mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this. Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432 Approved by: https://github.com/Skylion007 ghstack dependencies: #118414, #118418
698 lines
28 KiB
Python
698 lines
28 KiB
Python
# mypy: ignore-errors
|
|
|
|
import functools
|
|
import inspect
|
|
import logging
|
|
|
|
import math
|
|
import re
|
|
from typing import Dict, List
|
|
|
|
from torch._streambase import _StreamBase
|
|
from ..guards import install_guard
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
import torch._C
|
|
import torch._refs
|
|
import torch.fx
|
|
import torch.nn
|
|
import torch.onnx.operators
|
|
from torch._logging import warning_once
|
|
|
|
from .. import config, polyfill, variables
|
|
from ..device_interface import get_registered_device_interfaces
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder
|
|
from ..utils import (
|
|
check_constant_args,
|
|
check_unspec_python_args,
|
|
guard_if_dyn,
|
|
has_torch_function,
|
|
hashable,
|
|
product,
|
|
proxy_args_kwargs,
|
|
)
|
|
from .base import VariableTracker
|
|
from .ctx_manager import (
|
|
AutocastModeVariable,
|
|
NullContextVariable,
|
|
TorchFunctionDisableVariable,
|
|
)
|
|
from .distributed import is_constant_pg_functions, is_from_local, ProcessGroupVariable
|
|
from .higher_order_ops import TorchHigherOrderOperatorVariable
|
|
from .lists import ListVariable, TupleVariable
|
|
from .torch_function import can_dispatch_torch_function, dispatch_torch_function
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
supported_ctx_manager_classes = {
|
|
torch.profiler.profiler.profile,
|
|
torch.autograd.profiler.profile,
|
|
torch.autograd.profiler.record_function,
|
|
torch._C.DisableTorchFunctionSubclass,
|
|
torch._functorch.vmap.vmap_increment_nesting,
|
|
torch.amp.autocast_mode.autocast,
|
|
torch.autograd.grad_mode.enable_grad,
|
|
torch.autograd.grad_mode.inference_mode,
|
|
torch.autograd.grad_mode.no_grad,
|
|
torch.autograd.grad_mode.set_grad_enabled,
|
|
torch.cpu.amp.autocast_mode.autocast,
|
|
torch.cuda.amp.autocast_mode.autocast,
|
|
}
|
|
|
|
|
|
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = [
|
|
torch.onnx.operators.shape_as_tensor,
|
|
torch._shape_as_tensor,
|
|
]
|
|
|
|
constant_fold_functions = [
|
|
torch._assert,
|
|
torch._utils._get_device_index,
|
|
torch._C._get_cublas_allow_tf32,
|
|
torch.cuda.is_available,
|
|
torch.distributed.is_available,
|
|
torch.get_autocast_gpu_dtype,
|
|
torch.get_default_dtype,
|
|
torch.is_autocast_cache_enabled,
|
|
torch.is_autocast_cpu_enabled,
|
|
torch.is_autocast_enabled,
|
|
torch.is_complex,
|
|
torch.is_floating_point,
|
|
torch.nn.functional._Reduction.get_enum,
|
|
torch.promote_types,
|
|
torch._C._get_privateuse1_backend_name,
|
|
]
|
|
|
|
|
|
if torch.distributed.is_available():
|
|
constant_fold_functions.extend(
|
|
[
|
|
torch.distributed.is_initialized,
|
|
torch.distributed.get_rank,
|
|
torch.distributed.get_world_size,
|
|
]
|
|
)
|
|
|
|
|
|
tracing_state_functions = {
|
|
torch.jit.is_scripting: False,
|
|
torch.jit.is_tracing: False,
|
|
torch._C._get_tracing_state: None,
|
|
torch.fx._symbolic_trace.is_fx_tracing: False,
|
|
torch.onnx.is_in_onnx_export: False,
|
|
torch._dynamo.external_utils.is_compiling: True,
|
|
torch._utils.is_compiling: True,
|
|
}
|
|
|
|
|
|
class BaseTorchVariable(VariableTracker):
|
|
"""common base for all torch.* functions, classes, modules and other things"""
|
|
|
|
@classmethod
|
|
def create_with_source(cls, value, source):
|
|
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return cls(
|
|
value,
|
|
source=source,
|
|
)
|
|
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def reconstruct(self, codegen):
|
|
try:
|
|
name = f"{self.value.__module__}.{self.value.__name__}"
|
|
except Exception:
|
|
name = f"torch_obj_{id(self.value)}"
|
|
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
|
|
return codegen.setup_globally_cached(unique_var_name, self.value, False)
|
|
|
|
def as_proxy(self):
|
|
