mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Move functorch/functorch into `functorch` folder - Add functorch/CMakeLists.txt that adds `functorch` native python exension - Modify `setup.py` to package pytorch and functorch together into a single wheel - Modify `functorch.__version__` is not equal to that of `torch.__version__` - Add dummy `functorch/setup.py` file for the projects that still want to build it Differential Revision: [D39058811](https://our.internmc.facebook.com/intern/diff/D39058811) Pull Request resolved: https://github.com/pytorch/pytorch/pull/83464 Approved by: https://github.com/zou3519
91 lines
3.4 KiB
Python
91 lines
3.4 KiB
Python
|
|
import torch
|
|
import torch.fx as fx
|
|
from torch.utils._pytree import tree_flatten
|
|
|
|
aten = torch.ops.aten
|
|
|
|
|
|
def get_aten_target(node):
|
|
if hasattr(node.target, 'overloadpacket'):
|
|
return node.target.overloadpacket
|
|
return node.target
|
|
|
|
|
|
rand_ops = [aten.dropout, aten._fused_dropout, aten._standard_gamma,
|
|
aten.bernoulli, aten.multinomial, aten.native_dropout,
|
|
aten.normal, aten.poisson, aten.binomial, aten.rrelu,
|
|
aten.rand_like, aten.rand, aten.randint, aten.randn, aten.randperm]
|
|
|
|
|
|
# return a new copy of torch.fx.graph.Graph with CSE applied to the input graph
|
|
def fx_graph_cse(fx_g: torch.fx.graph.Graph):
|
|
new_graph = fx.Graph()
|
|
env = {} # map from node in the old graph to node in the new graph
|
|
hash_env = {} # map from hash to a node in the new graph
|
|
token_map = {} # map from hash to token
|
|
for n in fx_g.nodes:
|
|
# The placeholder, output, and get_attr nodes are copied to the new grpah without change
|
|
# do not CSE away random operations
|
|
if n.op == 'placeholder' or n.op == 'output' or n.op == 'get_attr' or get_aten_target(n) in rand_ops:
|
|
new_node = new_graph.node_copy(n, lambda x: env[x])
|
|
env[n] = new_node
|
|
else: # n.op == 'call_function', should never see n.op == 'call_module' or 'call_method'
|
|
# substitute args and kwargs memebrs to their mapping in env if exists
|
|
# specs can be used to reconstruct nested list/dictionaries
|
|
def substitute(arg_list):
|
|
arg_list, spec = tree_flatten(arg_list)
|
|
for i in range(len(arg_list)):
|
|
v = arg_list[i]
|
|
if isinstance(v, torch.fx.node.Node) and v in env:
|
|
arg_list[i] = env[v]
|
|
return tuple(arg_list), spec
|
|
args, args_spec = substitute(n.args)
|
|
kwargs, kwargs_spec = substitute(n.kwargs)
|
|
|
|
# each token corresponds to a unique node
|
|
# nodes with the same token can be substituted
|
|
token = {"target": n.target, "args": args, "args_spec": args_spec,
|
|
"kwargs": kwargs, "kwargs_spec": kwargs_spec}
|
|
|
|
# hash substituted args to a number, do not hash specs because specs are not hashable
|
|
hash_arg = hash((args, kwargs))
|
|
hash_val = (n.target, hash_arg)
|
|
|
|
# check if a node has a substitute and can be eliminated
|
|
hash_val_in_hash_env = hash_val in hash_env
|
|
if hash_val_in_hash_env and token_map[hash_val] == token:
|
|
env[n] = hash_env[hash_val]
|
|
continue
|
|
|
|
new_node = new_graph.node_copy(n, lambda x: env[x])
|
|
env[n] = new_node
|
|
if not hash_val_in_hash_env:
|
|
hash_env[hash_val] = new_node
|
|
token_map[hash_val] = token
|
|
|
|
return new_graph
|
|
|
|
|
|
def strip_overloads(gm):
|
|
"""
|
|
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
|
|
|
|
Args:
|
|
gm(fx.GraphModule): The input Fx graph module to be modified
|
|
"""
|
|
for node in gm.graph.nodes:
|
|
if isinstance(node.target, torch._ops.OpOverload):
|
|
node.target = node.target.overloadpacket
|
|
gm.recompile()
|
|
|
|
|
|
def get_placeholders(graph):
|
|
return list(filter(lambda x: x.op == 'placeholder', graph.nodes))
|
|
|
|
def get_outputs(graph):
|
|
for node in graph.nodes:
|
|
if node.op == 'output':
|
|
return tree_flatten(node.args[0])[0]
|
|
raise AssertionError("No output node found")
|