mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This reverts commit 902c6f3a191fb2ecb1976895b3e9eaae4b257b89. Reverted https://github.com/pytorch/pytorch/pull/132770 on behalf of https://github.com/ezyang due to Removed API was recommitted ([comment](https://github.com/pytorch/pytorch/pull/132770#issuecomment-2275749689))
1223 lines
46 KiB
Python
1223 lines
46 KiB
Python
# mypy: allow-untyped-decorators
|
|
# mypy: allow-untyped-defs
|
|
import contextlib
|
|
import copy
|
|
import dataclasses
|
|
import functools
|
|
import re
|
|
import types
|
|
import warnings
|
|
from collections import namedtuple
|
|
from contextlib import contextmanager
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
final,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
from torch._higher_order_ops.utils import autograd_not_implemented
|
|
from torch._library.fake_class_registry import FakeScriptObject
|
|
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
|
|
from torch.fx.immutable_collections import immutable_dict, immutable_list
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
# Import the following modules during type checking to enable code intelligence features,
|
|
# such as auto-completion in tools like pylance, even when these modules are not explicitly
|
|
# imported in user code.
|
|
|
|
import sympy
|
|
|
|
from torch.utils._sympy.value_ranges import ValueRanges
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from torch._export.verifier import Verifier
|
|
from torch._subclasses.functional_tensor import FunctionalTensor
|
|
from torch.export._tree_utils import is_equivalent, reorder_kwargs
|
|
from torch.fx._compatibility import compatibility
|
|
from torch.fx._utils import first_call_function_nn_module_stack
|
|
from torch.fx.experimental.proxy_tensor import maybe_disable_fake_tensor_mode
|
|
from torch.fx.passes.infra.pass_base import PassResult
|
|
from torch.fx.passes.infra.pass_manager import PassManager
|
|
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
|
|
|
|
from .graph_signature import ( # noqa: F401
|
|
ArgumentSpec,
|
|
ConstantArgument,
|
|
CustomObjArgument,
|
|
ExportGraphSignature,
|
|
InputKind,
|
|
InputSpec,
|
|
OutputKind,
|
|
OutputSpec,
|
|
SymIntArgument,
|
|
TensorArgument,
|
|
TokenArgument,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"ExportedProgram",
|
|
"ModuleCallEntry",
|
|
"ModuleCallSignature",
|
|
]
|
|
|
|
|
|
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ModuleCallSignature:
|
|
inputs: List[ArgumentSpec]
|
|
outputs: List[ArgumentSpec]
|
|
in_spec: pytree.TreeSpec
|
|
out_spec: pytree.TreeSpec
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ModuleCallEntry:
|
|
fqn: str
|
|
signature: Optional[ModuleCallSignature] = None
|
|
|
|
|
|
def _disable_prexisiting_fake_mode(fn):
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with maybe_disable_fake_tensor_mode():
|
|
return fn(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def _fx_collection_equivalence_fn(
|
|
spec1_type: Optional[type],
|
|
spec1_context: pytree.Context,
|
|
spec2_type: Optional[type],
|
|
spec2_context: pytree.Context,
|
|
) -> bool:
|
|
"""Treat containers and their immutable variants as the same type. Otherwise
|
|
compare as normal.
|
|
"""
|
|
if spec1_type is None or spec2_type is None:
|
|
return spec1_type is spec2_type and spec1_context == spec2_context
|
|
|
|
if issubclass(spec1_type, (dict, immutable_dict)) and issubclass(
|
|
spec2_type, (dict, immutable_dict)
|
|
):
|
|
return spec1_context == spec2_context
|
|
|
|
if issubclass(spec1_type, (list, immutable_list)) and issubclass(
|
|
spec2_type, (list, immutable_list)
|
|
):
|
|
return spec1_context == spec2_context
|
|
|
|
return spec1_type is spec2_type and spec1_context == spec2_context
|
|
|
|
|
|
def _register_cia_to_meta(*args, **kwargs):
|
|
kernel = kwargs["kernel"]
|
|
del kwargs["kernel"]
|
|
|
|
assert torch._C._dispatch_has_kernel_for_dispatch_key(
|
|
kernel.name(), torch._C.DispatchKey.CompositeImplicitAutograd
|
|
)
|
|
|
|
return kernel._op_dk(
|
|
torch._C.DispatchKey.CompositeImplicitAutograd, *args, **kwargs
|
|
)
|
|
|
|
|
|
# This list is compiled from DispatchKey.cpp.
|
|
# The idea is that we use these keys to override
|
|
# CIA decomp in export
|
|
_AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE = [
|
|
torch._C.DispatchKey.AutogradCPU,
|
|
torch._C.DispatchKey.AutogradCUDA,
|
|
torch._C.DispatchKey.AutogradMeta,
|
|
torch._C.DispatchKey.AutogradXLA,
|
|
torch._C.DispatchKey.AutogradLazy,
|
|
torch._C.DispatchKey.AutogradIPU,
|
|
torch._C.DispatchKey.AutogradXPU,
|
|
torch._C.DispatchKey.AutogradMPS,
|
|
torch._C.DispatchKey.AutogradHPU,
|
|
torch._C.DispatchKey.AutogradPrivateUse1,
|
|
torch._C.DispatchKey.AutogradPrivateUse2,
|
|
torch._C.DispatchKey.AutogradPrivateUse3,
|
|
]
|
|
|
|
|
|
@contextmanager
|
|
def _override_composite_implicit_decomp(ops_to_preserve, decomp_table):
