mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-26 16:44:54 +08:00
Summary: - Fix broken sparse_coo_examples, update output - Tensor(...) to tensor(...) - Fix arguments to math.log to be floats While the last might be debateable, mypy currently complains when passing an int to math.log. As it is not essential for our examples, let's be clean w.r.t. other people's expectations. These popped up while checking examples in the context of #12500 . Pull Request resolved: https://github.com/pytorch/pytorch/pull/12707 Differential Revision: D10415256 Pulled By: SsnL fbshipit-source-id: c907b576b02cb0f89d8f261173dbf4b3175b4b8d
757 lines
28 KiB
Python
757 lines
28 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from torch._six import inf
|
|
from operator import mul
|
|
from functools import reduce
|
|
import math
|
|
|
|
__all__ = [
|
|
'argmax',
|
|
'argmin',
|
|
'argsort',
|
|
'btrifact',
|
|
'btriunpack',
|
|
'chain_matmul',
|
|
'einsum',
|
|
'broadcast_tensors',
|
|
'isfinite',
|
|
'isinf',
|
|
'isnan',
|
|
'norm',
|
|
'meshgrid',
|
|
'split',
|
|
'stft',
|
|
'tensordot',
|
|
'unique',
|
|
]
|
|
|
|
|
|
def broadcast_tensors(*tensors):
|
|
r"""broadcast_tensors(*tensors) -> List of Tensors
|
|
|
|
Broadcasts the given tensors according to :ref:`_broadcasting-semantics`.
|
|
|
|
Args:
|
|
*tensors: any number of tensors of the same type
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(3).view(1, 3)
|
|
>>> y = torch.arange(2).view(2, 1)
|
|
>>> a, b = torch.broadcast_tensors(x, y)
|
|
>>> a.size()
|
|
torch.Size([2, 3])
|
|
>>> a
|
|
tensor([[0, 1, 2],
|
|
[0, 1, 2]])
|
|
"""
|
|
return torch._C._VariableFunctions.broadcast_tensors(tensors)
|
|
|
|
|
|
def split(tensor, split_size_or_sections, dim=0):
|
|
r"""Splits the tensor into chunks.
|
|
|
|
If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will
|
|
be split into equally sized chunks (if possible). Last chunk will be smaller if
|
|
the tensor size along the given dimension :attr:`dim` is not divisible by
|
|
:attr:`split_size`.
|
|
|
|
If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split
|
|
into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according
|
|
to :attr:`split_size_or_sections`.
|
|
|
|
Arguments:
|
|
tensor (Tensor): tensor to split.
|
|
split_size_or_sections (int) or (list(int)): size of a single chunk or
|
|
list of sizes for each chunk
|
|
dim (int): dimension along which to split the tensor.
|
|
"""
|
|
# Overwriting reason:
|
|
# This dispatches to two ATen functions depending on the type of
|
|
# split_size_or_sections. The branching code is in tensor.py, which we
|
|
# call here.
|
|
return tensor.split(split_size_or_sections, dim)
|
|
|
|
|
|
def btrifact(A, info=None, pivot=True):
|
|
r"""Batch LU factorization.
|
|
|
|
Returns a tuple containing the LU factorization and pivots. Pivoting is done if
|
|
:attr:`pivot` is set.
|
|
|
|
The optional argument :attr:`info` stores information if the factorization
|
|
succeeded for each minibatch example. The :attr:`info` is provided as an
|
|
`IntTensor`, its values will be filled from dgetrf and a non-zero value
|
|
indicates an error occurred. Specifically, the values are from cublas if cuda is
|
|
being used, otherwise LAPACK.
|
|
|
|
.. warning::
|
|
The :attr:`info` argument is deprecated in favor of :meth:`torch.btrifact_with_info`.