return self.value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def call_hasattr(self, tx, name):
|
|
result = hasattr(self.value, name)
|
|
return variables.ConstantVariable.create(result)
|
|
|
|
def can_constant_fold_through(self):
|
|
if self.value in constant_fold_functions:
|
|
return True
|
|
return getattr(self.value, "__module__", None) == "math"
|
|
|
|
|
|
class TorchCtxManagerClassVariable(BaseTorchVariable):
|
|
"""Points to a context manager class in torch.* that dynamo has implementations"""
|
|
|
|
def __repr__(self):
|
|
return f"TorchCtxManagerClassVariable({self.value})"
|
|
|
|
@staticmethod
|
|
def is_matching_cls(value):
|
|
# Unwrap if it's a functools.lru_cache wrapper
|
|
if isinstance(value, functools._lru_cache_wrapper):
|
|
value = value.__wrapped__
|
|
# We can't do isinstance(value, type) check because some ctx managers
|
|
# are implemented as a function decorated by contextlib.contextmanager,
|
|
# E.g., torch._functorch.vmap.vmap_increment_nesting.
|
|
return hashable(value) and value in supported_ctx_manager_classes
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
GradModeVariable,
|
|
InferenceModeVariable,
|
|
StreamVariable,
|
|
VmapIncrementNestingCtxManagerVariable,
|
|
)
|
|
|
|
if self.value is torch.no_grad:
|
|
if len(args) == 1 and isinstance(
|
|
args[0], variables.functions.BaseUserFunctionVariable
|
|
):
|
|
ctx = GradModeVariable.create(tx, False)
|
|
return ctx.call_function(tx, args, kwargs)
|
|
else:
|
|
return GradModeVariable.create(tx, False)
|
|
elif self.value is torch.enable_grad:
|
|
if len(args) == 1 and isinstance(
|
|
args[0], variables.functions.BaseUserFunctionVariable
|
|
):
|
|
ctx = GradModeVariable.create(tx, True)
|
|
return ctx.call_function(tx, args, kwargs)
|
|
return GradModeVariable.create(tx, True)
|
|
elif self.value is torch.set_grad_enabled and len(args) == 1:
|
|
return GradModeVariable.create(
|
|
tx, args[0].as_python_constant(), initialized=True
|
|
)
|
|
elif self.value is torch.inference_mode:
|
|
return InferenceModeVariable.create(tx, args[0].as_python_constant())
|
|
elif inspect.isclass(self.value) and issubclass(self.value, _StreamBase):
|
|
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
|
|
|
|
return wrap_fx_proxy_cls(
|
|
StreamVariable,
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
self.value,
|
|
(),
|
|
{},
|
|
),
|
|
)
|
|
elif self.value in (
|
|
torch.amp.autocast_mode.autocast,
|
|
torch.cuda.amp.autocast,
|
|
torch.cpu.amp.autocast,
|
|
):
|
|
return AutocastModeVariable.create(self.value, args, kwargs)
|
|
elif self.value in (
|
|
torch.profiler.profile,
|
|
torch.profiler.record_function,
|
|
torch.autograd.profiler.profile,
|
|
torch.autograd.profiler.record_function,
|
|
):
|
|
warning_once(log, "Profiler function %s will be ignored", self.value)
|
|
return NullContextVariable()
|
|
elif self.value is torch._C.DisableTorchFunctionSubclass:
|
|
assert not (args or kwargs)
|
|
return TorchFunctionDisableVariable.create(tx)
|
|
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
|
|
assert len(args) == 2
|
|
return VmapIncrementNestingCtxManagerVariable.create(
|
|
tx,
|
|
[guard_if_dyn(x) for x in args],
|
|
)
|
|
|
|
|
|
class TorchInGraphFunctionVariable(BaseTorchVariable):
|
|
"""Points to a torch function/method that should be put in FX graph"""
|
|
|
|
def __repr__(self):
|
|
return f"TorchInGraphFunctionVariable({self.value})"
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
ConstantVariable,
|
|
DeterministicAlgorithmsVariable,
|
|
DisabledSavedTensorsHooksVariable,
|
|
GradModeVariable,
|
|
SDPAParamsVariable,
|
|
StreamContextVariable,
|
|
SymNodeVariable,
|
|
TensorVariable,
|
|
UserDefinedObjectVariable,
|
|
)
|
|
|
|
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
|
|
|
|
constant_args = check_constant_args(args, kwargs)
|
|
unspec_python_args = check_unspec_python_args(args, kwargs)
|
|
|
|
if self.can_constant_fold_through() and (constant_args or unspec_python_args):
|
|
# constant fold
|
|
