Files
pytorch/functorch/csrc/BatchRulesReduceOps.cpp
Nikita Shulga d05a11337c [CMake] Add functorch target (#83464)
Move functorch/functorch into `functorch` folder
- Add functorch/CMakeLists.txt that adds `functorch` native python exension
- Modify `setup.py` to package pytorch and functorch together into a single wheel
- Modify `functorch.__version__` is not equal to that of `torch.__version__`
- Add dummy `functorch/setup.py` file for the projects that still want to build it

Differential Revision: [D39058811](https://our.internmc.facebook.com/intern/diff/D39058811)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83464
Approved by: https://github.com/zou3519
2022-09-14 00:05:33 +00:00

429 lines
15 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <functorch/csrc/BatchRulesHelper.h>
#include <functorch/csrc/PlumbingHelper.h>
#include <ATen/Operators.h>
#include <ATen/core/dispatch/Dispatcher.h>
namespace at { namespace functorch {
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
return dim == 0 || dim == -1;
}
Tensor sum_decomp(
const Tensor& self, optional<ScalarType> dtype) {
return at::sum(self, range(0, self.dim()), false, dtype);
}
Tensor mean_decomp(
const Tensor& self, optional<ScalarType> dtype) {
return at::mean(self, range(0, self.dim()), false, dtype);
}
Tensor nansum_decomp(
const Tensor& self, optional<ScalarType> dtype) {
return at::nansum(self, range(0, self.dim()), false, dtype);
}
Tensor prod_decomp(
const Tensor& self, optional<ScalarType> dtype) {
return at::prod(self.flatten(), 0, false, dtype);
}
Tensor max_decomp(
const Tensor& self) {
return std::get<0>(at::max(self.flatten(), 0, false));
}
Tensor min_decomp(
const Tensor& self) {
return std::get<0>(at::min(self.flatten(), 0, false));
}
Tensor norm_scalar_decomp(
const Tensor& self, const Scalar& p) {
return at::norm(self, p, range(0, self.dim()), false);
}
Tensor nanmedian_decomp(
const Tensor& self) {
return std::get<0>(at::nanmedian(self.flatten(), 0, false));
}
Tensor median_decomp(
const Tensor& self) {
return std::get<0>(at::median(self.flatten(), 0, false));
}
enum ReductionCase { DimArray, Dim };
// dim_arg_pos allows us to specify the location of the dim/dim array argument.
// Defaults to 1
template<int dim_arg_pos=1>
void boxed_reduction_batch_rule(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
const auto& schema = op.schema();
const auto num_returns = schema.returns().size();
const auto num_arguments = schema.arguments().size();
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
auto maybe_layer = maybeCurrentDynamicLayer();
TORCH_INTERNAL_ASSERT(maybe_layer.has_value());
int64_t cur_level = maybe_layer->layerId();
auto orig_arguments = torch::jit::last(*stack, num_arguments);
if (std::none_of(orig_arguments.begin(), orig_arguments.end(), ivalueParticipatesInCurrentLevel)) {
c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched);
op.callBoxed(stack);
return;
}
auto arguments = torch::jit::pop(*stack, num_arguments);
TORCH_INTERNAL_ASSERT(arguments[0].isTensor());
Tensor self;
optional<int64_t> self_bdim;
std::tie(self, self_bdim) = unwrapTensorAtLevel(arguments[0].toTensor(), cur_level);
self = moveBatchDimToFront(self, self_bdim);
auto logical_dim = rankWithoutBatchDim(self, self_bdim);
std::vector<int64_t> dims;
ReductionCase reduction_case;
if (arguments[dim_arg_pos].isIntList()) {
reduction_case = ReductionCase::DimArray;
dims = arguments[dim_arg_pos].toIntList().vec();
if (dims.size() == 0) {
auto all_dims = range(0, std::max((int64_t)1, logical_dim));
dims = std::vector<int64_t>(all_dims.begin(), all_dims.end());
}
} else if (arguments[dim_arg_pos].isInt()) {
reduction_case = ReductionCase::Dim;
dims = {arguments[dim_arg_pos].toInt()};
} else if (arguments[dim_arg_pos].isNone()) {
auto param_type = schema.arguments()[dim_arg_pos].type()->expect<OptionalType>()->getElementType();
if (param_type->kind() == IntType::Kind) {
reduction_case = ReductionCase::Dim;
if (self.dim() > 1) {