|
|
|
|
Arguments:
|
|
A (Tensor): the tensor to factor
|
|
info (IntTensor, optional): (deprecated) an `IntTensor` to store values
|
|
indicating whether factorization succeeds
|
|
pivot (bool, optional): controls whether pivoting is done
|
|
|
|
Returns:
|
|
A tuple containing factorization and pivots.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(2, 3, 3)
|
|
>>> A_LU, pivots = torch.btrifact(A)
|
|
>>> A_LU
|
|
tensor([[[ 1.3506, 2.5558, -0.0816],
|
|
[ 0.1684, 1.1551, 0.1940],
|
|
[ 0.1193, 0.6189, -0.5497]],
|
|
|
|
[[ 0.4526, 1.2526, -0.3285],
|
|
[-0.7988, 0.7175, -0.9701],
|
|
[ 0.2634, -0.9255, -0.3459]]])
|
|
|
|
>>> pivots
|
|
tensor([[ 3, 3, 3],
|
|
[ 3, 3, 3]], dtype=torch.int32)
|
|
"""
|
|
# Overwriting reason:
|
|
# `info` is being deprecated in favor of `btrifact_with_info`. This warning
|
|
# is in tensor.py, which we call here.
|
|
return A.btrifact(info, pivot)
|
|
|
|
|
|
def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
|
|
r"""Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor.
|
|
|
|
Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``.
|
|
|
|
Arguments:
|
|
LU_data (Tensor): the packed LU factorization data
|
|
LU_pivots (Tensor): the packed LU factorization pivots
|
|
unpack_data (bool): flag indicating if the data should be unpacked
|
|
unpack_pivots (bool): flag indicating if the pivots should be unpacked
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(2, 3, 3)
|
|
>>> A_LU, pivots = A.btrifact()
|
|
>>> P, A_L, A_U = torch.btriunpack(A_LU, pivots)
|
|
>>>
|
|
>>> # can recover A from factorization
|
|
>>> A_ = torch.bmm(P, torch.bmm(A_L, A_U))
|
|
"""
|
|
|
|
nBatch, sz, _ = LU_data.size()
|
|
|
|
if unpack_data:
|
|
I_U = torch.triu(torch.ones(sz, sz)).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
|
|
I_L = 1 - I_U
|
|
L = LU_data.new(LU_data.size()).zero_()
|
|
U = LU_data.new(LU_data.size()).zero_()
|
|
I_diag = torch.eye(sz).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
|
|
L[I_diag] = 1.0
|
|
L[I_L] = LU_data[I_L]
|
|
U[I_U] = LU_data[I_U]
|
|
else:
|
|
L = U = None
|
|
|
|
if unpack_pivots:
|
|
P = torch.eye(sz).type_as(LU_data).unsqueeze(0).repeat(nBatch, 1, 1)
|
|
for i in range(nBatch):
|
|
for j in range(sz):
|
|
k = int(LU_pivots[i, j] - 1)
|
|
t = P[i, :, j].clone()
|
|
P[i, :, j] = P[i, :, k]
|
|
P[i, :, k] = t
|
|
else:
|
|
P = None
|
|
|
|
return P, L, U
|
|
|
|
|
|
def einsum(equation, *operands):
|
|
r"""einsum(equation, *operands) -> Tensor
|
|
|
|
This function provides a way of computing multilinear expressions (i.e. sums of products) using the
|
|
Einstein summation convention.
|
|
|
|
Args:
|
|
equation (string): The equation is given in terms of lower case letters (indices) to be associated
|
|
with each dimension of the operands and result. The left hand side lists the operands
|
|
dimensions, separated by commas. There should be one index letter per tensor dimension.
|
|
The right hand side follows after `->` and gives the indices for the output.
|
|
If the `->` and right hand side are omitted, it implicitly defined as the alphabetically
|
|
sorted list of all indices appearing exactly once in the left hand side.
|
|
The indices not apprearing in the output are summed over after multiplying the operands
|
|
entries.
|
|
If an index appears several times for the same operand, a diagonal is taken.
|
|
Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred,
|
|
the ellipsis dimensions are at the beginning of the output.
|
|
operands (list of Tensors): The operands to compute the Einstein sum of.
|
|
Note that the operands are passed as a list, not as individual arguments.
