mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257 Approved by: https://github.com/jansel
78 lines
2.2 KiB
Python
78 lines
2.2 KiB
Python
# mypy: ignore-errors
|
|
|
|
import contextlib
|
|
import functools
|
|
import inspect
|
|
|
|
import torch
|
|
|
|
|
|
# Test whether hardware BF32 math mode enabled. It is enabled only on:
|
|
# - MKLDNN is available
|
|
# - BF16 is supported by MKLDNN
|
|
def bf32_is_not_fp32():
|
|
if not torch.backends.mkldnn.is_available():
|
|
return False
|
|
if not torch.ops.mkldnn._is_mkldnn_bf16_supported():
|
|
return False
|
|
return True
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def bf32_off():
|
|
old_matmul_precision = torch.get_float32_matmul_precision()
|
|
try:
|
|
torch.set_float32_matmul_precision("highest")
|
|
yield
|
|
finally:
|
|
torch.set_float32_matmul_precision(old_matmul_precision)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def bf32_on(self, bf32_precision=1e-5):
|
|
old_matmul_precision = torch.get_float32_matmul_precision()
|
|
old_precision = self.precision
|
|
try:
|
|
torch.set_float32_matmul_precision("medium")
|
|
self.precision = bf32_precision
|
|
yield
|
|
finally:
|
|
torch.set_float32_matmul_precision(old_matmul_precision)
|
|
self.precision = old_precision
|
|
|
|
|
|
# This is a wrapper that wraps a test to run this test twice, one with
|
|
# allow_bf32=True, another with allow_bf32=False. When running with
|
|
# allow_bf32=True, it will use reduced precision as specified by the
|
|
# argument
|
|
def bf32_on_and_off(bf32_precision=1e-5):
|
|
def with_bf32_disabled(self, function_call):
|
|
with bf32_off():
|
|
function_call()
|
|
|
|
def with_bf32_enabled(self, function_call):
|
|
with bf32_on(self, bf32_precision):
|
|
function_call()
|
|
|
|
def wrapper(f):
|
|
params = inspect.signature(f).parameters
|
|
arg_names = tuple(params.keys())
|
|
|
|
@functools.wraps(f)
|
|
def wrapped(*args, **kwargs):
|
|
kwargs.update(zip(arg_names, args))
|
|
cond = bf32_is_not_fp32()
|
|
if "device" in kwargs:
|
|
cond = cond and (torch.device(kwargs["device"]).type == "cpu")
|
|
if "dtype" in kwargs:
|
|
cond = cond and (kwargs["dtype"] == torch.float)
|
|
if cond:
|
|
with_bf32_disabled(kwargs["self"], lambda: f(**kwargs))
|
|
with_bf32_enabled(kwargs["self"], lambda: f(**kwargs))
|
|
else:
|
|
f(**kwargs)
|
|
|
|
return wrapped
|
|
|
|
return wrapper
|