Files
pytorch/torch/_C/__init__.pyi.in
Daniel Galvez cf94cadbee [CUDAGraph] Add getter for cuda graph exec (#161294)
This is far simpler than #155164 since we never destroy the cudaGraphExec_t.

The request comes from TRT-LLM specifically. The motivation is that some power users would like to mutate specific kernel parameters via APIs like `cudaGraphExec*SetParams` after a cuda graph has been instantiated. For example, a common request has been to be able to change the sequence length of attention kernels, after having captured a graph for the largest possible sequence length. It turns out that the host overhead you eliminate via cuda graphs in LLM inference ends up causing an increase in computation time when you size your kernels to the maximum possible sequence length (which I believe is done in both TRT-LLM and vLLM). Attention is the most problematic kernel because its computation time is quadratic in the sequence length, rather than linear.

This can work if your attention kernel can work for arbitrary shapes (this is not the case for all attention implementations! Many of them specialize with templates), and you have a persistent kernel that allocates only as many blocks as you have SM's (so you don't have to figure out how many blocks to allocate for a specific sequence length). Using a conditional SWITCH node is a better generic approach to this problem, but that requires more infrastructure work.

Note that this requires knowledge of the exact location of the value in your kernel's parameter buffer to mutate. It won't work with arbitrary stream capture code whose kernels you don't know before hand. So I expect this code path to be rarely used.

Testing:

```
pytest -s -k raw_graph_exec test/test_cuda.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161294
Approved by: https://github.com/ngimel, https://github.com/BoyuanFeng, https://github.com/eellison, https://github.com/eqy
2025-08-25 20:57:37 +00:00

2761 lines
96 KiB
Python

# ${generated_comment}
# mypy: disable-error-code="type-arg"
# mypy: allow-untyped-defs
# ruff: noqa: F401
from collections.abc import Iterable, Iterator, Sequence
from enum import Enum, IntEnum
from pathlib import Path
from types import EllipsisType
from typing import (
Any,
AnyStr,
Callable,
Generic,
IO,
Literal,
NamedTuple,
overload,
SupportsIndex,
TypeVar,
)
from typing_extensions import ParamSpec, Protocol, runtime_checkable, Self, TypeAlias
import numpy
import torch
from torch import inf, SymInt, Tensor
from torch._C import (
_aoti,
_cpu,
_dynamo,
_export,
_functorch,
_lazy,
_lazy_ts_backend,
_nn,
_onnx,
_VariableFunctions,
_verbose,
)
from torch._prims_common import DeviceLikeType
from torch.autograd.graph import Node as _Node
from torch.cuda import _POOL_HANDLE
from torch.fx.node import Node as FxNode
from torch.package import PackageExporter
from torch.storage import TypedStorage, UntypedStorage
from torch.types import (
_bool,
_bytes,
_complex,
_device,
_dispatchkey,
_dtype,
_float,
_int,
_layout,
_qscheme,
_size,
_str,
_symsize,
Device,
IntLikeType,
Number,
Storage,
)
from torch.utils._python_dispatch import TorchDispatchMode
# This module is defined in torch/csrc/Module.cpp
K = TypeVar("K") # noqa: PYI001
T = TypeVar("T") # noqa: PYI001
S = TypeVar("S", bound=torch.Tensor) # noqa: PYI001
P = ParamSpec("P") # noqa: PYI001
R = TypeVar("R", covariant=True) # return value (always covariant) # noqa: PYI001
T_co = TypeVar("T_co", covariant=True) # noqa: PYI001
@runtime_checkable
class _NestedSequence(Protocol[T_co]):
"""A protocol for representing nested sequences.
References::
`numpy._typing._NestedSequence`
<https://github.com/numpy/numpy/blob/main/numpy/_typing/_nested_sequence.py>
"""
def __len__(self, /) -> _int: ...
def __getitem__(self, index: _int, /) -> T_co | _NestedSequence[T_co]: ...
def __contains__(self, x: object, /) -> _bool: ...
def __iter__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ...
def __reversed__(self, /) -> Iterator[T_co | _NestedSequence[T_co]]: ...
def count(self, value: Any, /) -> _int: ...
def index(self, value: Any, /) -> _int: ...
# Defined in torch/csrc/Device.cpp
class device:
type: str # THPDevice_type
index: _int # THPDevice_index
def __get__(self, instance, owner=None) -> device: ...
# THPDevice_pynew
@overload
def __init__(self, device: DeviceLikeType) -> None: ...
@overload
def __init__(self, type: str, index: _int) -> None: ...
# Uncomment if we ever make torch.device a decorator
# def __call__(self, func: T) -> T: ...
def __enter__(self) -> Self: ...
def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
def __reduce__(self) -> tuple[Any, ...]: ... # THPDevice_reduce
# Defined in torch/csrc/Stream.cpp
class Stream:
stream_id: _int # Stream id
device_index: _int
device_type: _int
device: _device # The device of the stream
@overload
def __new__(
cls,
device: DeviceLikeType | None = None,
*,
priority: _int = 0,
) -> Self: ...
@overload
def __new__(
cls,
stream_id: _int,
device_index: _int,
device_type: _int,
*,
priority: _int = 0,
) -> Self: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def wait_event(self, event: Event) -> None: ...
def wait_stream(self, other: Stream) -> None: ...
def record_event(self, event: Event | None = None) -> Event: ...
def __hash__(self) -> _int: ...
def __eq__(self, other: object) -> _bool: ...
def __enter__(self) -> Self: ...
def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
# Defined in torch/csrc/Event.cpp
class Event:
device: _device # The device of the Event
event_id: _int # The raw event created by device backend
def __new__(
cls,
device: DeviceLikeType | None = None,
*,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False,
) -> Self: ...