return ConstantVariable.create(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
)
|
|
elif self.value in tracing_state_functions:
|
|
assert not args and not kwargs
|
|
# See: https://github.com/pytorch/pytorch/issues/110765
|
|
if self.value in (
|
|
torch._utils.is_compiling,
|
|
torch._dynamo.external_utils.is_compiling,
|
|
):
|
|
tx.mark_inconsistent_side_effects()
|
|
return ConstantVariable.create(tracing_state_functions[self.value])
|
|
elif self.value in (torch._functorch.eager_transforms.grad_impl,):
|
|
return TorchHigherOrderOperatorVariable.make(
|
|
self.value,
|
|
source=self.source,
|
|
).call_function(tx, args, kwargs)
|
|
elif self.value is torch.overrides.get_default_nowrap_functions:
|
|
# [Note: __torch_function__] we return empty here because we restrict
|
|
# the set of functions that we trace __torch_function__ on to
|
|
# functions outside of the actual set. Implementing this properly will require implementing
|
|
# some variable types to track and compare tensor getset descriptors
|
|
from .builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder()(
|
|
tx, torch.overrides.get_default_nowrap_functions()
|
|
)
|
|
elif self.value == math.radians and not (constant_args or unspec_python_args):
|
|
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
|
|
from .builder import SourcelessBuilder
|
|
|
|
return tx.inline_user_function_return(
|
|
SourcelessBuilder()(tx, polyfill.radians), args, kwargs
|
|
)
|
|
elif self.value in (torch.is_tensor, torch.overrides.is_tensor_like):
|
|
assert len(args) == 1
|
|
if isinstance(args[0], TensorVariable) or (
|
|
self.value is torch.overrides.is_tensor_like
|
|
and isinstance(args[0], UserDefinedObjectVariable)
|
|
and hasattr(args[0].value, "__torch_function__")
|
|
):
|
|
return ConstantVariable.create(True)
|
|
else:
|
|
return ConstantVariable.create(False)
|
|
elif self.value in (
|
|
torch.is_floating_point,
|
|
torch.is_complex,
|
|
):
|
|
input_arg = None
|
|
if args:
|
|
input_arg = args[0]
|
|
else:
|
|
assert "input" in kwargs
|
|
input_arg = kwargs["input"]
|
|
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
|
|
if self.value is torch.is_floating_point:
|
|
return ConstantVariable.create(input_arg.dtype.is_floating_point)
|
|
elif self.value is torch.is_complex:
|
|
return ConstantVariable.create(input_arg.dtype.is_complex)
|
|
else:
|
|
raise AssertionError(f"calling {self.value}")
|
|
elif (
|
|
self.value is torch.numel
|
|
and isinstance(args[0], TensorVariable)
|
|
and args[0].size is not None
|
|
):
|
|
return ConstantVariable.create(product(args[0].size))
|
|
elif self.value in REWRITE_OPS_TO_TENSOR_SIZE_METHOD:
|
|
assert len(args) == 1
|
|
assert isinstance(args[0], TensorVariable)
|
|
return args[0].call_method(tx, "size", [], {})
|
|
elif self.value in (
|
|
torch.nn.modules.utils._single,
|
|
torch.nn.modules.utils._pair,
|
|
torch.nn.modules.utils._triple,
|
|
torch.nn.modules.utils._quadruple,
|
|
torch.nn.modules.utils._ntuple,
|
|
):
|
|
return self._call_ntuple(tx, args, kwargs)
|
|
elif self.value is torch.is_grad_enabled:
|
|
assert not (args or kwargs)
|
|
install_guard(GradModeVariable._guards_singleton)
|
|
return ConstantVariable.create(torch.is_grad_enabled())
|
|
elif self.value is torch.use_deterministic_algorithms and len(args) == 1:
|
|
return DeterministicAlgorithmsVariable.create(
|
|
tx, args[0].as_python_constant()
|
|
)
|
|
elif self.value is torch.are_deterministic_algorithms_enabled:
|
|
assert not (args or kwargs)
|
|
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
|
|
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
|
|
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
|
|
assert len(args) == 1
|
|
return DisabledSavedTensorsHooksVariable.create(
|
|
tx, args[0].as_python_constant()
|
|
)
|
|
elif self.value is torch._C._is_torch_function_enabled:
|
|
assert not (args or kwargs)
|
|
install_guard(TorchFunctionDisableVariable._guards_singleton)
|
|
return ConstantVariable.create(tx.output.torch_function_enabled)
|
|
elif self.value in (
|
|