|
|
|
|
Examples::
|
|
|
|
>>> x = torch.randn(5)
|
|
>>> y = torch.randn(4)
|
|
>>> torch.einsum('i,j->ij', x, y) # outer product
|
|
tensor([[-0.0570, -0.0286, -0.0231, 0.0197],
|
|
[ 1.2616, 0.6335, 0.5113, -0.4351],
|
|
[ 1.4452, 0.7257, 0.5857, -0.4984],
|
|
[-0.4647, -0.2333, -0.1883, 0.1603],
|
|
[-1.1130, -0.5588, -0.4510, 0.3838]])
|
|
|
|
|
|
>>> A = torch.randn(3,5,4)
|
|
>>> l = torch.randn(2,5)
|
|
>>> r = torch.randn(2,4)
|
|
>>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear
|
|
tensor([[-0.3430, -5.2405, 0.4494],
|
|
[ 0.3311, 5.5201, -3.0356]])
|
|
|
|
|
|
>>> As = torch.randn(3,2,5)
|
|
>>> Bs = torch.randn(3,5,4)
|
|
>>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication
|
|
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],
|
|
[-1.6706, -0.8097, -0.8025, -2.1183]],
|
|
|
|
[[ 4.2239, 0.3107, -0.5756, -0.2354],
|
|
[-1.4558, -0.3460, 1.5087, -0.8530]],
|
|
|
|
[[ 2.8153, 1.8787, -4.3839, -1.2112],
|
|
[ 0.3728, -2.1131, 0.0921, 0.8305]]])
|
|
|
|
>>> A = torch.randn(3, 3)
|
|
>>> torch.einsum('ii->i', A) # diagonal
|
|
tensor([-0.7825, 0.8291, -0.1936])
|
|
|
|
>>> A = torch.randn(4, 3, 3)
|
|
>>> torch.einsum('...ii->...i', A) # batch diagonal
|
|
tensor([[-1.0864, 0.7292, 0.0569],
|
|
[-0.9725, -1.0270, 0.6493],
|
|
[ 0.5832, -1.1716, -1.5084],
|
|
[ 0.4041, -1.1690, 0.8570]])
|
|
|
|
>>> A = torch.randn(2, 3, 4, 5)
|
|
>>> torch.einsum('...ij->...ji', A).shape # batch permute
|
|
torch.Size([2, 3, 5, 4])
|
|
"""
|
|
if len(operands) == 1 and isinstance(operands[0], (list, tuple)):
|
|
# the old interface of passing the operands as one list argument
|
|
operands = operands[0]
|
|
return torch._C._VariableFunctions.einsum(equation, operands)
|
|
|
|
|
|
def isfinite(tensor):
|
|
r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not.
|
|
|
|
Arguments:
|
|
tensor (Tensor): A tensor to check
|
|
|
|
Returns:
|
|
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise
|
|
|
|
Example::
|
|
|
|
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8)
|
|
"""
|
|
if not isinstance(tensor, torch.Tensor):
|
|
raise ValueError("The argument is not a tensor", str(tensor))
|
|
return (tensor == tensor) & (tensor.abs() != inf)
|
|
|
|
|
|
def isinf(tensor):
|
|
r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not.
|
|
|
|
Arguments:
|
|
tensor (Tensor): A tensor to check
|
|
|
|
Returns:
|
|
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise
|
|
|
|
Example::
|
|
|
|
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8)
|
|
"""
|
|
if not isinstance(tensor, torch.Tensor):
|
|
raise ValueError("The argument is not a tensor", str(tensor))
|
|
return tensor.abs() == inf
|
|
|
|
|
|
def meshgrid(*tensors, **kwargs):
|
|
r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional
|
|
vector, and create :math:`N` N-dimensional grids, where the :math:`i`th grid is defined by
|
|
expanding the :math:`i`th input over dimensions defined by other inputs.