|
|
# This function overrides CompositeImplicitAutograd decomp for
|
|
# functional composite ops that user specified. Ideally we want to not-decompose
|
|
# ALL composite ops but today's C++ functinalization relies on
|
|
# the fact that it is working with the opset after decomp is run.
|
|
# Hence we can only do it for functional ops. One caveat is that
|
|
# there are some composite ops that lie about their schema (claimed to be
|
|
# functional but not really aka dropout), for these cases, we just decompose.
|
|
saved_tables = {}
|
|
patched_ops = set()
|
|
removed_decomps = {}
|
|
for op_overload in ops_to_preserve:
|
|
# Our strategy for deciding if we can preserve CIA is following:
|
|
# 1. The op should be known statically that it is functional
|
|
# 2. If it is maybe aliasing, we decompose because we must know if an op
|
|
# is mutating or aliasing.
|
|
# TODO (tmanlaibaatar) make this utility function and share it with functional_tensor
|
|
# decomp part. (https://github.com/pytorch/pytorch/issues/129431)
|
|
def assert_valid_to_preserve(op_overload):
|
|
if op_overload in FunctionalTensor.maybe_aliasing_or_mutating_ops:
|
|
raise RuntimeError(
|
|
f"We can't detect {op_overload} as a functional op statically, so we can't preserve it"
|
|
)
|
|
if op_overload in FunctionalTensor.metadata_fns:
|
|
raise RuntimeError(
|
|
f"{op_overload} is a metadata query function, "
|
|
"it will be preserved implicitly in our tracing system. "
|
|
"Please file an issue on github if you see otherwise"
|
|
)
|
|
|
|
alias_info = len(
|
|
[i for i in op_overload._schema.arguments if i.alias_info is not None]
|
|
)
|
|
|
|
is_mutating_or_aliasing = alias_info != 0 or op_overload._schema.is_mutable
|
|
|
|
if is_mutating_or_aliasing:
|
|
raise RuntimeError(
|
|
f"{op_overload} is a mutating/aliasing op, we can't preserve it as is"
|
|
)
|
|
|
|
if not torch._C._dispatch_has_kernel(op_overload.name()):
|
|
raise RuntimeError(
|
|
f"{op_overload} is a TorchScript op, we can't preserve it as is"
|
|
)
|
|
|
|
return True
|
|
|
|
# If we didn't error, it means we can go ahead
|
|
assert_valid_to_preserve(op_overload)
|
|
|
|
saved_tables[op_overload] = op_overload.py_kernels.copy()
|
|
patched_ops.add(op_overload)
|
|
|
|
for override_dispatch_key in _AUTOGRAD_ALIAS_BACKEND_KEYS_TO_OVERRIDE:
|
|
if override_dispatch_key not in op_overload.py_kernels:
|
|
# TODO (tmanlaibaatar)https://github.com/pytorch/pytorch/issues/129430
|
|
op_overload.py_impl(override_dispatch_key)(
|
|
autograd_not_implemented(op_overload, deferred_error=True)
|
|
)
|
|
if torch._C.DispatchKey.CompositeImplicitAutograd in op_overload.py_kernels:
|
|
del op_overload.py_kernels[torch._C.DispatchKey.CompositeImplicitAutograd]
|
|
|
|
def _(*args, **kwargs):
|
|
return NotImplemented
|
|
|
|
op_overload.py_impl(torch._C.DispatchKey.CompositeImplicitAutograd)(_)
|
|
|
|
# For fake tensor prop, we do want to register meta kernel directly
|
|
if torch._C.DispatchKey.Meta not in op_overload.py_kernels:
|
|
op_overload.py_impl(torch._C.DispatchKey.Meta)(
|
|
functools.partial(_register_cia_to_meta, kernel=op_overload)
|
|
)
|
|
|
|
if op_overload in decomp_table:
|
|
removed_decomps[op_overload] = decomp_table[op_overload]
|
|
del decomp_table[op_overload]
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
for op in patched_ops:
|
|
op.py_kernels.clear()
|
|
op.py_kernels.update(saved_tables[op])
|
|
op._dispatch_cache.clear()
|
|
|
|
for op, decomp in removed_decomps.items():
|
|
decomp_table[op] = decomp
|
|
|
|
|
|
def _rename_without_collisions(
|
|
name_map: Dict[str, str],
|
|
orig_name: str,
|
|
name: str,
|
|
is_placeholder: bool = False,
|
|
):
|
|
"""
|
|
Renames nodes to avoid name collisions, with suffixing.
|
|
name_map: map from original name to new name
|
|
orig_name: mapping key
|
|
name: candidate name (potentially suffixed, e.g. mul_2)
|
|
is_placeholder: if the node is a placeholder, avoid detecting suffix
|
|
"""
|
|
if name in name_map.values():
|
|
# non-placeholder nodes may be suffixed with the count
|
|
# instead of adding another suffix, we will try to increment it
|
|
match = re.match(r"(.*)_(\d+)", name)
|
|
if match and not is_placeholder:
|
|
name, n = match.group(1), int(match.group(2))
|
|
else:
|
|
n = 0
|
|
while (dup_name := f"{name}_{n + 1}") in name_map.values():
|
|
n += 1
|
|
name_map[orig_name] = dup_name
|
|
else:
|
|
name_map[orig_name] = name
|
|
return name_map[orig_name]
|
|
|
|
|
|
def _name_hoo_subgraph_placeholders(gm: torch.fx.GraphModule) -> None:
|
|
"""
|
|
Propagate placeholder names from the top-level graph into HigherOrderOp subgraphs,
|
|
and handle collisions with non-placeholders by count suffixing.
|
|
Different HOO subgraph types have different input schemas, so we first enumerate them
|
|
and gather the top-level named placeholder nodes.
