mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
When we compute contiguity for a tensor with dynamic shapes we first: 1) Try to compute it without guarding. 2) If all shapes hinted, compute it with potentially adding guards. 3) if any input is not hinted, compute it symbolically. sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called on it to avoid data dependent errors. ex: bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__); is_contiguous_or_false is a helper function that does that. In this PR I only handle default contiguity, will follow up with changes for other formats like channel_last . We use this patter in this PR for several locations to avoid DDEs. Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032) Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590 Approved by: https://github.com/ezyang
52 lines
1.5 KiB
C++
52 lines
1.5 KiB
C++
#include <c10/core/UndefinedTensorImpl.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
namespace c10 {
|
|
|
|
// should this use the globalContext? Can it get a context passed in somehow?
|
|
UndefinedTensorImpl::UndefinedTensorImpl()
|
|
: TensorImpl(DispatchKey::Undefined, caffe2::TypeMeta(), std::nullopt) {
|
|
set_storage_access_should_throw();
|
|
// TODO: accessing the sizes on an undefined tensor is not meaningful
|
|
// and should error too, but empirically it does not!
|
|
set_custom_sizes_strides(SizesStridesPolicy::CustomStrides);
|
|
}
|
|
|
|
c10::SymBool UndefinedTensorImpl::sym_is_contiguous_custom(
|
|
MemoryFormat format) const {
|
|
return is_contiguous_default(format);
|
|
}
|
|
IntArrayRef UndefinedTensorImpl::strides_custom() const {
|
|
TORCH_CHECK(false, "strides() called on an undefined Tensor");
|
|
}
|
|
SymIntArrayRef UndefinedTensorImpl::sym_strides_custom() const {
|
|
TORCH_CHECK(false, "sym_strides() called on an undefined Tensor");
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool UndefinedTensorImpl::has_storage() const {
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
|
!storage_, "UndefinedTensorImpl assumes that storage_ is never set");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
void UndefinedTensorImpl::set_storage_offset(int64_t) {
|
|
TORCH_CHECK(false, "set_storage_offset() called on an undefined Tensor");
|
|
}
|
|
|
|
const char* UndefinedTensorImpl::tensorimpl_type_name() const {
|
|
return "UndefinedTensorImpl";
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
UndefinedTensorImpl& UndefinedTensorImpl::getInstance() {
|
|
static UndefinedTensorImpl instance;
|
|
return instance;
|
|
}
|
|
#else
|
|
UndefinedTensorImpl UndefinedTensorImpl::_singleton;
|
|
#endif
|
|
|
|
} // namespace c10
|