|
|
|
|
|
|
Args:
|
|
tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be
|
|
treated as tensors of size :math:`(1,)` automatically
|
|
|
|
Returns:
|
|
seq (sequence of Tensors): If the input has :math:`k` tensors of size
|
|
:math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also has :math:`k` tensors,
|
|
where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3])
|
|
>>> y = torch.tensor([4, 5, 6])
|
|
>>> grid_x, grid_y = torch.meshgrid(x, y)
|
|
>>> grid_x
|
|
tensor([[1, 1, 1],
|
|
[2, 2, 2],
|
|
[3, 3, 3]])
|
|
>>> grid_y
|
|
tensor([[4, 5, 6],
|
|
[4, 5, 6],
|
|
[4, 5, 6]])
|
|
"""
|
|
if kwargs:
|
|
raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],))
|
|
if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
|
|
# the old interface of passing the operands as one list argument
|
|
tensors = tensors[0]
|
|
return torch._C._VariableFunctions.meshgrid(tensors)
|
|
|
|
|
|
def stft(input, n_fft, hop_length=None, win_length=None, window=None,
|
|
center=True, pad_mode='reflect', normalized=False, onesided=True):
|
|
r"""Short-time Fourier transform (STFT).
|
|
|
|
Ignoring the optional batch dimension, this method computes the following
|
|
expression:
|
|
|
|
.. math::
|
|
X[m, \omega] = \sum_{k = 0}^{\text{win\_length}}%
|
|
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %
|
|
\exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right),
|
|
|
|
where :math:`m` is the index of the sliding window, and :math:`\omega` is
|
|
the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When
|
|
:attr:`onesided` is the default value ``True``,
|
|
|
|
* :attr:`input` must be either a 1-D time sequenceor 2-D a batch of time
|
|
sequences.
|
|
|
|
* If :attr:`hop_length` is ``None`` (default), it is treated as equal to
|
|
``floor(n_fft / 4)``.
|
|
|
|
* If :attr:`win_length` is ``None`` (default), it is treated as equal to
|
|
:attr:`n_fft`.
|
|
|
|
* :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from
|
|
:meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is
|
|
treated as if having :math:`1` everywhere in the window. If
|
|
:math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on
|
|
both sides to length :attr:`n_fft` before being applied.
|
|
|
|
* If :attr:`center` is ``True`` (default), :attr:`input` will be padded on
|
|
both sides so that the :math:`t`-th frame is centered at time
|
|
:math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame
|
|
begins at time :math:`t \times \text{hop\_length}`.
|
|
|
|
* :attr:`pad_mode` determines the padding method used on :attr:`input` when
|
|
:attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for
|
|
all available options. Default is ``"reflect"``.
|
|
|
|
* If :attr:`onesided` is ``True`` (default), only values for :math:`\omega`
|
|
in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]`
|
|
are returned because the real-to-complex Fourier transform satisfies the
|
|
conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`.
|
|
|
|
* If :attr:`normalized` is ``True`` (default is ``False``), the function
|
|
returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`.
|
|
|
|
Returns the real and the imaginary parts together as one tensor of size
|
|
:math:`(* \times N \times T \times 2)`, where :math:`*` is the optional
|
|
batch size of :attr:`input`, :math:`N` is the number of frequencies where
|
|
STFT is applied, :math:`T` is the total number of frames used, and each pair
|
|
in the last dimension represents a complex number as the real part and the
|
|
imaginary part.
|
|
|
|
.. warning::
|
|
This function changed signature at version 0.4.1. Calling with the
|
|
previous signature may cause error or return incorrect result.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor
|
|
n_fft (int, optional): size of Fourier transform
|
|
hop_length (int): the distance between neighboring sliding window
|
|
frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``)
|
|
win_length (int): the size of window frame and STFT filter.
|
|
Default: ``None`` (treated as equal to :attr:`n_fft`)
|
|
window (Tensor, optional): the optional window function.
|
|
Default: ``None`` (treated as window of all :math:`1` s)
|
|
center (bool, optional): whether to pad :attr:`input` on both sides so
|
|
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
|
|
Default: ``True``
|
|
pad_mode (string, optional): controls the padding method used when
|
|
:attr:`center` is ``True``. Default: ``"reflect"``
|
|
normalized (bool, optional): controls whether to return the normalized STFT results
|
|
Default: ``False``
|
|
onesided (bool, optional): controls whether to return half of results to
|
|
avoid redundancy Default: ``True``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the STFT result with shape described above
|
|
|
|
"""
|
|
# TODO: after having proper ways to map Python strings to ATen Enum, move
|
|
# this and F.pad to ATen.
|
|
if center:
|
|
signal_dim = input.dim()
|
|
extended_shape = [1] * (3 - signal_dim) + list(input.size())
|
|
pad = int(n_fft // 2)
|
|
input = F.pad(input.view(extended_shape), (pad, pad), pad_mode)
|
|
input = input.view(input.shape[-signal_dim:])
|
|
return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided)
|
|
|
|
|
|
def isnan(tensor):
|
|
r"""Returns a new tensor with boolean elements representing if each element is `NaN` or not.