self = self.flatten(1);
}
dims = {0};
} else if (param_type->kind() == ListType::Kind) {
reduction_case = ReductionCase::DimArray;
if (logical_dim == 0) {
dims = {0};
} else {
auto all_dims = range(0, self.dim() - 1);
dims = std::vector<int64_t>(all_dims.begin(), all_dims.end());
}
} else {
TORCH_INTERNAL_ASSERT(false, "Unexpected dtype found at dims");
}
} else{
TORCH_INTERNAL_ASSERT(false, "Unexpected dtype found at dims");
}
VmapDimVector new_dims;
new_dims.reserve(dims.size());
for (auto dim: dims) {
new_dims.push_back(getPhysicalDim(self, self_bdim.has_value(), dim));
}
bool is_scalar_case = logical_dim == 0 && dims.size() == 1 && is_allowed_dim_on_scalar_tensor(dims[0]);
if (is_scalar_case) {
self = self.unsqueeze(-1);
new_dims = {1};
}
arguments[0] = self;
if (reduction_case == ReductionCase::DimArray) {
arguments[dim_arg_pos] = std::vector<int64_t>(new_dims.begin(), new_dims.end());
} else if (reduction_case == ReductionCase::Dim) {
arguments[dim_arg_pos] = new_dims[0];
}
for (const auto arg_idx : c10::irange(0, num_arguments)) {
torch::jit::push(stack, arguments[arg_idx]);
}
op.callBoxed(stack);
const auto returns = torch::jit::pop(*stack, num_returns);
for (const auto& ret : returns) {
if (ret.isTensor()) {
auto res = ret.toTensor();
if (is_scalar_case) {
res = res.squeeze(-1);
}
torch::jit::push(stack, makeBatched(res, 0, cur_level));
} else {
TORCH_INTERNAL_ASSERT(false, "This boxed batching rule does not currently support ops that return non-tensor values");
}
}
}
#define REDUCTION_BOXED(op) \
m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_reduction_batch_rule>());
#define REDUCTION_BOXED_ARGS(op, dim_pos) \
m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_reduction_batch_rule<dim_pos>>());
// Skipping frobenius/nuclear/all/any since they don't have opinfo tests right now :P
Tensor dist_decomp(const Tensor& self, const Tensor& other, const Scalar& p) {
return at::norm((self - other), p);
}
static std::tuple<Tensor, Tensor> expand_bdims(
const Tensor& a, bool a_has_bdim,
const Tensor& b, bool b_has_bdim) {
Tensor flagpole;
if (a_has_bdim) {
flagpole = a;
} else if (b_has_bdim) {
flagpole = b;
} else {
TORCH_INTERNAL_ASSERT(false);
}
return std::make_tuple(
a_has_bdim ? a : a.expand_as(flagpole),
b_has_bdim ? b : b.expand_as(flagpole));
}
std::tuple<Tensor,optional<int64_t>> _softmax_backward_batch_rule(
const Tensor& grad_output, optional<int64_t> grad_output_bdim,
const Tensor& output, optional<int64_t> output_bdim,
int64_t dim,
ScalarType input_dtype) {
// softmax_backward's decomposition is y * gy - y * (y * gy).sum(dim, keepdim=True)
// NB: the CUDA kernel handles strides so we can just expand
// all of the tensors and call it a day. The CPU kernel is not as good but
// idk if the perf on that really matters
auto grad_output_ = moveBatchDimToFront(grad_output, grad_output_bdim);
auto output_ = moveBatchDimToFront(output, output_bdim);
// Expand out that extra dimension for everyone
std::tie(grad_output_, output_) = expand_bdims(
grad_output_, grad_output_bdim.has_value(),
output_, output_bdim.has_value());
// Scalar tensor case. softmax turns into the identity when this happens.
// I don't know why the output is zeros, though, but that's what softmax tells me...
if (output_.dim() == 1 && (dim == 0 || dim == -1)) {
return std::make_tuple(at::zeros_like(grad_output_), 0);
}
dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim);
// Not sure why output_ needs to be marked as .contiguous(). Someting must
// have changed in PyTorch (and output of softmax is probably always contiguous)
return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0);
}
std::tuple<Tensor,optional<int64_t>> _log_softmax_backward_batch_rule(
const Tensor& grad_output, optional<int64_t> grad_output_bdim,
const Tensor& output, optional<int64_t> output_bdim,
int64_t dim,
c10::ScalarType input_dtype) {
// NB: It turns out that expanding + calling log_softmax_backward is generally
// faster than the decomposition.