|
|
"""
|
|
# gather all HOO subgraphs and their top-level named placeholder nodes
|
|
subgraph_ph_tuples: List[Tuple[torch.fx.GraphModule, List[torch.fx.Node]]] = []
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and isinstance(
|
|
node.target, torch._ops.HigherOrderOperator
|
|
):
|
|
# HOO subgraphs have varying input schemas, so we enumerate them there
|
|
if node.target._name == "cond":
|
|
_, true_graph, false_graph, cond_args = node._args
|
|
subgraph_ph_tuples.append((getattr(gm, true_graph.target), cond_args))
|
|
subgraph_ph_tuples.append((getattr(gm, false_graph.target), cond_args))
|
|
elif node.target._name == "wrap_with_set_grad_enabled":
|
|
subgraph, phs = node._args[1], node._args[2:]
|
|
subgraph_ph_tuples.append((getattr(gm, subgraph.target), phs))
|
|
elif node.target._name == "map_impl":
|
|
body_graph, array, args = node._args
|
|
subgraph_ph_tuples.append(
|
|
(getattr(gm, body_graph.target), array + args)
|
|
)
|
|
|
|
# propagate names
|
|
for subgraph, hoo_phs in subgraph_ph_tuples:
|
|
name_map: Dict[str, str] = {}
|
|
for i, node in enumerate(subgraph.graph.nodes):
|
|
if i < len(hoo_phs): # placeholder, retain name
|
|
name_map[node.name] = hoo_phs[i].name
|
|
node.name = node.target = hoo_phs[i].name
|
|
else: # non-placeholder, check for collisions
|
|
node.name = _rename_without_collisions(name_map, node.name, node.name)
|
|
|
|
# recurse and recompile
|
|
_name_hoo_subgraph_placeholders(subgraph)
|
|
subgraph.recompile()
|
|
|
|
|
|
def _decompose_and_get_gm_with_new_signature_constants(
|
|
ep,
|
|
*,
|
|
decomp_table: Dict[torch._ops.OperatorBase, Callable],
|
|
_preserve_ops: Tuple[torch._ops.OpOverload],
|
|
joint_loss_index: Optional[int],
|
|
):
|
|
from torch._export.passes.lift_constants_pass import ConstantAttrMap
|
|
from torch._functorch.aot_autograd import aot_export_module
|
|
from torch._guards import detect_fake_mode
|
|
from torch._subclasses.fake_tensor import FakeTensorMode
|
|
from torch.export._trace import (
|
|
_export_to_aten_ir,
|
|
_fakify_params_buffers,
|
|
_ignore_backend_decomps,
|
|
_verify_nn_module_stack,
|
|
_verify_placeholder_names,
|
|
_verify_stack_trace,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
|
|
if ep.verifier.dialect == "TRAINING":
|
|
mod = ep.module()
|
|
fake_args = [
|
|
node.meta["val"] for node in mod.graph.nodes if node.op == "placeholder"
|
|
]
|
|
fake_mode = torch._export.utils._detect_fake_mode_from_gm(mod)
|
|
if fake_mode is None:
|
|
fake_mode = FakeTensorMode(shape_env=ShapeEnv(), export=True)
|
|
|
|
# Fix the graph output signature to be tuple if scalar
|
|
out_spec = mod._out_spec
|
|
|
|
orig_arg_names = mod.graph._codegen.pytree_info.orig_args # type: ignore[attr-defined]
|
|
|
|
# aot_export expect the return type to always be a tuple.
|
|
if out_spec.type not in (list, tuple):
|
|
out_spec = pytree.TreeSpec(tuple, None, [out_spec])
|
|
|
|
mod.graph._codegen = _PyTreeCodeGen(
|
|
_PyTreeInfo(
|
|
orig_arg_names,
|
|
mod._in_spec,
|
|
out_spec,
|
|
)
|
|
)
|
|
|
|
mod.recompile()
|
|
|
|
# the exported module will store constants & non-persistent buffers such that
|
|
# retracing treats them as persistent buffers, so we inform the constants lifting pass
|
|
# and overwrite the new graph signature using the previous program.
|
|
constant_attrs = ConstantAttrMap()
|
|
non_persistent_buffers = {
|
|
spec.target
|
|
for spec in ep.graph_signature.input_specs
|
|
if spec.kind == InputKind.BUFFER and not spec.persistent
|
|
}
|
|
for name, value in ep.constants.items():
|
|
if name in non_persistent_buffers:
|
|
continue
|
|
# recursive getattr
|
|
_mod = mod
|
|
*atoms, attr = name.split(".")
|
|
for atom in atoms:
|
|
_mod = getattr(_mod, atom)
|
|
# remove as buffer, reassign as constant/non-persistent buffer
|
|
_mod._buffers.pop(attr, None)
|
|
setattr(_mod, attr, value)
|
|
constant_attrs.add(value, name)
|
|
|
|
# get params & buffers after excluding constants
|
|
fake_params_buffers = _fakify_params_buffers(fake_mode, mod)
|
|
|
|
params_buffers_to_node_meta = {}
|
|
for node in mod.graph.nodes:
|
|
target = node.target
|
|
meta = node.meta
|
|
if node.op == "get_attr":