|
|
|
|
Arguments:
|
|
tensor (Tensor): A tensor to check
|
|
|
|
Returns:
|
|
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `NaN` elements.
|
|
|
|
Example::
|
|
|
|
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
|
|
tensor([ 0, 1, 0], dtype=torch.uint8)
|
|
"""
|
|
if not isinstance(tensor, torch.Tensor):
|
|
raise ValueError("The argument is not a tensor", str(tensor))
|
|
return tensor != tensor
|
|
|
|
|
|
def unique(input, sorted=False, return_inverse=False, dim=None):
|
|
r"""Returns the unique scalar elements of the input tensor as a 1-D tensor.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor
|
|
sorted (bool): Whether to sort the unique elements in ascending order
|
|
before returning as output.
|
|
return_inverse (bool): Whether to also return the indices for where
|
|
elements in the original input ended up in the returned unique list.
|
|
dim (int): the dimension to apply unique. If ``None``, the unique of the
|
|
flattened input is returned. default: ``None``
|
|
|
|
Returns:
|
|
(Tensor, Tensor (optional)): A tensor or a tuple of tensors containing
|
|
|
|
- **output** (*Tensor*): the output list of unique scalar elements.
|
|
- **inverse_indices** (*Tensor*): (optional) if
|
|
:attr:`return_inverse` is True, there will be a
|
|
2nd returned tensor (same shape as input) representing the indices
|
|
for where elements in the original input map to in the output;
|
|
otherwise, this function will only return a single tensor.
|
|
|
|
Example::
|
|
|
|
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))
|
|
>>> output
|
|
tensor([ 2, 3, 1])
|
|
|
|
>>> output, inverse_indices = torch.unique(
|
|
torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True)
|
|
>>> output
|
|
tensor([ 1, 2, 3])
|
|
>>> inverse_indices
|
|
tensor([ 0, 2, 1, 2])
|
|
|
|
>>> output, inverse_indices = torch.unique(
|
|
torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True)
|
|
>>> output
|
|
tensor([ 1, 2, 3])
|
|
>>> inverse_indices
|
|
tensor([[ 0, 2],
|
|
[ 1, 2]])
|
|
|
|
"""
|
|
if dim is not None:
|
|
output, inverse_indices = torch._unique_dim(
|
|
input,
|
|
dim,
|
|
sorted=sorted,
|
|
return_inverse=return_inverse
|
|
)
|
|
else:
|
|
output, inverse_indices = torch._unique(
|
|
input,
|
|
sorted=sorted,
|
|
return_inverse=return_inverse,
|
|
)
|
|
if return_inverse:
|
|
return output, inverse_indices
|
|
else:
|
|
return output
|
|
|
|
|
|
def argmax(input, dim=None, keepdim=False):
|
|
r"""Returns the indices of the maximum values of a tensor across a dimension.
|
|
|
|
This is the second value returned by :meth:`torch.max`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
dim (int): the dimension to reduce. If ``None``, the argmax of the
|
|
flattened input is returned.
|
|
keepdim (bool): whether the output tensors have :attr:`dim`
|
|
retained or not. Ignored if ``dim=None``.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
|
|
[-0.7401, -0.8805, -0.3402, -1.1936],
|
|
[ 0.4907, -1.3948, -1.0691, -0.3132],
|
|
[-1.6092, 0.5419, -0.2993, 0.3195]])
|
|
|
|
|
|
>>> torch.argmax(a, dim=1)
|
|
tensor([ 0, 2, 0, 1])
|
|
"""
|
|
if dim is None:
|
|
return torch._argmax(input.contiguous().view(-1), dim=0, keepdim=False)
|
|
return torch._argmax(input, dim, keepdim)
|
|
|
|
|
|
def argmin(input, dim=None, keepdim=False):
|
|
r"""Returns the indices of the minimum values of a tensor across a dimension.