// Benchmark here: https://gist.github.com/zou3519/ae3b33b5730a84aae8a80a05c89e078a
// Decomposition is (grad_output - grad_output.sum(dim, keepdim=True) * result.exp())
// We can squeeze out a last mile of performance by writing custom kernels.
auto grad_output_ = moveBatchDimToFront(grad_output, grad_output_bdim);
auto output_ = moveBatchDimToFront(output, output_bdim);
// Expand out that extra dimension for everyone
std::tie(grad_output_, output_) = expand_bdims(
grad_output_, grad_output_bdim.has_value(),
output_, output_bdim.has_value());
// Scalar tensor case. log_softmax returns zeros when this happens
if (output_.dim() == 1 && (dim == 0 || dim == -1)) {
return std::make_tuple(at::zeros_like(grad_output_), 0);
}
dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim);
return std::make_tuple(at::_log_softmax_backward_data(grad_output_, output_, dim, input_dtype), 0);
}
// aminmax has divergent behavior for 0-d tenosrs.
// reference: https://github.com/pytorch/pytorch/issues/64008
// TODO: Once the divergent behavior for 0-d scalar is fixed, we should use REDUCTION_BOXED_ARGS
std::tuple<Tensor, optional<int64_t>, Tensor, optional<int64_t>> aminmax_batching_rule(
const Tensor &self, optional<int64_t> self_bdim, optional<int64_t> dim, bool keep_dim)
{
auto self_ = moveBatchDimToFront(self, self_bdim);
auto logical_rank = rankWithoutBatchDim(self_, self_bdim);
if (logical_rank == 0) {
self_ = self_.unsqueeze(-1);
}
if (dim.has_value()) {
dim = maybe_wrap_dim(dim.value(), logical_rank) + 1;
} else {
// flatten the input except for batch-dim
auto bsize = self_.size(0);
self_ = self_.view({bsize, -1});
dim = 1;
}
Tensor min, max;
std::tie(min, max) = at::aminmax(self_, dim, keep_dim);
if (logical_rank == 0 && self_.device().is_cuda()) {
// behaviour diverges between cpu and cuda
min = min.squeeze(-1);
max = max.squeeze(-1);
}
return std::make_tuple(min, 0, max, 0);
}
std::tuple<Tensor,optional<int64_t>> searchsorted_batch_rule(
const Tensor& sorted_sequence,
optional<int64_t> sorted_sequence_bdim,
const Tensor& self,
optional<int64_t> self_bdim,
bool out_int32,
bool right,
c10::optional<c10::string_view> side,
const c10::optional<Tensor>& sorter,
c10::optional<int64_t> sorter_bdim) {
auto buckets_logical_rank = rankWithoutBatchDim(sorted_sequence, sorted_sequence_bdim);
// Preprocess sorter and sorted_sequence.
// If they both exist, and only one has a bdim, then we need to make sure both do.
// After this step, we can forget about sorter for a bit.
auto buckets = moveBatchDimToFront(sorted_sequence, sorted_sequence_bdim);
optional<int64_t> buckets_bdim;
if (sorted_sequence_bdim.has_value()) {
buckets_bdim = 0;
}
optional<Tensor> sorter_;
if (sorter.has_value() && sorter->defined()) {
auto sorter__ = moveBatchDimToFront(*sorter, sorter_bdim);
if (sorted_sequence_bdim.has_value() != sorter_bdim.has_value()) {
auto bdim_size = get_bdim_size2(
sorted_sequence, sorted_sequence_bdim,
sorter.value(), sorter_bdim);
sorter__ = ensure_has_bdim(sorter__, sorter_bdim.has_value(), bdim_size);
buckets = ensure_has_bdim(buckets, sorted_sequence_bdim.has_value(), bdim_size);
buckets_bdim = 0;
}
sorter_ = sorter__;
}
// Two cases: buckets_logical_rank is 1, or it is greater than 1.
// searchsorted is basically two operators with different semantics jammed
// into one
if (buckets_logical_rank > 1) {
// B<...>D, B<...>V -> no change
if (buckets_bdim.has_value() && self_bdim.has_value()) {
auto self_ = moveBatchDimToFront(self, self_bdim);
auto result = at::searchsorted(buckets, self_, out_int32, right, side, sorter_);
return std::make_tuple(result, 0);
}
// B<...>D, <...>V -> B<...>D, B<...>V
if (buckets_bdim.has_value() && !self_bdim.has_value()) {
auto self_ = moveBatchDimToFront(self, self_bdim);
self_ = ensure_has_bdim(self_, self_bdim.has_value(), buckets.size(0));
auto result = at::searchsorted(buckets, self_, out_int32, right, side, sorter_);
return std::make_tuple(result, 0);
}
// <...>D, B<...>V -> <...>D, <...>(BV)
if (!buckets_bdim.has_value() && self_bdim.has_value()) {
auto bdim_size = self.size(*self_bdim);
auto self_ = reshape_dim_into(*self_bdim, -1, self);
auto result = at::searchsorted(buckets, self_, out_int32, right, side, sorter_);
result = reshape_dim_outof(-1, bdim_size, result);
return std::make_tuple(result, result.dim() - 2);
}
TORCH_INTERNAL_ASSERT(false);
}
// buckets_logical_rank == 1 case.