|
|
params_buffers_to_node_meta[target] = meta
|
|
|
|
# If the call_function uses param as input, we also need to update params' meta
|
|
# with this call_function node's meta.
|
|
# This is basically the same flow as torch.fx.traceback.preserve_meta()
|
|
if node.op == "call_function" and not isinstance(
|
|
node.target, torch._ops.HigherOrderOperator
|
|
):
|
|
for arg in node._input_nodes:
|
|
if arg.op == "get_attr":
|
|
for entry in torch.fx.proxy._COPY_META_FIELDS:
|
|
if entry in meta:
|
|
params_buffers_to_node_meta[arg.target][entry] = meta[
|
|
entry
|
|
]
|
|
|
|
with fake_mode:
|
|
fake_args_unwrapped = pytree.tree_unflatten(fake_args, mod._in_spec)
|
|
aten_export_artifact = _export_to_aten_ir(
|
|
mod,
|
|
# this requires empty kwargs, but not in pytree.flattened format
|
|
(
|
|
*fake_args_unwrapped[0],
|
|
*fake_args_unwrapped[1].values(),
|
|
),
|
|
{},
|
|
fake_params_buffers,
|
|
constant_attrs,
|
|
_check_autograd_state=False,
|
|
)
|
|
|
|
gm = aten_export_artifact.gm
|
|
new_graph_signature = aten_export_artifact.sig
|
|
|
|
for node in gm.graph.nodes:
|
|
# nn_module_stack
|
|
if node.op not in ["placeholder", "output"]:
|
|
for key, (fqn, mod_cls) in node.meta["nn_module_stack"].items():
|
|
if isinstance(mod_cls, type):
|
|
node.meta["nn_module_stack"][key] = (
|
|
fqn,
|
|
mod_cls.__module__ + "." + mod_cls.__qualname__,
|
|
)
|
|
|
|
# Don't copy over nn_module_stack, stack_trace metadata for params/buffers nodes
|
|
for metadata in params_buffers_to_node_meta.values():
|
|
metadata.pop("nn_module_stack", None)
|
|
metadata.pop("stack_trace", None)
|
|
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
if node.target in new_graph_signature.inputs_to_parameters:
|
|
param_name = new_graph_signature.inputs_to_parameters[node.target]
|
|
if param_name in params_buffers_to_node_meta:
|
|
for k, v in params_buffers_to_node_meta[param_name].items():
|
|
node.meta[k] = v
|
|
if node.target in new_graph_signature.inputs_to_buffers:
|
|
buffer_name = new_graph_signature.inputs_to_buffers[node.target]
|
|
if buffer_name in params_buffers_to_node_meta:
|
|
for k, v in params_buffers_to_node_meta[buffer_name].items():
|
|
node.meta[k] = v
|
|
|
|
# overwrite signature for non-persistent buffers
|
|
for spec in new_graph_signature.input_specs:
|
|
if spec.kind == InputKind.BUFFER and spec.target in non_persistent_buffers:
|
|
spec.persistent = False
|
|
|
|
_verify_nn_module_stack(gm)
|
|
_verify_stack_trace(gm)
|
|
_verify_placeholder_names(gm, new_graph_signature)
|
|
return gm, new_graph_signature
|
|
|
|
old_placeholders = [
|
|
node for node in ep.graph_module.graph.nodes if node.op == "placeholder"
|
|
]
|
|
fake_args = [node.meta["val"] for node in old_placeholders]
|
|
|
|
buffers_to_remove = [name for name, _ in ep.graph_module.named_buffers()]
|
|
for name in buffers_to_remove:
|
|
delattr(ep.graph_module, name)
|
|
|
|
# TODO(zhxhchen17) Return the new graph_signature directly.
|
|
fake_mode = detect_fake_mode(fake_args)
|
|
fake_mode = contextlib.nullcontext() if fake_mode is None else fake_mode
|
|
with _ignore_backend_decomps(), fake_mode, _override_composite_implicit_decomp(
|
|
_preserve_ops,
|
|
decomp_table,
|
|
):
|
|
gm, graph_signature = aot_export_module(
|
|
ep.graph_module,
|
|
fake_args,
|
|
decompositions=decomp_table,
|
|
trace_joint=True if joint_loss_index is not None else False,
|
|
output_loss_index=joint_loss_index
|
|
if joint_loss_index is not None
|
|
else None,
|
|
)
|
|
|
|
# Update the signatures with the new placeholder names in case they
|
|
# changed when calling aot_export
|
|
def update_arg(old_arg, new_ph):
|
|
if isinstance(old_arg, ConstantArgument):
|
|
return old_arg
|
|
elif isinstance(old_arg, TensorArgument):
|
|
return TensorArgument(name=new_ph.name)
|
|
elif isinstance(old_arg, SymIntArgument):
|
|
return SymIntArgument(name=new_ph.name)
|
|
raise RuntimeError(f"Type of old_arg not supported: {type(old_arg)}")
|
|
|
|
new_placeholders = [node for node in gm.graph.nodes if node.op == "placeholder"]
|
|
new_outputs = list(gm.graph.nodes)[-1].args[0]
|
|
|
|
# rename the placeholders
|
|
assert len(new_placeholders) == len(old_placeholders)
|
|
for old_ph, new_ph in zip(old_placeholders, new_placeholders):
|
|
new_ph.name = new_ph.target = old_ph.name
|
|
|
|
# handle name collisions with newly decomposed graph nodes
|
|
name_map = {ph.name: ph.name for ph in new_placeholders}
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
continue
|
|
node.name = _rename_without_collisions(name_map, node.name, node.name)
|
|
|
|
# propagate names to higher order op subgraphs
|
|
_name_hoo_subgraph_placeholders(gm)
|
|
|
|
# Run this pass before creating input/output specs, since size-related CSE/DCE might affect output signature.
|
|
# Overwrite output specs afterwards.
|
|
from torch._export.passes._node_metadata_hook import (
|
|
_node_metadata_hook,
|
|
_set_node_metadata_hook,
|
|
)
|
|
from torch._functorch._aot_autograd.input_output_analysis import _graph_output_names
|
|
|
|
if not torch._dynamo.config.do_not_emit_runtime_asserts:
|
|
stack_trace = (
|
|
'File "torch/fx/passes/runtime_assert.py", line 24, '
|
|
"in insert_deferred_runtime_asserts"
|
|
)
|
|
shape_env = _get_shape_env(gm)
|
|
if shape_env is not None:
|
|
with _set_node_metadata_hook(
|
|
gm, functools.partial(_node_metadata_hook, stack_trace=stack_trace)
|
|
):
|
|
insert_deferred_runtime_asserts(
|
|
gm,
|
|
shape_env,
|
|
f"exported program: {first_call_function_nn_module_stack(gm.graph)}",
|
|
export=True,
|
|
)
|
|
|
|
# update output specs
|
|
gm.recompile()
|
|
for i, name in enumerate(_graph_output_names(gm)):
|
|
if isinstance(new_outputs[i], torch.fx.Node):
|
|
new_outputs[i].name = name
|
|
|
|
# To match the output target with correct input for input mutations
|
|
# need to find the old to new placeholder map
|
|
old_new_placeholder_map = {
|
|
spec.arg.name: new_placeholders[i].name
|
|
for i, spec in enumerate(ep.graph_signature.input_specs)
|
|
if not isinstance(spec.arg, ConstantArgument)
|
|
}
|
|
|
|
input_specs = [
|
|
InputSpec(
|
|
spec.kind,
|
|
update_arg(spec.arg, new_placeholders[i]),
|
|
spec.target,
|
|
spec.persistent,
|
|
)
|
|
for i, spec in enumerate(ep.graph_signature.input_specs)
|
|
]
|
|
output_specs = [
|
|
OutputSpec(
|
|
spec.kind,
|
|
update_arg(spec.arg, new_outputs[i]),
|
|
old_new_placeholder_map.get(spec.target, spec.target),
|
|
)
|
|
for i, spec in enumerate(ep.graph_signature.output_specs)
|
|
]
|
|
|
|
if joint_loss_index is not None:
|
|
assert graph_signature.backward_signature is not None
|
|
gradients = graph_signature.backward_signature.gradients_to_user_inputs
|
|
assert len(graph_signature.user_inputs) == len(ep.graph_signature.input_specs)
|
|
specs = {
|
|
graph_signature.user_inputs[i]: spec
|
|
for i, spec in enumerate(ep.graph_signature.input_specs)
|
|
if isinstance(spec.arg, TensorArgument)
|
|
}
|
|
for i, node in enumerate(new_outputs[len(output_specs) :]):
|
|
source = gradients[node.name]
|
|
spec = specs[source] # type: ignore[index]
|
|
if spec.kind == InputKind.PARAMETER:
|
|
kind = OutputKind.GRADIENT_TO_PARAMETER
|
|
target = spec.target
|
|
elif spec.kind == InputKind.USER_INPUT:
|
|
kind = OutputKind.GRADIENT_TO_USER_INPUT
|
|
target = source
|
|
else:
|
|
raise AssertionError(f"Unknown input kind: {spec.kind}")
|
|
output_specs.append(
|
|
OutputSpec(
|
|
kind,
|
|
TensorArgument(name=node.name),
|
|
target,
|
|
)
|
|
)
|
|
|
|
assert len(new_placeholders) == len(old_placeholders)
|
|
|
|
new_graph_signature = ExportGraphSignature(
|
|
input_specs=input_specs, output_specs=output_specs
|
|
)