|
|
|
|
This is the second value returned by :meth:`torch.min`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
dim (int): the dimension to reduce. If ``None``, the argmin of the
|
|
flattened input is returned.
|
|
keepdim (bool): whether the output tensors have :attr:`dim`
|
|
retained or not. Ignored if ``dim=None``.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.1139, 0.2254, -0.1381, 0.3687],
|
|
[ 1.0100, -1.1975, -0.0102, -0.4732],
|
|
[-0.9240, 0.1207, -0.7506, -1.0213],
|
|
[ 1.7809, -1.2960, 0.9384, 0.1438]])
|
|
|
|
|
|
>>> torch.argmin(a, dim=1)
|
|
tensor([ 2, 1, 3, 1])
|
|
"""
|
|
if dim is None:
|
|
return torch._argmin(input.contiguous().view(-1), dim=0, keepdim=False)
|
|
return torch._argmin(input, dim, keepdim)
|
|
|
|
|
|
def tensordot(a, b, dims=2):
|
|
r"""Returns a contraction of a and b over multiple dimensions.
|
|
|
|
:attr:`tensordot` implements a generalizes the matrix product.
|
|
|
|
Args:
|
|
a (Tensor): Left tensor to contract
|
|
b (Tensor): Right tensor to contract
|
|
dims (int or tuple of two lists of integers): number of dimensions to
|
|
contract or explicit lists of dimensions for :attr:`a` and
|
|
:attr:`b` respectively
|
|
|
|
When called with an integer argument :attr:`dims` = :math:`d`, and the number of
|
|
dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, respectively,
|
|
it computes
|
|
|
|
.. math::
|
|
r_{i_0,...,i_{m-d}, i_d,...,i_n}
|
|
= \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}.
|
|
|
|
When called with :attr:`dims` of the list form, the given dimensions will be contracted
|
|
in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes
|
|
in these dimensions must match, but :attr:`tensordot` will deal with broadcasted
|
|
dimensions.
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.arange(60.).reshape(3, 4, 5)
|
|
>>> b = torch.arange(24.).reshape(4, 3, 2)
|
|
>>> torch.tensordot(a, b, dims=([1, 0], [0, 1]))
|
|
tensor([[4400., 4730.],
|
|
[4532., 4874.],
|
|
[4664., 5018.],
|
|
[4796., 5162.],
|
|
[4928., 5306.]])
|
|
|
|
>>> a = torch.randn(3, 4, 5, device='cuda')
|
|
>>> b = torch.randn(4, 5, 6, device='cuda')
|
|
>>> c = torch.tensordot(a, b, dims=2).cpu()
|
|
tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741],
|
|
[ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744],
|
|
[ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]])
|
|
|
|
"""
|
|
if isinstance(dims, (list, tuple)) or \
|
|
(isinstance(dims, torch.Tensor) and dims.numel() > 1):
|
|
dims_a, dims_b = dims
|
|
else:
|
|
if isinstance(dims, torch.Tensor):
|
|
dims = dims.item()
|
|
dims_a = list(range(-dims, 0))
|
|
dims_b = list(range(dims))
|
|
return torch._C._VariableFunctions.tensordot(a, b, dims_a, dims_b)
|
|
|
|
|
|
def argsort(input, dim=None, descending=False):
|
|
r"""Returns the indices that sort a tensor along a given dimension in ascending
|
|
order by value.