@classmethod
def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> Event: ...
def record(self, stream: Stream | None = None) -> None: ...
def wait(self, stream: Stream | None = None) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: Event) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
# Defined in torch/csrc/Size.cpp
class Size(tuple[_int, ...]):
# TODO: __reduce__
@overload
def __getitem__(self: Size, key: SupportsIndex, /) -> _int: ...
@overload
def __getitem__(self: Size, key: slice, /) -> Size: ...
# Note: torch.Size does not support adding non-integer tuples.
def __add__(self, other: tuple[_int, ...], /) -> Size: ... # type: ignore[override]
def __radd__(self: Size, other: tuple[_int, ...], /) -> Size: ...
def __mul__(self, other: SupportsIndex, /) -> Size: ...
def __rmul__(self, other: SupportsIndex, /) -> Size: ...
def numel(self: Size, /) -> _int: ...
# Defined in torch/csrc/Dtype.cpp
class dtype:
# TODO: __reduce__
is_floating_point: _bool
is_complex: _bool
is_signed: _bool
itemsize: _int
def to_real(self) -> dtype: ...
def to_complex(self) -> dtype: ...
# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
bits: _int
min: _int
max: _int
dtype: str
def __init__(self, dtype: _dtype) -> None: ...
class finfo:
bits: _int
min: _float
max: _float
eps: _float
tiny: _float
smallest_normal: _float
resolution: _float
dtype: str
@overload
def __init__(self, dtype: _dtype) -> None: ...
@overload
def __init__(self) -> None: ...
${dtype_class_hints}
# Defined in torch/csrc/Layout.cpp
class layout: ...
# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...
def DisableTorchFunctionSubclass(): ...
# Defined in torch/csrc/utils/tensor_layouts.cpp
strided: layout = ...
sparse_coo: layout = ...
sparse_csr: layout = ...
sparse_csc: layout = ...
sparse_bsr: layout = ...
sparse_bsc: layout = ...
_mkldnn: layout = ...
jagged: layout = ...
# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...
# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...
# Defined in torch/csrc/QScheme.cpp
class qscheme: ...
# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...
# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase:
saved_tensors: tuple[Tensor]
_raw_saved_tensors: tuple[Any]
next_functions: tuple[tuple[Any, _int], ...]
needs_input_grad: tuple[_bool]
metadata: dict
_materialize_non_diff_grads: _bool
# skip adding type hints for the fields that have wrappers defined
# in torch/autograd/function.py
# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(Tensor): # inherits from Tensor to appease mypy
def __init__(
self,
data: Tensor | None = ...,
requires_grad: _bool | None = ...,
volatile: _bool | None = ...,
_grad_fn: _FunctionBase | None = ...,
) -> None: ...
# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...
class JITException(Exception): ...
class Future(Generic[T]):
def __init__(self, devices: list[device]) -> None: ...
def done(self) -> _bool: ...
def value(self) -> T: ...
def wait(self) -> T: ...
def add_done_callback(self, callback: Callable) -> None: ...
def then(self, callback: Callable) -> Future[T]: ...
def set_result(self, result: T) -> None: ...
def _set_unwrap_func(self, callback: Callable) -> None: ...
class _Await:
def __init__(self) -> None: ...
def fn(self) -> Callable: ...
def args(self) -> tuple[Any, ...]: ...
def is_nowait(self) -> _bool: ...
def _jit_set_num_profiled_runs(num: _size) -> _size: ...
# Defined in torch/csrc/jit/passes/mobile_optimizer_type.h
class _MobileOptimizerType: ...
CONV_BN_FUSION: _MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType
REMOVE_DROPOUT: _MobileOptimizerType
FUSE_ADD_RELU: _MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType
VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType
def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _awaitable(*args: Any, **kwargs: Any) -> _Await: ...
def _awaitable_wait(aw: _Await) -> Any: ...
def _awaitable_nowait(x: Any) -> _Await: ...
def _collect_all(futures: list[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
def unify_type_list(types: list[JitType]) -> JitType: ...
def _freeze_module(
module: ScriptModule,
preserved_attrs: list[str] = ...,
freeze_interfaces: _bool = True,
preserveParameters: _bool = True,
) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(
module: torch.jit.ScriptModule,
other_methods: list[str] = ...,
) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph: Graph): ...
def _jit_pass_remove_dropout(module: torch.jit.ScriptModule): ...
def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> tuple[list[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: list[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> tuple[Callable, list[str]]: ...
def _get_operation_overload(
op_name: str,
op_overload_name: str,
) -> tuple[Callable, Callable, list[Any]]: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(
module: torch.jit.ScriptModule,
optimization_blocklist: set[_MobileOptimizerType],
preserved_methods: list[AnyStr],
) -> torch.jit.ScriptModule: ...
def _clone_module_with_class(
module: torch.jit.ScriptModule,
ignored_methods: list[AnyStr],
ignored_attributes: list[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_vulkan_optimize_for_mobile(
module: torch.jit.ScriptModule,
optimization_blocklist: set[_MobileOptimizerType],
preserved_methods: list[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_metal_optimize_for_mobile(
module: torch.jit.ScriptModule,
preserved_methods: list[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name: str) -> list[FunctionSchema]: ...
def _jit_get_all_schemas() -> list[FunctionSchema]: ...
def _jit_check_alias_annotation(
g: Graph,
args: tuple[Any, ...],
unqualified_op_name: str,
): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: torch.jit.ScriptModule): ...