|
|
# NOTE: aot_export adds symint metadata for placeholders with int
|
|
# values; since these become specialized, we replace such metadata with
|
|
# the original values.
|
|
# Also, set the param/buffer metadata back to the placeholders.
|
|
for old_node, new_node in zip(old_placeholders, new_placeholders):
|
|
if not isinstance(old_node.meta["val"], torch.Tensor):
|
|
new_node.meta["val"] = old_node.meta["val"]
|
|
|
|
if (
|
|
new_node.target in new_graph_signature.inputs_to_parameters
|
|
or new_node.target in new_graph_signature.inputs_to_buffers
|
|
):
|
|
for k, v in old_node.meta.items():
|
|
new_node.meta[k] = v
|
|
return gm, new_graph_signature
|
|
|
|
|
|
def _decompose_exported_program(
|
|
ep,
|
|
*,
|
|
decomp_table: Dict[torch._ops.OperatorBase, Callable],
|
|
_preserve_ops: Tuple[torch._ops.OpOverload],
|
|
joint_loss_index: Optional[int],
|
|
):
|
|
gm, new_graph_signature = _decompose_and_get_gm_with_new_signature_constants(
|
|
ep,
|
|
decomp_table=decomp_table,
|
|
_preserve_ops=_preserve_ops,
|
|
joint_loss_index=joint_loss_index,
|
|
)
|
|
|
|
# TODO unfortunately preserving graph-level metadata is not
|
|
# working well with aot_export. So we manually copy it.
|
|
# (The node-level meta is addressed above.)
|
|
gm.meta.update(ep.graph_module.meta)
|
|
|
|
new_range_constraints = _get_updated_range_constraints(
|
|
gm,
|
|
ep.range_constraints,
|
|
)
|
|
|
|
exported_program = ExportedProgram(
|
|
root=gm,
|
|
graph=gm.graph,
|
|
graph_signature=new_graph_signature,
|
|
state_dict=ep.state_dict,
|
|
range_constraints=new_range_constraints,
|
|
module_call_graph=copy.deepcopy(ep.module_call_graph),
|
|
example_inputs=ep.example_inputs,
|
|
constants=ep.constants,
|
|
)
|
|
return exported_program
|
|
|
|
|
|
class ExportedProgram:
|
|
"""
|
|
Package of a program from :func:`export`. It contains
|
|
an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
|
|
tensor values of all lifted parameters and buffers, and various metadata.
|
|
|
|
You can call an ExportedProgram like the original callable traced by
|
|
:func:`export` with the same calling convention.
|
|
|
|
To perform transformations on the graph, use ``.module`` property to access
|
|
an :class:`torch.fx.GraphModule`. You can then use
|
|
`FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
|
|
to rewrite the graph. Afterwards, you can simply use :func:`export`
|
|
again to construct a correct ExportedProgram.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[torch.nn.Module, Dict[str, Any]],
|
|
graph: torch.fx.Graph,
|
|
graph_signature: ExportGraphSignature,
|
|
state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
|
|
range_constraints: "Dict[sympy.Symbol, Any]",
|
|
module_call_graph: List[ModuleCallEntry],
|
|
example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
|
|
constants: Optional[
|
|
Dict[str, Union[torch.Tensor, FakeScriptObject, torch._C.ScriptObject]]
|
|
] = None,
|
|
*,
|
|
verifiers: Optional[List[Type[Verifier]]] = None,
|
|
):
|
|
# Remove codegen related things from the graph. It should just be a flat graph.
|
|
graph._codegen = torch.fx.graph.CodeGen()
|
|
self._graph_module = _create_graph_module_for_export(root, graph)
|
|
if isinstance(root, torch.fx.GraphModule):
|
|
self._graph_module.meta.update(root.meta)
|
|
|
|
self._graph_signature: ExportGraphSignature = graph_signature
|
|
self._state_dict: Dict[str, Any] = state_dict
|
|
self._range_constraints: Dict[sympy.Symbol, ValueRanges] = range_constraints
|
|
assert module_call_graph is not None
|
|
self._module_call_graph: List[ModuleCallEntry] = module_call_graph
|
|
self._example_inputs = example_inputs
|
|
|
|
self._constants = constants or {}
|
|
|
|
verifiers = verifiers or [Verifier]
|
|
assert all(issubclass(v, Verifier) for v in verifiers)
|
|
self._verifiers = verifiers
|
|
# Validate should be always the last step of the constructor.
|
|
self.validate()
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph_module(self):
|
|
return self._graph_module
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph(self):
|
|
return self.graph_module.graph
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph_signature(self):
|
|
return self._graph_signature
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def state_dict(self):
|
|
return self._state_dict
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def parameters(self) -> Iterator[torch.nn.Parameter]:
|
|
"""
|
|
Returns an iterator over original module's parameters.