|
|
|
|
This is the second value returned by :meth:`torch.sort`. See its documentation
|
|
for the exact semantics of this method.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
dim (int, optional): the dimension to sort along
|
|
descending (bool, optional): controls the sorting order (ascending or descending)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
|
|
[ 0.1598, 0.0788, -0.0745, -1.2700],
|
|
[ 1.2208, 1.0722, -0.7064, 1.2564],
|
|
[ 0.0669, -0.2318, -0.8229, -0.9280]])
|
|
|
|
|
|
>>> torch.argsort(a, dim=1)
|
|
tensor([[2, 0, 3, 1],
|
|
[3, 2, 1, 0],
|
|
[2, 1, 0, 3],
|
|
[3, 2, 1, 0]])
|
|
"""
|
|
if dim is None:
|
|
return torch.sort(input, -1, descending)[1]
|
|
return torch.sort(input, dim, descending)[1]
|
|
|
|
|
|
def norm(input, p="fro", dim=None, keepdim=False, out=None):
|
|
r"""Returns the matrix norm or vector norm of a given tensor.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'``
|
|
The following norms can be calculated:
|
|
|
|
===== ============================ ==========================
|
|
ord matrix norm vector norm
|
|
===== ============================ ==========================
|
|
None Frobenius norm 2-norm
|
|
'fro' Frobenius norm --
|
|
'nuc' nuclear norm --
|
|
Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord)
|
|
===== ============================ ==========================
|
|
|
|
dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int,
|
|
vector norm will be calculated, if it is 2-tuple of ints, matrix norm
|
|
will be calculated. If the value is None, matrix norm will be calculated
|
|
when the input tensor only has two dimensions, vector norm will be
|
|
calculated when the input tensor only has one dimension. If the input
|
|
tensor has more than two dimensions, the vector norm will be applied to
|
|
last dimension.
|
|
keepdim (bool, optional): whether the output tensors have :attr:`dim`
|
|
retained or not. Ignored if :attr:`dim` = ``None`` and
|
|
:attr:`out` = ``None``. Default: ``False``
|
|
out (Tensor, optional): the output tensor. Ignored if
|
|
:attr:`dim` = ``None`` and :attr:`out` = ``None``.
|
|
|
|
Example::
|
|
|
|
>>> import torch
|
|
>>> a = torch.arange(9, dtype= torch.float) - 4
|
|
>>> b = a.reshape((3, 3))
|
|
>>> torch.norm(a)
|
|
tensor(7.7460)
|
|
>>> torch.norm(b)
|
|
tensor(7.7460)
|
|
>>> torch.norm(a, float('inf'))
|
|
tensor(4.)
|
|
>>> torch.norm(b, float('inf'))
|
|
tensor([4., 3., 4.])
|
|
>>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float)
|
|
>>> torch.norm(c, dim=0)
|
|
tensor([1.4142, 2.2361, 5.0000])
|
|
>>> torch.norm(c, dim=1)
|
|
tensor([3.7417, 4.2426])
|
|
>>> torch.norm(c, p=1, dim=1)
|
|
tensor([6., 6.])
|
|
>>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2)
|
|
>>> torch.norm(d, dim=(1,2))
|
|
tensor([ 3.7417, 11.2250])
|
|
>>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :])
|
|
(tensor(3.7417), tensor(11.2250))
|
|
"""
|
|
ndim = input.dim()
|
|
|
|
# catch default case
|
|
if dim is None and out is None:
|
|
if p == "fro":
|
|
return torch._C._VariableFunctions.frobenius_norm(input)
|
|
elif p != "nuc":
|
|
return torch._C._VariableFunctions.norm(input, p)
|
|
|
|
if p == "fro":
|
|
if dim is None:
|
|
dim = tuple(range(ndim))
|
|
if out is None:
|
|
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim)
|
|
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim, out=out)
|
|
elif p == "nuc":
|
|
if out is None:
|
|
torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim)
|
|
return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim, out=out)
|
|
else:
|
|
if out is None:
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim)
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, out=out)
|
|
|
|
|
|
def chain_matmul(*matrices):
|
|
r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed
|
|
using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms
|
|
of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N`
|
|
needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned.
|
|
If :math:`N` is 1, then this is a no-op - the original matrix is returned as is.
|
|
|
|
|
|
Args:
|
|
matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined.
|
|
|
|
|
|
Returns:
|
|
Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product
|
|
would be of dimensions :math:`p_{1} \times p_{N + 1}`.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 4)
|
|
>>> b = torch.randn(4, 5)
|
|
>>> c = torch.randn(5, 6)
|
|
>>> d = torch.randn(6, 7)
|
|
>>> torch.chain_matmul(a, b, c, d)
|
|
tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614],
|
|
[ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163],
|
|
[ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
|
|
|
|
.. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition
|
|
"""
|
|
return torch._C._VariableFunctions.chain_matmul(matrices)
|