Files
pytorch/torch/testing/_internal/torchbind_impls.py

132 lines
3.6 KiB
Python

import contextlib
from typing import Optional
import torch
_TORCHBIND_IMPLS_INITIALIZED = False
_TENSOR_QUEUE_GLOBAL_TEST: Optional[torch.ScriptObject] = None
def init_torchbind_implementations():
global _TORCHBIND_IMPLS_INITIALIZED
global _TENSOR_QUEUE_GLOBAL_TEST
if _TORCHBIND_IMPLS_INITIALIZED:
return
load_torchbind_test_lib()
register_fake_operators()
register_fake_classes()
_TENSOR_QUEUE_GLOBAL_TEST = _empty_tensor_queue()
_TORCHBIND_IMPLS_INITIALIZED = True
def _empty_tensor_queue() -> torch.ScriptObject:
return torch.classes._TorchScriptTesting._TensorQueue(
torch.empty(
0,
).fill_(-1)
)
# put these under a function because the corresponding library might not be loaded yet.
def register_fake_operators():
@torch.library.register_fake("_TorchScriptTesting::takes_foo_python_meta")
def fake_takes_foo(foo, z):
return foo.add_tensor(z)
@torch.library.register_fake("_TorchScriptTesting::queue_pop")
def fake_queue_pop(tq):
return tq.pop()
@torch.library.register_fake("_TorchScriptTesting::queue_push")
def fake_queue_push(tq, x):
return tq.push(x)
@torch.library.register_fake("_TorchScriptTesting::queue_size")
def fake_queue_size(tq):
return tq.size()
def meta_takes_foo_list_return(foo, x):
a = foo.add_tensor(x)
b = foo.add_tensor(a)
c = foo.add_tensor(b)
return [a, b, c]
def meta_takes_foo_tuple_return(foo, x):
a = foo.add_tensor(x)
b = foo.add_tensor(a)
return (a, b)
torch.ops._TorchScriptTesting.takes_foo_list_return.default.py_impl(
torch._C.DispatchKey.Meta
)(meta_takes_foo_list_return)
torch.ops._TorchScriptTesting.takes_foo_tuple_return.default.py_impl(
torch._C.DispatchKey.Meta
)(meta_takes_foo_tuple_return)
torch.ops._TorchScriptTesting.takes_foo.default.py_impl(torch._C.DispatchKey.Meta)(
lambda cc, x: cc.add_tensor(x)
)
def register_fake_classes():
@torch._library.register_fake_class("_TorchScriptTesting::_Foo")
class FakeFoo:
def __init__(self, x: int, y: int):
self.x = x
self.y = y
@classmethod
def __obj_unflatten__(cls, flattend_foo):
return cls(**dict(flattend_foo))
def add_tensor(self, z):
return (self.x + self.y) * z
@torch._library.register_fake_class("_TorchScriptTesting::_ContainsTensor")
class FakeContainsTensor:
def __init__(self, t: torch.Tensor):
self.t = t
@classmethod
def __obj_unflatten__(cls, flattend_foo):
return cls(**dict(flattend_foo))
def get(self):
return self.t
def load_torchbind_test_lib():
import unittest
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
find_library_location,
IS_FBCODE,
IS_MACOS,
IS_SANDCASTLE,
IS_WINDOWS,
)
if IS_SANDCASTLE or IS_FBCODE:
torch.ops.load_library("//caffe2/test/cpp/jit:test_custom_class_registrations")
elif IS_MACOS:
raise unittest.SkipTest("non-portable load_library call used in test")
else:
lib_file_path = find_library_location("libtorchbind_test.so")
if IS_WINDOWS:
lib_file_path = find_library_location("torchbind_test.dll")
torch.ops.load_library(str(lib_file_path))
@contextlib.contextmanager
def _register_py_impl_temporarily(op_overload, key, fn):
try:
op_overload.py_impl(key)(fn)
yield
finally:
del op_overload.py_kernels[key]
op_overload._dispatch_cache.clear()