def _jit_pass_insert_observers(
module: torch.jit.ScriptModule,
method_name: str,
qconfig_dict: dict[str, Any],
inplace: _bool,
quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant(
module: torch.jit.ScriptModule,
method_name: str,
inplace: _bool,
debug: _bool,
quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant_for_ondevice_ptq(
module: torch.jit.ScriptModule,
method_name: str,
inplace: _bool,
debug: _bool,
quant_type: _int,
): ...
def _jit_pass_quant_finalize(
module: torch.jit.ScriptModule,
quant_type: _int,
preserved_attrs: Sequence[str],
): ...
def _jit_pass_quant_finalize_for_ondevice_ptq(
module: torch.jit.ScriptModule,
quant_type: _int,
method_name: str,
): ...
def _jit_pass_insert_observer_method_for_ondevice_ptq(
module: torch.jit.ScriptModule,
method_name: str,
qconfig_dict: dict[str, Any],
inplace: _bool,
quant_type: _int,
): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(
strategy: list[tuple[str, _int]],
) -> list[tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback: TypeAlias = Callable[[str], Callable[..., Any]]
# Defined in torch/csrc/jit/python/script_init.cpp
# and torch/csrc/jit/python/init.cpp
def _maybe_call_torch_function_for_op_packet(
op_overload_packet: Any,
*args: Any,
**kwargs: Any,
) -> Any: ...
def _check_schema_allow_fake_script_object(
schema: FunctionSchema,
*args: Any,
**kwargs: Any,
) -> _bool: ...
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(
ModuleHook: Callable | None,
FunctionHook: Callable | None,
) -> None: ...
def _jit_get_emit_hooks() -> tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(
filename: str | Path,
map_location: DeviceLikeType | None,
): ...
def _load_for_lite_interpreter_from_buffer(
buffer: IO[bytes],
map_location: DeviceLikeType | None,
): ...
def _export_operator_list(module: LiteScriptModule): ...
def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ...
def _get_model_bytecode_version(filename: str | Path) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: IO[bytes]) -> _int: ...
def _backport_for_mobile(
filename_input: str | Path,
filename_output: str | Path,
to_version: _int,
) -> None: ...
def _backport_for_mobile_from_buffer(
buffer: IO[bytes],
filename_output: str | Path,
to_version: _int,
) -> None: ...
def _backport_for_mobile_to_buffer(
filename_input: str | Path,
to_version: _int,
) -> bytes: ...
def _backport_for_mobile_from_buffer_to_buffer(
buffer: IO[bytes],
to_version: _int,
) -> bytes: ...
def _get_model_ops_and_info(filename: str | Path): ...
def _get_model_ops_and_info_from_buffer(buffer: IO[bytes]): ...
def _get_mobile_model_contained_types(filename: str | Path): ...
def _get_mobile_model_contained_types_from_buffer(buffer: IO[bytes]): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: _bool | None = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> list[str]: ...
def _create_function_from_trace(
qualname: str,
func: Callable[..., Any],
input_tuple: tuple[Any, ...],
var_lookup_fn: Callable[[Tensor], str],
strict: _bool,
force_outplace: _bool,
argument_names: list[str],
) -> tuple[Graph, Stack]: ...
def _create_function_from_trace_with_dict(
qualname: str,
func: Callable[..., Any],
input_dict: dict[str, Any],
var_lookup_fn: Callable[[Tensor], str],
strict: _bool,
force_outplace: _bool,
argument_names: list[str],
) -> tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _get_upgraders_map_size() -> _int: ...
def _get_upgraders_entry_map() -> dict[str, str]: ...
def _dump_upgraders_map() -> dict[str, str]: ...
def _test_only_populate_upgraders(content: dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: dict[str, str]) -> None: ...
def merge_type_from_type_comment(
decl: Decl,
type_annotation_decl: Decl,
is_method: _bool,
) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool = False) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...
def _resolve_type_from_object(
obj: Any,
range: SourceRange,
rcb: ResolutionCallback,
) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(
overload_decl: Decl,
implementation_def: Def,
new_name: str,
) -> Def: ...
def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(
graph: Graph,
dynamic_axes: dict[str, dict[_int, str]],
input_names: list[str],
) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(
graph: Graph,
params_dict: dict[str, IValue],
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_assign_output_shape(
graph: Graph,
tensors: list[Tensor],
desc: IODescriptor,
onnx_shape_inference: _bool,
is_script: _bool,
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(
graph: Graph,
module: ScriptModule | None = None,
) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(
graph: Graph,
disable_shape_peepholes: _bool = False,
) -> None: ...
def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
graph: Graph,
paramsDict: dict[str, IValue],
) -> dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
graph: Graph,
paramsDict: dict[str, IValue],
) -> dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(
pattern: str,
fused_node_name: str,
graph: Graph,
) -> None: ...
def _jit_onnx_list_model_parameters(
module: ScriptModule,
) -> tuple[ScriptModule, list[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(
graph: Graph,
_jit_pass_onnx: _onnx.OperatorExportTypes,
) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(
graph: Graph,
lowprecision_cast: _bool,
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_peephole(
graph: Graph,
opset_version: _int,
fixed_batch_size: _bool,
) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(
graph: Graph,
module_names: set[str],
param_names: list[str],
) -> dict[Node, dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(
graph: Graph,
onnx_attrs: dict[str, Any],
) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> tuple[Graph, list[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(
graph: Graph,
params_dict: dict[str, IValue],
is_train: _bool,
) -> dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(
graph: Graph,
paramsDict: dict[str, IValue],
) -> dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(
graph: Graph,
paramsDict: dict[str, IValue],
opset_version: _int,
) -> dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(
graph: Graph,
paramsDict: dict[str, IValue],
) -> dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(
params: dict[str, IValue],
) -> dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(
n: Node,
paramsDict: dict[str, IValue],
opset_version: _int,
) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(
block: Block,
n: Node,
env: dict[Value, Value],
values_in_env: set[Value],
) -> list[Value]: ...