|
|
"""
|
|
for _, param in self.named_parameters():
|
|
yield param
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
|
|
"""
|
|
Returns an iterator over original module parameters, yielding
|
|
both the name of the parameter as well as the parameter itself.
|
|
"""
|
|
for param_name in self.graph_signature.parameters:
|
|
yield param_name, self.state_dict[param_name]
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def buffers(self) -> Iterator[torch.Tensor]:
|
|
"""
|
|
Returns an iterator over original module buffers.
|
|
"""
|
|
for _, buf in self.named_buffers():
|
|
yield buf
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
|
|
"""
|
|
Returns an iterator over original module buffers, yielding
|
|
both the name of the buffer as well as the buffer itself.
|
|
"""
|
|
non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
|
|
for buffer_name in self.graph_signature.buffers:
|
|
if buffer_name in non_persistent_buffers:
|
|
yield buffer_name, self.constants[buffer_name]
|
|
else:
|
|
yield buffer_name, self.state_dict[buffer_name]
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def range_constraints(self):
|
|
return self._range_constraints
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def module_call_graph(self):
|
|
return self._module_call_graph
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def example_inputs(self):
|
|
return self._example_inputs
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def call_spec(self):
|
|
CallSpec = namedtuple("CallSpec", ["in_spec", "out_spec"])
|
|
|
|
if len(self.module_call_graph) == 0:
|
|
return CallSpec(in_spec=None, out_spec=None)
|
|
assert self.module_call_graph[0].fqn == ""
|
|
return CallSpec(
|
|
in_spec=self.module_call_graph[0].signature.in_spec,
|
|
out_spec=self.module_call_graph[0].signature.out_spec,
|
|
)
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def verifier(self) -> Any:
|
|
return self._verifiers[0]
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def dialect(self) -> str:
|
|
assert self._verifiers is not None
|
|
return self._verifiers[0].dialect
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def verifiers(self):
|
|
return self._verifiers
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def tensor_constants(self):
|
|
return self._constants
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def constants(self):
|
|
return self._constants
|
|
|
|
def _get_flat_args_with_check(self, args, kwargs):
|
|
"""Flatten args, kwargs using pytree, then, check specs.
|
|
|
|
Args:
|
|
args: List[Any] original args passed to __call__
|
|
kwargs: Dict[str, Any] original kwargs passed to __call
|
|
|
|
Returns:
|
|
A tuple of (flat_args, received_spec)
|
|
flat_args is flattend args / kwargs
|
|
received_spec is the pytree spec produced while flattening the
|
|
tuple (args, kwargs)
|
|
"""
|
|
in_spec = self.call_spec.in_spec
|
|
if in_spec is not None:
|
|
kwargs = reorder_kwargs(kwargs, in_spec)
|
|
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
|
|
(args, kwargs)
|
|
) # type: ignore[possibly-undefined]
|
|
self._check_input_constraints(flat_args_with_path)
|
|
flat_args = tuple(x[1] for x in flat_args_with_path)
|
|
return flat_args, received_spec
|
|
|
|
def _graph_module_flat_inputs(self, args: Any, kwargs: Any) -> Any:
|
|
"""Transform args, kwargs of __call__ to args for graph_module.
|
|
|
|
self.graph_module takes stuff from state dict as inputs.
|
|
The invariant is for ep: ExportedProgram is
|
|
ep(args, kwargs) ==
|
|
ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
|
|
"""
|
|
|
|
in_spec = self.call_spec.in_spec
|
|
flat_args, received_spec = self._get_flat_args_with_check(args, kwargs)
|
|
if in_spec is not None and not is_equivalent(
|
|
received_spec, in_spec, _fx_collection_equivalence_fn
|
|
):
|
|
raise ValueError(
|
|
"Trying to flatten user inputs with exported input tree spec: \n"
|
|
f"{in_spec}\n"
|
|
"but actually got inputs with tree spec of: \n"
|
|
f"{received_spec}"
|
|
)
|
|
|
|
additional_inputs = []
|
|
for input_ in self.graph_signature.input_specs:
|
|
if input_.kind == InputKind.USER_INPUT:
|
|
continue
|
|
elif input_.kind in (
|
|
InputKind.PARAMETER,
|
|
InputKind.BUFFER,
|
|
):
|
|
if input_.persistent is False:
|
|
# This is a non-persistent buffer, grab it from our
|
|
# constants instead of the state dict.
|
|
additional_inputs.append(self.constants[input_.target])
|
|
else:
|
|
additional_inputs.append(self.state_dict[input_.target])
|
|
elif input_.kind in (
|
|
InputKind.CONSTANT_TENSOR,
|
|
InputKind.CUSTOM_OBJ,
|
|
):
|
|
additional_inputs.append(self.constants[input_.target])
|
|
additional_inputs = tuple(additional_inputs)
|
|
|
|
# NOTE: calling convention is first params, then buffers, then args as user supplied them.
|
|
# See: torch/_functorch/aot_autograd.py#L1034
|
|
return additional_inputs + flat_args
|
|
|
|
def __call__(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise RuntimeError(
|
|
"Unable to call ExportedProgram directly. "
|
|
"You should use `exported_program.module()` instead."
|
|
)
|
|
|
|
def _postprocess_graph_module_outputs(self, res, orig_args, orig_kwargs):
|
|
"""Process potential mutations to the input.
|
|
|
|
Because self.graph_module is functional, so mutations has to be written
|
|
back after execution of graph_module.