torch.overrides.has_torch_function,
|
|
torch.overrides.has_torch_function_variadic,
|
|
torch.overrides.has_torch_function_unary,
|
|
):
|
|
assert not kwargs
|
|
return ConstantVariable.create(
|
|
any(has_torch_function(a) for a in args),
|
|
)
|
|
elif any(
|
|
self.value is method
|
|
for method in [
|
|
device_interface.stream
|
|
for _, device_interface in get_registered_device_interfaces()
|
|
]
|
|
):
|
|
assert len(args) == 1
|
|
return StreamContextVariable.create(tx, args[0])
|
|
elif self.value is torch.from_numpy:
|
|
if not config.trace_numpy:
|
|
unimplemented("torch.from_numpy. config.trace_numpy is False")
|
|
if not np:
|
|
unimplemented("torch.from_numpy. NumPy is not available")
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=TensorVariable,
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.as_tensor,
|
|
*proxy_args_kwargs(args, {}),
|
|
),
|
|
example_value=None,
|
|
)
|
|
elif can_dispatch_torch_function(tx, args, kwargs):
|
|
return dispatch_torch_function(tx, self, args, kwargs)
|
|
elif self.value is torch.jit.annotate:
|
|
assert len(args) == 2
|
|
return args[1]
|
|
elif self.value is torch.backends.cudnn.is_acceptable:
|
|
# is_acceptable(tensor) returns true if
|
|
# (a) tensor dtype/device are supported by cudnn
|
|
# (b) cudnn is available
|
|
# (c) some initialization has completed
|
|
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
|
|
assert (
|
|
len(args) == 1 or "tensor" in kwargs
|
|
), "Expect 1 input to cudnn.is_acceptable"
|
|
tensor_variable = args[0] if len(args) > 0 else kwargs["tensor"]
|
|
assert isinstance(
|
|
tensor_variable, TensorVariable
|
|
), "Expect input to cudnn.is_acceptable to be a tensor"
|
|
tensor_inp = torch.tensor(
|
|
0, dtype=tensor_variable.dtype, device=tensor_variable.device
|
|
)
|
|
return ConstantVariable.create(
|
|
torch.backends.cudnn.is_acceptable(tensor_inp)
|
|
)
|
|
elif (
|
|
self.value == torch.numel
|
|
and len(args) == 1
|
|
and isinstance(args[0], TensorVariable)
|
|
and len(kwargs) == 0
|
|
):
|
|
# TODO(voz): This is rewritten as a call_method because
|
|
# torch.numel(x) w/ sym shapes raises a RuntimeError and x.numel() does not
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_method",
|
|
"numel",
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
# TODO: These special cases shouldn't be necessary; we should
|
|
# generically support torch.ops that return int
|
|
elif (
|
|
self.value in (torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
|
|
and len(args) == 2
|
|
and len(kwargs) == 0
|
|
and isinstance(args[0], TensorVariable)
|
|
):
|
|
# we see this when retracing already traced code
|
|
return args[0].call_method(tx, "size", [args[1]], {})
|
|
elif (
|
|
self.value in (torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
|
|
and len(args) == 2
|
|
and len(kwargs) == 0
|
|
and isinstance(args[0], TensorVariable)
|
|
):
|
|
return args[0].call_method(tx, "stride", [args[1]], {})
|
|
elif (
|
|
self.value == torch.addcdiv
|
|
and len(args) == 3
|
|
and "value" in kwargs
|
|
and len(kwargs) == 1
|
|
):
|
|
# decompose addcdiv into constituent ops, prevents a graph break due to converting
|
|
# value to a scalar
|
|
result = TorchInGraphFunctionVariable(torch.div).call_function(
|
|
tx, args[1:], {}
|
|
)
|
|
result = TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [result, kwargs["value"]], {}
|
|
)
|
|
return TorchInGraphFunctionVariable(torch.add).call_function(
|
|
tx, [args[0], result], {}
|
|
)
|
|
elif (
|
|
self.value is torch._assert
|
|
and len(args) >= 1
|
|
and (
|
|
(args[0].is_python_constant() and args[0].as_python_constant())
|
|
or (
|
|
isinstance(args[0], variables.SymNodeVariable)
|
|
and args[0].evaluate_expr()
|
|
)
|
|
)
|
|
):
|
|
return ConstantVariable(None)
|
|
elif SDPAParamsVariable.is_sdpa_params(self.value):
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch._C._SDPAParams,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
param_vars=args,
|
|
)
|
|
elif is_constant_pg_functions(self.value):