def _jit_pass_onnx_block(
old_block: Block,
new_block: Block,
operator_export_type: _onnx.OperatorExportTypes,
env: dict[Value, Value],
values_in_env: set[Value],
is_sub_block: _bool,
) -> dict[Value, Value]: ...
def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ...
def _jit_pass_fixup_onnx_controlflow_node(
n: Node,
opset_version: _int,
) -> list[Value]: ...
def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ...
def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...
def _generate_upgraders_graph() -> dict[str, Graph]: ...
def _calculate_package_version_based_on_upgraders(val: _bool): ...
def _get_version_calculator_flag() -> _bool: ...
def _jit_script_interface_compile(
name: str,
class_def: ClassDef,
rcb: ResolutionCallback,
is_module: _bool,
): ...
def _jit_script_compile_overload(
qualname: str,
overload_decl: Decl,
implementation_def: Def,
rcb: ResolutionCallback,
implementation_defaults: dict[str, Any],
signature: Any,
): ...
def _jit_script_compile(
qual_name: str,
definition: Def,
rcb: ResolutionCallback,
defaults: dict[str, Any],
): ...
def _jit_script_class_compile(
qual_name: str,
definition: ClassDef,
defaults: dict[str, dict[str, Any]],
rcb: ResolutionCallback,
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
cu: CompilationUnit,
filename: str | Path,
map_location: DeviceLikeType | None,
extra_files: dict[str, Any],
) -> ScriptModule: ...
def import_ir_module_from_buffer(
cu: CompilationUnit,
buffer: IO[bytes],
map_location: DeviceLikeType | None,
extra_files: dict[str, Any],
) -> ScriptModule: ...
def _import_ir_module_from_package(
cu: CompilationUnit,
reader: PyTorchFileReader,
storage_context: DeserializationStorageContext,
map_location: DeviceLikeType | None,
ts_id: str,
) -> ScriptModule: ...
def _assign_output_shapes(graph: Graph, inputs: list[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str) -> None: ...
def _propagate_and_assign_input_shapes(
graph: Graph,
inputs: tuple[Tensor, ...],
param_count_list: list[_int],
with_grad: _bool,
propagate: _bool,
) -> Graph: ...
# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState: ...
# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb: ...
class _InsertPoint:
def __enter__(self) -> None: ...
def __exit__(self, *exc_info: object) -> None: ...
# Defined in torch/csrc/jit/ir/ir.h
class Use:
@property
def user(self) -> Node: ...
@property
def offset(self) -> _int: ...
def isAfter(self, other: Use) -> _bool: ...
# Defined in torch/csrc/jit/ir/ir.h
class Value:
def type(self) -> JitType: ...
def setType(self, t: JitType) -> Value: ...
def setTypeAs(self, other: Value) -> Value: ...
def inferTypeFrom(self, t: Tensor) -> None: ...
def debugName(self) -> str: ...
def setDebugName(self, name: str) -> None: ...
def unique(self) -> _int: ...
def offset(self) -> _int: ...
def node(self) -> Node: ...
def uses(self) -> list[Use]: ...
def replaceAllUsesWith(self, val: Value) -> None: ...
def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
def requires_grad(self) -> _bool: ...
def requiresGrad(self) -> _bool: ...
def copyMetadata(self, other: Value) -> Value: ...
def isCompleteTensor(self) -> _bool: ...
def toIValue(self) -> IValue: ...
# Defined in torch/csrc/jit/ir/ir.h
class Block:
def inputs(self) -> Iterator[Value]: ...
def outputs(self) -> Iterator[Value]: ...
def nodes(self) -> Iterator[Node]: ...
def paramNode(self) -> Node: ...
def returnNode(self) -> Node: ...
def owningNode(self) -> Node: ...
def registerOutput(self, n: Value) -> _int: ...
def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ...
# Defined in torch/csrc/jit/ir/ir.h
class Node:
def __getitem__(self, key: str) -> Any: ...
def schema(self) -> str: ...
def input(self) -> Value: ...
def inputs(self) -> Iterator[Value]: ...
def inputsAt(self, idx: _int) -> Value: ...
def inputsSize(self) -> _int: ...
def output(self) -> Value: ...
def outputs(self) -> Iterator[Value]: ...
def outputsAt(self, idx: _int) -> Value: ...
def outputsSize(self) -> _int: ...
def hasMultipleOutputs(self) -> _bool: ...
def blocks(self) -> list[Block]: ...
def addBlock(self) -> Block: ...
def mustBeNone(self) -> _bool: ...
def matches(self, pattern: str) -> _bool: ...
def kind(self) -> str: ...
def kindOf(self, name: str) -> str: ...
def addInput(self, name: str) -> Value: ...
def replaceInput(self, i: _int, newValue: Value) -> Value: ...
def replaceInputWith(self, from_: Value, to: Value) -> None: ...
def replaceAllUsesWith(self, n: Node) -> None: ...
def insertBefore(self, n: Node) -> Node: ...
def insertAfter(self, n: Node) -> Node: ...
def isBefore(self, n: Node) -> _bool: ...
def isAfter(self, n: Node) -> _bool: ...
def moveBefore(self, n: Node) -> None: ...