// BD, B* -> BD, B flat(*)
if (buckets_bdim.has_value() && self_bdim.has_value()) {
auto self_ = moveBatchDimToFront(self, self_bdim);
self_ = self_.flatten(1);
auto result = at::searchsorted(buckets, self_, out_int32, right, side, sorter_);
result = result.view(self_.sizes());
return std::make_tuple(result, 0);
}
// BD, * -> BD, flat(*) -> BD, B flat(*)
if (buckets_bdim.has_value() && !self_bdim.has_value()) {
auto bdim_size = buckets.size(*buckets_bdim);
auto self_ = ensure_has_bdim(self, false, bdim_size);
self_ = self_.flatten(1);
auto result = at::searchsorted(buckets, self_, out_int32, right, side, sorter_);
result = result.view(self_.sizes());
return std::make_tuple(result, 0);
}
// D, B* -> no change
if (!buckets_bdim.has_value() && self_bdim.has_value()) {
auto result = at::searchsorted(buckets, self, out_int32, right, side, sorter_);
return std::make_tuple(result, self_bdim);
}
TORCH_INTERNAL_ASSERT(false);
}
TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) {
VMAP_SUPPORT2(searchsorted, Tensor, searchsorted_batch_rule);
REDUCTION_BOXED(_fft_r2c);
REDUCTION_BOXED(_fft_c2r);
REDUCTION_BOXED(_fft_c2c);
REDUCTION_BOXED(amax);
// REDUCTION_BOXED(aminmax); Currently fails due to inconsistent scalar semantics.
REDUCTION_BOXED(amin);
REDUCTION_BOXED(any.dim);
REDUCTION_BOXED(argmax);
REDUCTION_BOXED(argmin);
REDUCTION_BOXED(count_nonzero.dim_IntList);
REDUCTION_BOXED(cummax);
REDUCTION_BOXED(cummin);
REDUCTION_BOXED(cumprod);
REDUCTION_BOXED(cumsum);
m.impl("dist", dist_decomp);
REDUCTION_BOXED_ARGS(kthvalue, 2);
REDUCTION_BOXED_ARGS(linalg_vector_norm, 2);
REDUCTION_BOXED(log_softmax.int);
REDUCTION_BOXED(logcumsumexp);
REDUCTION_BOXED(logsumexp);
m.impl("max", max_decomp);
REDUCTION_BOXED(max.dim);
m.impl("mean", mean_decomp);
REDUCTION_BOXED(mean.dim);
m.impl("median", median_decomp);
REDUCTION_BOXED(median.dim);
m.impl("min", min_decomp);
REDUCTION_BOXED(min.dim);
REDUCTION_BOXED(mode);
m.impl("nanmedian", nanmedian_decomp);
REDUCTION_BOXED(nanmedian.dim);
// TODO: re-enable these
// m.impl("nansum", nansum_decomp);
// REDUCTION_BOXED(nansum.dim_IntList);
m.impl("norm.Scalar", norm_scalar_decomp);
REDUCTION_BOXED_ARGS(norm.ScalarOpt_dim, 2);
m.impl("prod", prod_decomp);
REDUCTION_BOXED(prod.dim_int);
REDUCTION_BOXED(std.correction);
REDUCTION_BOXED(_softmax);
REDUCTION_BOXED(sort);
REDUCTION_BOXED_ARGS(sort.stable, 2);
REDUCTION_BOXED(argsort);
REDUCTION_BOXED(std_mean.correction);
m.impl("sum", sum_decomp);
REDUCTION_BOXED(sum.dim_IntList);
REDUCTION_BOXED_ARGS(topk, 2);
REDUCTION_BOXED(var.correction);
REDUCTION_BOXED(var_mean.correction);
REDUCTION_BOXED(_log_softmax);
REDUCTION_BOXED_ARGS(rot90, 2);
VMAP_SUPPORT(aminmax, aminmax_batching_rule);
VMAP_SUPPORT(_log_softmax_backward_data, _log_softmax_backward_batch_rule);
VMAP_SUPPORT(_softmax_backward_data, _softmax_backward_batch_rule);
}
}}