|
|
"""
|
|
import torch._export.error as error
|
|
|
|
flat_args, _ = self._get_flat_args_with_check(orig_args, orig_kwargs)
|
|
if self.call_spec.out_spec is not None:
|
|
buffer_mutation = self.graph_signature.buffers_to_mutate
|
|
user_input_mutation = self.graph_signature.user_inputs_to_mutate
|
|
num_mutated = len(buffer_mutation) + len(user_input_mutation)
|
|
mutated_values = res[:num_mutated]
|
|
|
|
# Exclude dependency token from final result.
|
|
assertion_dep_token = self.graph_signature.assertion_dep_token
|
|
if assertion_dep_token is not None:
|
|
assertion_dep_token_index = next(iter(assertion_dep_token.keys()))
|
|
res = res[:assertion_dep_token_index]
|
|
|
|
res = res[num_mutated:]
|
|
try:
|
|
res = pytree.tree_unflatten(res, self.call_spec.out_spec)
|
|
except Exception:
|
|
_, received_spec = pytree.tree_flatten(res)
|
|
raise error.InternalError( # noqa: B904
|
|
"Trying to flatten user outputs with exported output tree spec: \n"
|
|
f"{self.call_spec.out_spec}\n"
|
|
"but actually got outputs with tree spec of: \n"
|
|
f"{received_spec}"
|
|
)
|
|
finally:
|
|
user_inputs = [
|
|
spec
|
|
for spec in self.graph_signature.input_specs
|
|
if spec.kind == InputKind.USER_INPUT
|
|
]
|
|
for i, value in enumerate(mutated_values):
|
|
output_spec = self.graph_signature.output_specs[i]
|
|
if output_spec.kind == OutputKind.BUFFER_MUTATION:
|
|
assert output_spec.target is not None
|
|
self.state_dict[output_spec.target] = value
|
|
elif output_spec.kind == OutputKind.USER_INPUT_MUTATION:
|
|
assert output_spec.target is not None
|
|
index = next(
|
|
i
|
|
for i, spec in enumerate(user_inputs)
|
|
if spec.arg.name == output_spec.target
|
|
)
|
|
flat_args[index].copy_(value)
|
|
else:
|
|
raise AssertionError(f"Unexpected kind: {output_spec.kind}")
|
|
return res
|
|
|
|
def __str__(self) -> str:
|
|
graph_module = self.graph_module.print_readable(
|
|
print_output=False, colored=False
|
|
).replace("\n", "\n ")
|
|
string = (
|
|
"ExportedProgram:\n"
|
|
f" {graph_module}\n"
|
|
f"Graph signature: {self.graph_signature}\n"
|
|
f"Range constraints: {self.range_constraints}\n"
|
|
)
|
|
return string
|
|
|
|
def module(self) -> torch.nn.Module:
|
|
"""
|
|
Returns a self contained GraphModule with all the parameters/buffers inlined.
|
|
"""
|
|
from ._unlift import _unlift_exported_program_lifted_states
|
|
|
|
module = _unlift_exported_program_lifted_states(self)
|
|
|
|
def _train(self, mode: bool = True):
|
|
raise NotImplementedError("Calling train() is not supported yet.")
|
|
|
|
def _eval(self, mode: bool = True):
|
|
raise NotImplementedError("Calling eval() is not supported yet.")
|
|
|
|
module.train = types.MethodType(_train, module) # type: ignore[method-assign]
|
|
module.eval = types.MethodType(_eval, module) # type: ignore[method-assign]
|
|
return module
|
|
|
|
def _num_lifted_params_buffers(self):
|
|
return next(
|
|
(
|
|
i
|
|
for i, s in enumerate(self._graph_signature.input_specs)
|
|
if s.kind == InputKind.USER_INPUT
|
|
),
|
|
len(self._graph_signature.input_specs),
|
|
)
|
|
|
|
@_disable_prexisiting_fake_mode
|
|
def run_decompositions(
|
|
self,
|
|
decomp_table: Optional[Dict[torch._ops.OperatorBase, Callable]] = None,
|
|
_preserve_ops: Tuple[torch._ops.OpOverload] = (), # type: ignore[assignment]
|
|
) -> "ExportedProgram":
|
|
"""
|
|
Run a set of decompositions on the exported program and returns a new
|
|
exported program. By default we will run the Core ATen decompositions to
|
|
get operators in the
|
|
`Core ATen Operator Set <https://pytorch.org/docs/stable/torch.compiler_ir.html>`_.
|
|
|
|
For now, we do not decompose joint graphs.
|
|
"""
|
|
from torch._decomp import core_aten_decompositions
|
|
|
|
if decomp_table is None:
|
|
decomp_table = core_aten_decompositions()
|
|
|
|
return _decompose_exported_program(
|
|
self,
|
|
decomp_table=decomp_table,
|
|
_preserve_ops=_preserve_ops, # type: ignore[arg-type]
|
|
joint_loss_index=None,
|
|
)
|
|
|
|
def _transform_do_not_use(self, *passes: PassType) -> "ExportedProgram":
|
|
pm = PassManager(list(passes))
|
|
# Since we abstractly run the passes, we need to disable backend decomp here
|
|
# again.
|
|
from torch.export._trace import _ignore_backend_decomps
|
|
|
|
with _ignore_backend_decomps():
|
|
res = pm(self.graph_module)
|
|
transformed_gm = res.graph_module if res is not None else self.graph_module
|
|
assert transformed_gm is not None
|
|
|
|
if transformed_gm is self.graph_module and not res.modified:
|
|
return self
|
|
|
|
# TODO(zhxchen17) Remove this.
|
|
def _get_updated_graph_signature(
|
|
old_signature: ExportGraphSignature,
|
|
new_gm: torch.fx.GraphModule,
|
|
) -> ExportGraphSignature:
|
|
"""
|
|
Update the graph signature's user_input/user_outputs.