def moveAfter(self, n: Node) -> None: ...
def removeInput(self, i: _int) -> None: ...
def removeAllInputs(self, i: _int) -> None: ...
def hasUses(self) -> _bool: ...
def eraseOutput(self, i: _int) -> None: ...
def addOutput(self) -> Value: ...
def scopeName(self) -> str: ...
def isNondeterministic(self) -> _bool: ...
def copyAttributes(self, rhs: Node) -> Node: ...
def copyMetadata(self, rhs: Node) -> Node: ...
def hasAttributes(self) -> _bool: ...
def hasAttribute(self, name: str) -> _bool: ...
def removeAttribute(self, attr: str) -> Node: ...
def namedInput(self, name: str) -> Value: ...
def sourceRange(self) -> SourceRange: ...
def owningBlock(self) -> Block: ...
def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
def findAllNodes(self, kind: str, recurse: _bool = True) -> list[Node]: ...
def getModuleHierarchy(self) -> str: ...
def prev(self) -> Node: ...
def destroy(self) -> None: ...
def attributeNames(self) -> list[str]: ...
# Accessors for attributes as types.
def f(self, name: str) -> _float: ...
def f_(self, name: str, val: _float) -> Node: ...
def fs(self, name: str) -> list[_float]: ...
def fs_(self, name: str, val: list[_float]) -> Node: ...
def c(self, name: str) -> complex: ...
def c_(self, name: str, val: complex) -> Node: ...
def s(self, name: str) -> str: ...
def s_(self, name: str, val: str) -> Node: ...
def ss(self, name: str) -> list[str]: ...
def ss_(self, name: str, val: list[str]) -> Node: ...
def i(self, name: str) -> _int: ...
def i_(self, name: str, val: _int) -> Node: ...
# Cannot define "is" like this because it's a reserved keyword in python.
# def is(self, name: str) -> List[_int]: ...
# def is_(self, name: str, val: List[_int]) -> Node: ...
def g(self, name: str) -> Graph: ...
def g_(self, name: str, val: Graph) -> Node: ...
def gs(self, name: str) -> list[Graph]: ...
def gs_(self, name: str, val: list[Graph]) -> Node: ...
def ival(self, name: str) -> IValue: ...
def ival_(self, name: str, val: IValue) -> Node: ...
def t(self, name: str) -> Tensor: ...
def t_(self, name: str, val: Tensor) -> Node: ...
def ts(self, name: str) -> list[Tensor]: ...
def ts_(self, name: str, val: list[Tensor]) -> Node: ...
def ty(self, name: str) -> JitType: ...
def ty_(self, name: str, val: JitType) -> Node: ...
def tys(self, name: str) -> list[JitType]: ...
def tys_(self, name: str, val: list[JitType]) -> Node: ...
# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
def inputs(self) -> Iterator[Value]: ...
def outputs(self) -> Iterator[Value]: ...
def nodes(self) -> Iterator[Node]: ...
def param_node(self) -> Node: ...
def return_node(self) -> Node: ...
def addInput(self, name: str = "") -> Value: ...
def eraseInput(self, i: _int) -> None: ...
def registerOutput(self, n: Value) -> _int: ...
def eraseOutput(self, i: _int) -> None: ...
def create(self, name: str, args, num_outputs: _int) -> Node: ...
def appendNode(self, n: Node) -> Node: ...
def prependNode(self, n: Node) -> Node: ...
def insertNode(self, n: Node) -> Node: ...
def block(self) -> Block: ...
def lint(self) -> None: ...
def alias_db(self) -> AliasDb: ...
def setInsertPoint(self, n: Block | Node) -> None: ...
def insert_point_guard(self, n: Block | Node) -> _InsertPoint: ...
def insertPoint(self) -> Node: ...
def insertGraph(self, callee: Graph, inputs: list[Value]) -> list[Value]: ...
def makeMultiOutputIntoTuple(self) -> None: ...
def copy(self) -> Graph: ...
# Defined in torch/aten/src/ATen/core/alias_info.h
class AliasInfo:
is_write: _bool
before_set: set[str]
after_set: set[str]
def __init__(
self,
is_write: _bool,
before_set: set[str],
after_set: set[str],
) -> None: ...
# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
name: str
type: JitType
default_value: Any | None
def has_default_value(self) -> _bool: ...
kwarg_only: _bool
is_out: _bool
alias_info: AliasInfo | None
is_write: _bool
real_type: JitType
def __init__(
self,
name: str,
type: JitType,
N: _int | None,
defualt_value: Any | None,
kwarg_only: _bool,
alias_info: AliasInfo | None,
) -> None: ...
class FunctionSchema:
arguments: list[Argument]
returns: list[Argument]
name: str
overload_name: str
is_mutable: _bool
def __init__(
self,
name: str,
overload_name: str,
arguments: list[Argument],
returns: list[Argument],
is_vararg: _bool,
is_varret: _bool,
) -> None: ...
class _UpgraderEntry:
bumped_at_version: _int
upgrader_name: str
old_schema: str
def __init__(
self,
bumped_at_version: _int,
upgrader_name: str,
old_schema: str,
) -> None: ...
class _UpgraderRange:
min_version: _int
max_version: _int
def _get_max_operator_version() -> _int: ...
def _get_operator_version_map() -> dict[str, list[_UpgraderEntry]]: ...
def _get_upgrader_ranges(name: str) -> list[_UpgraderRange]: ...
def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...
def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer:
def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
def write_files(self) -> None: ...
def storage_context(self) -> SerializationStorageContext: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext:
def __init__(self) -> None: ...
def has_storage(self, storage: Storage) -> _bool: ...