|
|
# becuase the input is a "ProcessGroupVariable", we'll be guarding on its
|
|
# ID_MATCH based on how it was constructed.
|
|
|
|
# We desugar it at trace-time into ranks by directly calling util
|
|
# bake the result into the trace
|
|
assert len(args) == 1, "Expected one arg (pg)"
|
|
assert isinstance(args[0], ProcessGroupVariable)
|
|
|
|
invocation_result = self.value(args[0].as_python_constant())
|
|
# Note - while we *could* cook up sources around invocations, like a FunctionSource
|
|
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
|
|
# guard propagation via options is the best we can do.
|
|
from .builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder()(tx, invocation_result)
|
|
elif is_from_local(self.value):
|
|
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
|
|
# and rewrite args to have only proxyable args, then insert call_function
|
|
args_as_value = [x.as_python_constant() for x in args[1:]]
|
|
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
|
|
def fn_with_prim_types(x):
|
|
return self.value(x, *args_as_value, **kwargs_as_value)
|
|
|
|
# attach the same function name for better debugging
|
|
fn_with_prim_types.__name__ = "prim " + self.value.__name__
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
fn_with_prim_types,
|
|
*proxy_args_kwargs([args[0]], {}),
|
|
),
|
|
)
|
|
elif (
|
|
self.value is torch.nested.nested_tensor
|
|
and kwargs.get("layout", torch.strided) == torch.strided
|
|
):
|
|
raise unimplemented("torch.compile does not support strided NestedTensor")
|
|
elif self.value is torch.nn.functional.one_hot and (
|
|
len(args) + len(kwargs) == 1
|
|
or (
|
|
len(args) == 2
|
|
and args[1].is_python_constant()
|
|
and args[1].as_python_constant() == -1
|
|
)
|
|
):
|
|
raise unimplemented(
|
|
"torch.nn.functional.one_hot with data-dependent output shape"
|
|
)
|
|
else:
|
|
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
|
|
all_ints_or_floats = all(
|
|
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
|
|
for x in args
|
|
)
|
|
bin_ops = {"add", "sub", "mul", "div", "sqrt"}
|
|
if (
|
|
getattr(self.value, "__module__", "") == "torch"
|
|
and self.value.__name__ in bin_ops
|
|
and any_symints_or_symfloats
|
|
and all_ints_or_floats
|
|
):
|
|
msg = f"""\
|
|
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
|
|
To support this behavior, we need to allow const-propping tensors that store symint data.
|
|
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
|
|
"""
|
|
log.warning(msg)
|
|
raise unimplemented(msg)