|
|
"""
|
|
new_input_specs = []
|
|
for i, node in enumerate(new_gm.graph.nodes):
|
|
if node.op != "placeholder":
|
|
break
|
|
|
|
assert i < len(
|
|
old_signature.input_specs
|
|
), "Number of inputs changed after transformation"
|
|
old_input_spec = old_signature.input_specs[i]
|
|
arg = (
|
|
old_input_spec.arg
|
|
if isinstance(
|
|
old_input_spec.arg, (ConstantArgument, CustomObjArgument)
|
|
)
|
|
else type(old_input_spec.arg)(node.name)
|
|
)
|
|
new_input_specs.append(
|
|
InputSpec(
|
|
old_input_spec.kind,
|
|
arg,
|
|
old_input_spec.target,
|
|
old_input_spec.persistent,
|
|
)
|
|
)
|
|
|
|
output_node = list(new_gm.graph.nodes)[-1]
|
|
assert output_node.op == "output"
|
|
|
|
new_output_specs = []
|
|
for i, node in enumerate(output_node.args[0]):
|
|
assert i < len(
|
|
old_signature.output_specs
|
|
), "Number of outputs changed after transformation"
|
|
old_output_spec = old_signature.output_specs[i]
|
|
arg = (
|
|
old_output_spec.arg
|
|
if isinstance(
|
|
old_output_spec.arg, (ConstantArgument, CustomObjArgument)
|
|
)
|
|
else type(old_output_spec.arg)(node.name)
|
|
)
|
|
new_output_specs.append(
|
|
OutputSpec(old_output_spec.kind, arg, old_output_spec.target)
|
|
)
|
|
|
|
new_signature = ExportGraphSignature(
|
|
input_specs=new_input_specs, output_specs=new_output_specs
|
|
)
|
|
return new_signature
|
|
|
|
transformed_ep = ExportedProgram(
|
|
root=transformed_gm,
|
|
graph=transformed_gm.graph,
|
|
graph_signature=_get_updated_graph_signature(
|
|
self.graph_signature, transformed_gm
|
|
),
|
|
state_dict=self.state_dict,
|
|
range_constraints=_get_updated_range_constraints(
|
|
transformed_gm,
|
|
self.range_constraints,
|
|
),
|
|
module_call_graph=copy.deepcopy(self._module_call_graph),
|
|
example_inputs=self.example_inputs,
|
|
constants=self.constants,
|
|
verifiers=self.verifiers,
|
|
)
|
|
transformed_ep.graph_module.meta.update(self.graph_module.meta)
|
|
transformed_ep.graph_module.meta.update(res.graph_module.meta)
|
|
return transformed_ep
|
|
|
|
def _check_input_constraints(self, flat_args_with_path):
|
|
from torch._export.utils import _check_input_constraints_for_graph
|
|
|
|
placeholders = [p for p in self.graph.nodes if p.op == "placeholder"]
|
|
input_placeholders = [
|
|
p
|
|
for p, s in zip(placeholders, self.graph_signature.input_specs)
|
|
if s.kind == InputKind.USER_INPUT
|
|
]
|
|
_check_input_constraints_for_graph(
|
|
input_placeholders, flat_args_with_path, self.range_constraints
|
|
)
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def validate(self):
|
|
self._validate()
|
|
|
|
# TODO: remove this
|
|
@final
|
|
def _validate(self):
|
|
assert (
|
|
len(self.verifiers) > 0
|
|
), "ExportedProgram must have at least one verifier."
|
|
for v in self.verifiers:
|
|
v().check(self)
|
|
|
|
# TODO(zhxchen17) Formalize this.
|
|
def _update(
|
|
self, graph_module, graph_signature, *, state_dict=None, verifiers=None
|
|
) -> "ExportedProgram":
|
|
return ExportedProgram(
|
|
root=graph_module,
|
|
graph=graph_module.graph,
|
|
graph_signature=graph_signature,
|
|
state_dict=state_dict if state_dict is not None else self.state_dict,
|
|
range_constraints=copy.deepcopy(self.range_constraints),
|
|
module_call_graph=copy.deepcopy(self._module_call_graph),
|
|
example_inputs=self.example_inputs,
|
|
constants=self.constants,
|
|
verifiers=verifiers if verifiers is not None else self.verifiers,
|
|
)
|
|
|
|
|
|
def _get_shape_env(gm):
|
|
vals = [
|
|
node.meta["val"]
|
|
for node in gm.graph.nodes
|
|
if node.meta.get("val", None) is not None
|
|
]
|
|
from torch._guards import detect_fake_mode
|
|
|
|
fake_mode = detect_fake_mode(vals)
|
|
if fake_mode is not None:
|
|
return fake_mode.shape_env
|
|
for v in vals:
|
|
if isinstance(v, torch.SymInt):
|
|
return v.node.shape_env
|
|
|
|
|
|
def _get_updated_range_constraints(
|
|
gm: torch.fx.GraphModule,
|
|
old_range_constraints: "Optional[Dict[sympy.Symbol, Any]]" = None,
|
|
) -> "Dict[sympy.Symbol, Any]":
|
|
assert old_range_constraints is not None
|
|
|
|
shape_env = _get_shape_env(gm)
|
|
if shape_env is None:
|
|
return {}
|
|
|
|
range_constraints = copy.copy(old_range_constraints)
|
|
range_constraints = {
|
|
k: v for k, v in range_constraints.items() if k not in shape_env.replacements
|
|
}
|
|
# Only when we have an unbacked symint, and it's used as constructor inputs,
|
|
# runtime_var_to_range will make a difference compated to var_to_range.
|
|
# e.g. [2, oo) -> [0, oo)
|
|
for k, v in shape_env.var_to_range.items():
|
|
if k not in shape_env.replacements and k not in range_constraints:
|
|
range_constraints[k] = v
|
|
return range_constraints
|
|
|
|
|
|
def _create_graph_module_for_export(root, graph):
|
|
try:
|
|
gm = torch.fx.GraphModule(root, graph)
|
|
except SyntaxError:
|
|
# If custom objects stored in memory are being used in the graph,
|
|
# the generated python code will result in a syntax error on the custom
|
|
# object, since it is unable to parse the in-memory object. However
|
|
# we can still run the graph eagerly through torch.fx.Interpreter,
|
|
# so we will bypass this error.
|
|
warnings.warn(
|
|
"Unable to execute the generated python source code from "
|
|
"the graph. The graph module will no longer be directly callable, "
|
|
"but you can still run the ExportedProgram, and if needed, you can "
|
|
"run the graph module eagerly using torch.fx.Interpreter."
|
|
)
|
|
gm = torch.fx.GraphModule(root, torch.fx.Graph())
|
|
gm._graph = graph
|
|
|
|
return gm
|