def get_or_add_storage(self, storage: Storage) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext:
def __init__(self) -> None: ...
def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
def has_storage(self, name: str) -> _bool: ...
def add_storage(self, name: str, tensor: Tensor) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
def __init__(self, obj: Any) -> None: ...
def set_module_dict(self): ...
def set_module_list(self): ...
def set_parameter_list(self): ...
def set_parameter_dict(self): ...
def add_attribute(
self,
name: str,
ty: JitType,
is_param: _bool,
is_buffer: _bool,
): ...
def add_module(self, name: str, meta: ConcreteModuleType): ...
def add_constant(self, name: str, value: Any): ...
def add_overload(self, method_name: str, overloaded_method_names: list[str]): ...
def add_builtin_function(self, name: str, symbol_name: str): ...
def add_failed_attribute(self, name: str, failure_reason: str): ...
def add_function_attribute(
self,
name: str,
ty: JitType,
func: Callable[..., Any],
): ...
def add_ignored_attribute(self, name: str): ...
def add_ignored_attributes(self, names: list[str]): ...
def add_forward_hook(self, hook: Callable[..., Any]): ...
def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...
class ConcreteModuleType:
def get_constants(self) -> dict[str, Any]: ...
def equals(self, other: ConcreteModuleType) -> _bool: ...
@staticmethod
def from_jit_type(ty: JitType) -> ConcreteModuleType: ...
class CallStack:
def __init__(self, name: str, range: SourceRange) -> None: ...
class ErrorReport:
def __init__(self, range: SourceRange) -> None: ...
def what(self) -> str: ...
@staticmethod
def call_stack() -> str: ...
class CompilationUnit:
def __init__(self, lang: str = ..., _frames_up: _int = ...) -> None: ...
def find_function(self, name: str) -> ScriptFunction: ...
def __getattr__(self, name: str) -> ScriptFunction: ...
def define(
self,
script: str,
rcb: ResolutionCallback = ...,
_frames_up: _int = ...,
): ...
def get_interface(self, name: str) -> InterfaceType: ...
def get_functions(self) -> list[ScriptFunction]: ...
def create_function(
self,
name: str,
graph: Graph,
shouldMangle: _bool = ...,
) -> ScriptFunction: ...
def get_class(self, name: str) -> ClassType: ...
class ScriptObject:
def setattr(self, name: str, value: Any): ...
def _get_method(self, name: str) -> ScriptMethod: ...
def _type(self) -> ClassType: ...
class ScriptModule(ScriptObject):
def _method_names(self) -> list[str]: ...
def _get_method(self, name: str) -> ScriptMethod: ...
class LiteScriptModule:
def __call__(self, *input): ...
def find_method(self, method_name: str): ...
def forward(self, *input) -> list[str]: ...
def run_method(self, method_name: str, *input): ...
# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptFunction(Generic[P, R]):
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ...
def save(self, filename: str, _extra_files: dict[str, bytes]) -> None: ...
def save_to_buffer(self, _extra_files: dict[str, bytes]) -> bytes: ...
@property
def graph(self) -> Graph: ...
def inlined_graph(self) -> Graph: ...
def schema(self) -> FunctionSchema: ...
def code(self) -> str: ...
def name(self) -> str: ...
@property
def qualified_name(self) -> str: ...
# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptMethod(Generic[P, R]):
graph: Graph
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R: ...
@property
def owner(self) -> ScriptModule: ...
@property
def name(self) -> str: ...
@property
def schema(self) -> FunctionSchema: ...
class ScriptDict(Generic[K, T]):
def __init__(self, dict: dict[K, T]) -> None: ...
def __len__(self) -> _int: ...
def __contains__(self, key: K) -> _bool: ...
def __getitem__(self, key: K) -> T: ...
def __setitem__(self, key: K, value: T) -> None: ...
def __delitem__(self, key: K) -> None: ...
def __iter__(self) -> Iterator[K]: ...
def items(self) -> Iterator[tuple[K, T]]: ...
def keys(self) -> Iterator[K]: ...
class ScriptList(Generic[T]):
def __init__(self, list: list[T]) -> None: ...
def __len__(self) -> _int: ...
def __contains__(self, item: T) -> _bool: ...
@overload
def __getitem__(self, idx: _int) -> T: ...
@overload
def __getitem__(self, idx: slice) -> ScriptList[T]: ...
@overload
def __setitem__(self, idx: _int, value: T) -> None: ...
@overload
def __setitem__(self, idx: slice, value: list[T]) -> None: ...
def __delitem__(self, idx: _int) -> None: ...
def __iter__(self) -> Iterator[T]: ...
def count(self, value: T) -> _int: ...
def remove(self, value: T) -> None: ...
def append(self, value: T) -> None: ...
def clear(self) -> None: ...
@overload
def extend(self, values: list[T]) -> None: ...
@overload
def extend(self, values: Iterable[T]) -> None: ...
@overload
def pop(self) -> T: ...
@overload
def pop(self, idx: _int) -> T: ...
class ModuleDict:
def __init__(self, mod: ScriptModule) -> None: ...
def items(self) -> list[tuple[str, Any]]: ...
class ParameterDict:
def __init__(self, mod: ScriptModule) -> None: ...
class BufferDict:
def __init__(self, mod: ScriptModule) -> None: ...
# Defined in torch/csrc/jit/api/module.h
class Module: ...
# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension
def _autograd_init() -> _bool: ... # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr
def _init_names(arg: Sequence[type]) -> None: ... # THPModule_initNames
def _has_distributed() -> _bool: ... # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN
def _show_config() -> str: ... # THPModule_showConfig
def _cxx_flags() -> str: ... # THPModule_cxxFlags
def _parallel_info() -> str: ... # THPModule_parallelInfo
def _get_cpu_capability() -> str: ... # THPModule_getCpuCapability
def _set_backcompat_broadcast_warn(
arg: _bool,
) -> None: ... # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> (
_bool
): ... # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(
arg: _bool,
) -> None: ... # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ... # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads
def set_num_interop_threads(
nthreads: _int,
) -> None: ... # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN
def _get_flash_sdp_enabled() -> _bool: ... # THPModule_userEnabledFusedSDP
def _set_sdp_use_flash(arg: _bool) -> None: ... # THPModule_setSDPUseFlash
def _get_mem_efficient_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_mem_efficient(
arg: _bool,
) -> None: ... # THPModule_setSDPUseMemEfficient
def _get_math_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_math(arg: _bool) -> None: ... # THPModule_setSDPUseMath
def _get_math_sdp_allow_fp16_bf16_reduction() -> (
_bool
): ... # THPModule_allowFP16BF16ReductionMathSDP
def _set_math_sdp_allow_fp16_bf16_reduction(
arg: _bool,
) -> None: ... # THPModule_setAllowFP16BF16ReductionMathSDP
def _get_overrideable_sdp_enabled() -> (
_bool
): ... # THPModule_userEnabledOverrideableSDP
def _set_sdp_use_overrideable(
arg: _bool,
) -> None: ... # THPModule_setSDPUseOverrideable
def _get_sdp_priority_order() -> list[_int]: ... # THPModule_getSDPPriorityOrder
def _set_sdp_priority_order(
arg: list[_int],
) -> None: ... # THPModule_setSDPPriorityOrder
def _get_cudnn_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_cudnn(arg: _bool) -> None: ... # THPModule_setSDPUseMath
def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN
def _get_miopen_immediate() -> _bool: ... # THPModule_userImmediateMiopen
def _set_miopen_immediate(arg: _bool) -> None: ... # THPModule_setUserImmediateMiopen
def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN
def _get_mkldnn_deterministic() -> _bool: ... # THPModule_deterministicMkldnn
def _set_mkldnn_deterministic(
arg: _bool,
) -> None: ... # THPModule_setDeterministicMkldnn
def _get_onednn_allow_tf32() -> _bool: ... # THPModule_allowTF32OneDNN
def _set_onednn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32OneDNN
def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> (
_bool
): ... # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(
mode: _bool,
*,
warn_only: _bool = ...,
) -> None: ... # THPModule_setDeterministicAlgorithms
def _get_deterministic_fill_uninitialized_memory() -> (
_bool
): ... # THPModule_deterministicFillUninitializedMemory
def _set_deterministic_fill_uninitialized_memory(
arg: _bool,
) -> None: ... # THPModule_setDeterministicFillUninitializedMemory
def _get_nnpack_enabled() -> _bool: ... # THPModule_userEnabledNNPACK
def _set_nnpack_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledNNPACK
def _get_warnAlways() -> _bool: ... # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ... # THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(
arg: str,
) -> None: ... # THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> (
_bool
): ... # THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(
arg: _bool,
) -> None: ... # THPModule_setAllowFP16ReductionCuBLAS
def _get_cublas_allow_bf16_reduced_precision_reduction() -> (
_bool
): ... # THPModule_allowBF16ReductionCuBLAS
def _set_cublas_allow_bf16_reduced_precision_reduction(
arg: _bool,
) -> None: ... # THPModule_setAllowBF16ReductionCuBLAS
def _get_cublas_allow_fp16_accumulation() -> (
_bool
): ... # THPModule_allowFP16AccumulationCuBLAS
def _set_cublas_allow_fp16_accumulation(
arg: _bool,
) -> None: ... # THPModule_setAllowFP16AccumulationCuBLAS
def _get_sm_carveout_experimental() -> _int | None: ...
def _set_sm_carveout_experimental(arg: _int | None) -> None: ...
def _set_conj(x: Tensor, conj: _bool) -> None: ...
def _set_neg(x: Tensor, neg: _bool) -> None: ...
def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ...
def _autocast_supported_devices() -> list[str]: ...
def _meta_in_tls_dispatch_include() -> _bool: ...
def _stash_obj_in_tls(key: str, arg: Any) -> None: ...
def _get_obj_in_tls(key: str) -> Any: ...
def _is_key_in_tls(key: str) -> _bool: ...
def _select_batch_norm_backend(*args, **kwargs) -> BatchNormBackend: ...
def _select_conv_backend(*args, **kwargs) -> ConvBackend: ...
def _conv_determine_backend_memory_format(
input: Tensor,
weight: Tensor,
backend: ConvBackend,
) -> memory_format: ...
def _has_storage(x: Tensor) -> _bool: ...
def _construct_storage_from_data_pointer(
data_ptr: _int,
device: torch.device,
size: _int,
) -> Storage: ...
def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ...
def _group_tensors_by_device_and_dtype(
nested_tensorlists: list[list[Tensor | None]],
with_indices: _bool = False,
) -> dict[
tuple[torch.device, torch.dtype],
tuple[list[list[Tensor | None]], list[_int]],
]: ...
def _initCrashHandler() -> None: ...
