Files
pytorch/c10
Dan Johnson d22c4cc353 Add option to use mempool on OOM (#151487)
MemPool is a separate pool of memory handled by the caching allocator. This PR adds the option let the caching allocator try to use this pool as a last resort instead of OOMing by associating a use_on_oom bool with each MemPool.

Usage:
Users can optionally specify a ``use_on_oom`` bool (which is False by default) during MemPool creation. If true, then the CUDACachingAllocator will be able to use memory in this pool as a last resort instead of OOMing.

```
pool = torch.cuda.MemPool(allocator, use_on_oom=True)
with torch.cuda.use_mem_pool(pool):
    a = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
del a
# at the memory limit, this will succeed by using pool's memory in order to avoid the oom
b = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
```

Testing:
```
python test/test_cuda.py -k test_mempool_limited_memory_with_allocator
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151487
Approved by: https://github.com/eqy, https://github.com/syed-ahmed, https://github.com/ngimel
2025-04-26 04:04:57 +00:00
..
2023-04-05 19:33:10 +00:00