 3, 1)),
('quantized::mul_(scalar_)?(relu_)?out', datetime.date(2020, 3, 1)),
('aten::leaky_relu_backward', datetime.date(2020, 3, 6)),
('aten::rrelu_with_noise_backward', datetime.date(2020, 3, 6)),
]
def white_listed(schema, white_list):
for item in white_list:
if item[1] < datetime.date.today():
continue
regexp = re.compile(item[0])
if regexp.search(schema.name):
return True
return False
def check_bc(new_schema_dict):
existing_schemas = torch._C._jit_get_all_schemas()
is_bc = True
broken_ops = []
for existing_schema in existing_schemas:
if white_listed(existing_schema, white_list):
print("skipping schema: ", str(existing_schema))
continue
print("processing existing schema: ", str(existing_schema))
new_schemas = new_schema_dict.get(existing_schema.name, [])
found = False
for new_schema in new_schemas:
if new_schema.is_backward_compatible_with(existing_schema):
found = True
break
if not found:
print('Can NOT find backward compatible schemas after changes '
'for schema {} from the following candidates:\n[\n{}\n]'
.format(
str(existing_schema),
"\n\t".join(str(s) for s in new_schemas)))
# TODO Print out more details about why candidates don't match.
broken_ops.append(str(existing_schema))
is_bc = False
if is_bc:
print('Found backward compatible schemas for all existing schemas')
else:
print('The PR is introducing backward incompatible changes to the '
'operator library. Please contact PyTorch team to confirm '
'whether this change is wanted or not. \n\nBroken ops: '
'[\n\t{}\n]'.format("\n\t".join(broken_ops)))
return is_bc
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument(
'--new-schemas',
help='filename to load new schemas',
type=str,
default='schemas.txt')
args = parser.parse_args()
new_schema_dict = dict()
with open(args.new_schemas, 'r') as f:
while True:
line = f.readline()
if not line:
break
if "torch.classes" in line or "RRef" in line or "Any" in line:
# TODO Fix type __torch__.torch.classes.xxx
# TODO Delete RRef special case after add the RRef type
# TODO: wait until nightly knows how to parse Any
continue
s = parse_schema(line.strip())
slist = new_schema_dict.get(s.name, [])
slist.append(s)
new_schema_dict[s.name] = slist
if not check_bc(new_schema_dict):
sys.exit(1)