|
|
|
|
# TODO(voz): Replace w/ dynamic shape rewrite table.
|
|
# Ideally, we would be able to do this at ctor time, but alas we need a combination
|
|
# of value + args to determine this.
|
|
fn_ = self.value
|
|
if any(isinstance(x, SymNodeVariable) for x in args):
|
|
torch_sym_op = f"_sym_{self.value.__name__}"
|
|
if getattr(self.value, "__module__", None) == "math" and hasattr(
|
|
torch, torch_sym_op
|
|
):
|
|
fn_ = getattr(torch, torch_sym_op)
|
|
|
|
if fn_ is torch.tensor:
|
|
|
|
def check_any_unspec(x):
|
|
# NB: This includes UnspecializedPythonVariable
|
|
if isinstance(x, (TensorVariable, SymNodeVariable)):
|
|
return True
|
|
elif isinstance(x, (ListVariable, TupleVariable)):
|
|
return any(check_any_unspec(y) for y in x.items)
|
|
# TODO: there maybe other recursive structures you need to
|
|
# check
|
|
else:
|
|
return False
|
|
|
|
data_arg = None
|
|
if args:
|
|
data_arg = args[0]
|
|
elif "data" in kwargs:
|
|
data_arg = kwargs["data"]
|
|
|
|
# NB: OK to pass torch.tensor(tensor), this will trace fine
|
|
if not isinstance(data_arg, TensorVariable) and check_any_unspec(
|
|
data_arg
|
|
):
|
|
# This is slower and less canonical, so only use it if we
|
|
# have to
|
|
fn_ = torch._refs.tensor
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
fn_,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
|
|
if (
|
|
isinstance(tensor_variable, TensorVariable)
|
|
and "requires_grad" in kwargs
|
|
and kwargs["requires_grad"].as_python_constant()
|
|
):
|
|
unimplemented(
|
|
"""factory functions that return tensors that require grad are not supported.
|
|
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
|
|
)
|
|
|
|
if "out" in kwargs and not (
|
|
isinstance(kwargs["out"], variables.ConstantVariable)
|
|
and kwargs["out"].as_python_constant() is None
|
|
):
|
|
# out variants of torch operators like torch.sort and
|
|
# torch.sigmoid mutate the tensors in the out field. Track such
|
|
# tensors and rewrite the symbolic locals.
|
|
if isinstance(tensor_variable, TupleVariable):
|
|
assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
|
|
output_tensor_names = [
|
|
tx.find_symbolic_locals_name(x) for x in kwargs["out"].items
|
|
]
|
|
for idx, name in enumerate(output_tensor_names):
|
|
if name in tx.symbolic_locals:
|
|
tx.symbolic_locals[name] = tensor_variable.items[idx]
|
|
elif isinstance(tensor_variable, TensorVariable):
|
|
assert isinstance(kwargs["out"], TensorVariable)
|
|
if (
|
|
kwargs["out"].source
|
|
and kwargs["out"] in tx.output.graphargs
|
|
and kwargs["out"].size != tensor_variable.size
|
|
):
|
|
# It's hard to get out variants with resizing on graph inputs work
|
|
# properly across dynamo/aot/inductor, just fall back.
|
|
unimplemented("out variants with resizing on graph inputs")
|
|
assert "example_value" in kwargs["out"].proxy.node.meta
|
|
if not torch._prims_common.is_contiguous(
|
|
kwargs["out"].proxy.node.meta["example_value"]
|
|
):
|
|
# It's difficult to handle strides correctly in functionalization
|
|
# when calling an out= op with a non-contiguous out argument
|
|
unimplemented(
|
|
"out= op was called where output tensor was non-contiguous"
|
|
)
|
|
name = tx.find_symbolic_locals_name(kwargs["out"])
|
|
if name in tx.symbolic_locals:
|
|
tx.symbolic_locals[name] = tensor_variable
|
|
else:
|
|
unimplemented(f"out variant of {type(kwargs['out'])}")
|
|
|
|
return tensor_variable
|
|
|
|
def _call_ntuple(self, tx, args, kwargs):
|
|
"""inline behavior of torch.nn.modules.utils._ntuple"""
|
|
if self.value is torch.nn.modules.utils._ntuple:
|
|
count = args[0].as_python_constant()
|
|
else:
|
|
count = self.value.__closure__[0].cell_contents
|
|
assert isinstance(count, int)
|
|
assert not kwargs
|
|
|
|
def handle_ntuple(value):
|
|
if value.has_unpack_var_sequence(tx):
|
|
return variables.TupleVariable(
|
|
list(value.unpack_var_sequence(tx)),
|
|
)
|
|
elif value.is_python_constant():
|
|
# constant prop through it
|
|
return variables.ConstantVariable.create(
|
|
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
|
|
)
|
|
else:
|
|
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
|
|
|
|
if self.value is torch.nn.modules.utils._ntuple:
|
|
return variables.LambdaVariable(handle_ntuple)
|
|
else:
|
|
return handle_ntuple(args[0])
|