Files
pytorch/.github/scripts/generate_ci_workflows.py
Nikita Shulga d6048ecd6b Enable bazel builds on ciflow/default (#62649)
Summary:
Add `regenerate.sh` convenience script
Remove "TODO: Reenable on PR" label from workflows which are enabled on PRs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62649

Reviewed By: seemethere

Differential Revision: D30071905

Pulled By: malfet

fbshipit-source-id: c82134cb676b273d23e225be21166588996a31d3
2021-08-03 11:05:41 -07:00

426 lines
17 KiB
Python
Executable File

#!/usr/bin/env python3
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Set
import jinja2
from typing_extensions import Literal
YamlShellBool = Literal["''", 1]
Arch = Literal["windows", "linux"]
DOCKER_REGISTRY = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
GITHUB_DIR = Path(__file__).resolve().parent.parent
WINDOWS_CPU_TEST_RUNNER = "windows.4xlarge"
WINDOWS_CUDA_TEST_RUNNER = "windows.8xlarge.nvidia.gpu"
WINDOWS_RUNNERS = {
WINDOWS_CPU_TEST_RUNNER,
WINDOWS_CUDA_TEST_RUNNER,
}
LINUX_CPU_TEST_RUNNER = "linux.2xlarge"
LINUX_CUDA_TEST_RUNNER = "linux.8xlarge.nvidia.gpu"
LINUX_RUNNERS = {
LINUX_CPU_TEST_RUNNER,
LINUX_CUDA_TEST_RUNNER,
}
# TODO: ------------- Remove the comment once fully rollout -------------------
# Rollout Strategy:
# 1. Manual Phase
# step 1. Add 'ciflow/default' label to the PR
# step 2. Once there's an [unassigned] event from PR, it should rerun
# step 3. Remove 'ciflow/default' label
# step 4. Trigger the [unassigned] event again, it should not rerun
# 2. Probot Phase 1 (manual on 1 workflow)
# step 1. Probot automatically add labels based on the context
# step 2. Manually let probot trigger [unassigned] event
# 3. Probot Phase 2 (auto on 1 workflows)
# step 1. Modify the workflows so that they only listen on [unassigned] events
# step 2. Probot automatically adds labels automatically based on the context
# step 3. Probot automatically triggers [unassigned] event
# 4. Probot Phase 3 (auto on many workflows)
# step 1. Enable it for all workflows
# -----------------------------------------------------------------------
@dataclass
class CIFlowConfig:
enabled: bool = False
labels: Set[str] = field(default_factory=set)
trigger_action: str = 'unassigned'
trigger_actor: str = 'pytorchbot'
root_job_name: str = 'ciflow_should_run'
root_job_condition: str = ''
# trigger_action_only controls if we listen only on the trigger_action of a pull_request.
# If it's False, we listen on all default pull_request actions, this is useful when
# ciflow (via probot) is not automated yet.
trigger_action_only: bool = False
def gen_root_job_condition(self) -> None:
# TODO: Make conditions strict
# At the beginning of the rollout of ciflow, we keep everything the same as what we have
# Once fully rollout, we can have strict constraints
# e.g. ADD env.GITHUB_ACTOR == '{self.trigger_actor}
# REMOVE github.event.action !='{self.trigger_action}'
label_conditions = [f"github.event.action == '{self.trigger_action}'"] + \
[f"contains(github.event.pull_request.labels.*.name, '{label}')" for label in self.labels]
self.root_job_condition = f"(github.event_name != 'pull_request') || " \
f"(github.event.action !='{self.trigger_action}') || " \
f"({' && '.join(label_conditions)})"
def reset_root_job(self) -> None:
self.root_job_name = ''
self.root_job_condition = ''
def __post_init__(self) -> None:
if not self.enabled:
self.reset_root_job()
return
self.gen_root_job_condition()
@dataclass
class CIWorkflow:
# Required fields
arch: Arch
build_environment: str
test_runner_type: str
# Optional fields
ciflow_config: CIFlowConfig = field(default_factory=CIFlowConfig)
cuda_version: str = ''
docker_image_base: str = ''
enable_doc_jobs: bool = False
exclude_test: bool = False
is_libtorch: bool = False
is_scheduled: str = ''
num_test_shards: int = 1
on_pull_request: bool = False
only_build_on_pull_request: bool = False
only_run_smoke_tests_on_pull_request: bool = False
num_test_shards_on_pull_request: int = -1
# The following variables will be set as environment variables,
# so it's easier for both shell and Python scripts to consume it if false is represented as the empty string.
enable_jit_legacy_test: YamlShellBool = "''"
enable_multigpu_test: YamlShellBool = "''"
enable_nogpu_no_avx_test: YamlShellBool = "''"
enable_nogpu_no_avx2_test: YamlShellBool = "''"
enable_slow_test: YamlShellBool = "''"
def __post_init__(self) -> None:
if self.is_libtorch:
self.exclude_test = True
# The following code allows for scheduled jobs to be debuggable by
# adding the label 'ciflow/scheduled' and assigning + unassigning pytorchbot,
# without overwriting the workflow's own ciflow_config, if already enabled.
if self.is_scheduled:
if self.ciflow_config.enabled:
self.ciflow_config.labels.add('ciflow/scheduled')
else:
self.ciflow_config = CIFlowConfig(
enabled=True,
labels={'ciflow/scheduled'}
)
# CIFlow requires on_pull_request to be set in order to be enabled.
# If on_pull_request wasn't previously specified, we set trigger_action_only
# to True as we want to avoid unintentional pull_request event triggers
if self.ciflow_config.enabled:
self.ciflow_config.trigger_action_only = self.ciflow_config.trigger_action_only or not self.on_pull_request
self.on_pull_request = True
if not self.on_pull_request:
self.only_build_on_pull_request = False
# If num_test_shards_on_pull_request is not user-defined, default to num_test_shards unless we are
# only running smoke tests on the pull request.
if self.num_test_shards_on_pull_request == -1:
# Don't waste resources on runner spinup and cooldown for another shard if we are only running a few tests
if self.only_run_smoke_tests_on_pull_request:
self.num_test_shards_on_pull_request = 1
else:
self.num_test_shards_on_pull_request = self.num_test_shards
self.assert_valid()
def assert_valid(self) -> None:
err_message = f"invalid test_runner_type for {self.arch}: {self.test_runner_type}"
if self.arch == 'linux':
assert self.test_runner_type in LINUX_RUNNERS, err_message
if self.arch == 'windows':
assert self.test_runner_type in WINDOWS_RUNNERS, err_message
def generate_workflow_file(self, workflow_template: jinja2.Template) -> None:
output_file_path = GITHUB_DIR / f"workflows/generated-{workflow.build_environment}.yml"
with open(output_file_path, "w") as output_file:
GENERATED = "generated"
output_file.writelines([f"# @{GENERATED} DO NOT EDIT MANUALLY\n"])
output_file.write(workflow_template.render(asdict(workflow)))
output_file.write("\n")
print(output_file_path)
WINDOWS_WORKFLOWS = [
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cpu-py3",
cuda_version="cpu",
test_runner_type=WINDOWS_CPU_TEST_RUNNER,
on_pull_request=True,
num_test_shards=2,
),
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cuda10-cudnn7-py3",
cuda_version="10.1",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
on_pull_request=True,
only_run_smoke_tests_on_pull_request=True,
num_test_shards=2,
),
CIWorkflow(
arch="windows",
build_environment="win-vs2019-cuda11-cudnn8-py3",
cuda_version="11.1",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
num_test_shards=2,
),
CIWorkflow(
arch="windows",
build_environment="periodic-win-vs2019-cuda11-cudnn8-py3",
cuda_version="11.3",
test_runner_type=WINDOWS_CUDA_TEST_RUNNER,
num_test_shards=2,
is_scheduled="45 0,4,8,12,16,20 * * *",
),
]
LINUX_WORKFLOWS = [
CIWorkflow(
arch="linux",
build_environment="linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
enable_doc_jobs=True,
num_test_shards=2,
),
# CIWorkflow(
# arch="linux",
# build_environment="paralleltbb-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="parallelnative-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="pure_torch-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-asan",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang7-onnx",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang7-onnx",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
CIWorkflow(
arch="linux",
build_environment="linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
),
CIWorkflow(
arch="linux",
build_environment="linux-xenial-cuda10.2-cudnn7-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
enable_jit_legacy_test=1,
enable_multigpu_test=1,
enable_nogpu_no_avx_test=1,
enable_nogpu_no_avx2_test=1,
enable_slow_test=1,
num_test_shards=2,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels=set(['ciflow/slow']),
),
),
CIWorkflow(
arch="linux",
build_environment="libtorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
),
CIWorkflow(
arch="linux",
build_environment="linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
),
CIWorkflow(
arch="linux",
build_environment="libtorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
),
CIWorkflow(
arch="linux",
build_environment="periodic-linux-xenial-cuda11.3-cudnn8-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
num_test_shards=2,
is_scheduled="45 0,4,8,12,16,20 * * *",
),
CIWorkflow(
arch="linux",
build_environment="periodic-libtorch-linux-xenial-cuda11.3-cudnn8-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
test_runner_type=LINUX_CUDA_TEST_RUNNER,
is_libtorch=True,
is_scheduled="45 0,4,8,12,16,20 * * *",
),
# CIWorkflow(
# arch="linux",
# build_environment="linux-bionic-py3.6-clang9-noarch",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="xla-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="vulkan-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
CIWorkflow(
arch="linux",
build_environment="linux-bionic-py3.8-gcc9-coverage",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.8-gcc9",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
num_test_shards=2,
ciflow_config=CIFlowConfig(
enabled=True,
labels=set(['ciflow/default']),
),
),
# CIWorkflow(
# arch="linux",
# build_environment="linux-bionic-rocm3.9-py3.6",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-rocm3.9-py3.6",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-x86_32",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-x86_64",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v7a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v8a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-custom-dynamic",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-custom-static",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
# CIWorkflow(
# arch="linux",
# build_environment="linux-xenial-py3.6-clang5-mobile-code-analysis",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# test_runner_type=LINUX_CPU_TEST_RUNNER,
# ),
]
BAZEL_WORKFLOWS = [
CIWorkflow(
arch="linux",
build_environment="linux-xenial-py3.6-gcc7-bazel-test",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
test_runner_type=LINUX_CPU_TEST_RUNNER,
on_pull_request=True,
ciflow_config=CIFlowConfig(
enabled=True,
trigger_action_only=True,
labels=set(['ciflow/default']),
),
),
]
if __name__ == "__main__":
jinja_env = jinja2.Environment(
variable_start_string="!{{",
loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))),
)
template_and_workflows = [
(jinja_env.get_template("linux_ci_workflow.yml.j2"), LINUX_WORKFLOWS),
(jinja_env.get_template("windows_ci_workflow.yml.j2"), WINDOWS_WORKFLOWS),
(jinja_env.get_template("bazel_ci_workflow.yml.j2"), BAZEL_WORKFLOWS),
]
for template, workflows in template_and_workflows:
for workflow in workflows:
workflow.generate_workflow_file(workflow_template=template)