# NB: There is no Capsule type in typing, see
# https://github.com/python/cpython/issues/109562
def _to_dlpack(
data: Tensor,
dl_device: tuple[IntEnum, _int] | None = None,
copy: _bool | None = None,
) -> Any: ... # THPModule_toDLPack
def _to_dlpack_versioned(
data: Tensor,
dl_device: tuple[IntEnum, _int] | None = None,
copy: _bool | None = None,
) -> Any: ... # THPModule_toDLPackVersioned
def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack
def _torchDeviceToDLDevice(
device: torch.device,
) -> tuple[_int, _int]: ... # THPModule_torchDeviceToDLDevice
def _get_cpp_backtrace(
frames_to_skip: _int,
maximum_number_of_frames: _int,
) -> str: ... # THPModule_getCppBacktrace
def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype
def _get_default_device() -> str: ... # THPModule_getDefaultDevice
def _get_qengine() -> _int: ... # THPModule_qEngine
def _set_qengine(qengine: _int) -> None: ... # THPModule_setQEngine
def _supported_qengines() -> list[_int]: ... # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK
def _check_sparse_tensor_invariants() -> (
_bool
): ... # THPModule_checkSparseTensorInvariants
def _set_check_sparse_tensor_invariants(
arg: _bool,
) -> None: ... # THPModule_setCheckSparseTensorInvariants
def _is_default_mobile_cpu_allocator_set() -> (
_bool
): ... # THPModule_isDefaultMobileCPUAllocatorSet
def _set_default_mobile_cpu_allocator() -> (
None
): ... # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> (
None
): ... # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction
def _is_torch_function_all_disabled() -> (
_bool
): ... # THPModule_isAllDisabledTorchFunction
def _has_torch_function(
args: Iterable[Any],
) -> _bool: ... # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary
def _has_torch_function_variadic(
*args: Any,
) -> _bool: ... # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython
def _log_api_usage_metadata(
event: str,
metadata_map: dict[str, str],
) -> None: ... # LogAPIUsageMetadataFromPython
def _demangle(str) -> str: ... # c10::demangle
def _disabled_torch_function_impl(
func: Callable,
types: Iterable[type],
args: tuple,
kwargs: dict,
) -> Any: ... # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(
func: Callable,
types: Iterable[type],
args: tuple,
kwargs: dict,
) -> Any: ... # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> _LinalgBackend: ...
def _set_linalg_preferred_backend(arg: _LinalgBackend): ...
def _get_fp32_precision_getter(backend: str, op: str) -> str: ...
def _set_fp32_precision_setter(backend: str, op: str, value: str) -> str: ...
class _LinalgBackend:
Default: _LinalgBackend
Cusolver: _LinalgBackend
Magma: _LinalgBackend
# mypy error:
# Detected enum "torch._C.BatchNormBackend" in a type stub with zero
# members. There is a chance this is due to a recent change in the semantics
# of enum membership. If so, use `member = value` to mark an enum member,
# instead of `member: type`
class BatchNormBackend(Enum): ... # type: ignore[misc]
def _get_blas_preferred_backend() -> _BlasBackend: ...
def _set_blas_preferred_backend(arg: _BlasBackend): ...
class _BlasBackend:
Default: _BlasBackend
Cublas: _BlasBackend
Cublaslt: _BlasBackend
Ck: _BlasBackend
def _get_rocm_fa_preferred_backend() -> torch._C._ROCmFABackend: ...
def _set_rocm_fa_preferred_backend(arg: torch._C._ROCmFABackend): ...
class _ROCmFABackend:
Default: _ROCmFABackend
AOTriton: _ROCmFABackend
Ck: _ROCmFABackend
# mypy error:
# Error (MYPY) [misc]
# Detected enum "torch._C.ConvBackend" in a type stub with zero members.
# There is a chance this is due to a recent change in the semantics of enum
# membership. If so, use `member = value` to mark an enum member, instead of
# `member: type`
class ConvBackend(Enum): ... # type: ignore[misc]
class Tag(Enum):
${tag_attributes}
# Defined in `valgrind.h` and `callgrind.h` respectively.
def _valgrind_supported_platform() -> _bool: ... # NVALGRIND
def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> (
None
): ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS
has_openmp: _bool
has_mkl: _bool
_has_kleidiai: _bool
_has_mps: _bool
has_lapack: _bool
_has_cuda: _bool
_has_magma: _bool
_has_xpu: _bool
_has_mkldnn: _bool
_has_cudnn: _bool
_has_cusparselt: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator
# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def _set_fwd_grad_enabled(enabled: _bool) -> None: ...
def _is_fwd_grad_enabled() -> _bool: ...
def _any_requires_grad(*args, **kwargs) -> _bool: ...
def _any_output_is_alias_to_input_or_output(*args, **kwargs) -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
@overload
def set_autocast_enabled(device_type: str, enabled: _bool) -> None: ...
@overload
def set_autocast_enabled(enabled: _bool) -> None: ...
@overload
def is_autocast_enabled(device_type: str) -> _bool: ...
@overload
def is_autocast_enabled() -> _bool: ...
def set_autocast_dtype(device_type: str, dtype: _dtype) -> None: ...
def get_autocast_dtype(device_type: str) -> _dtype: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def _is_any_autocast_enabled() -> _bool: ...
def _is_autocast_available(device_type: str) -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def _increment_version(tensors: Iterable[Tensor]) -> None: ...
def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def is_anomaly_check_nan_enabled() -> _bool: ...
def _is_multithreading_enabled() -> _bool: ...
def _set_multithreading_enabled(enabled: _bool) -> None: ...
def _set_view_replay_enabled(enabled: _bool) -> None: ...
def _is_view_replay_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...
def _is_torch_function_mode_enabled() -> _bool: ...
def _push_on_torch_function_stack(cls: Any) -> None: ...
def _pop_torch_function_stack() -> Any: ...
def _get_function_stack_at(idx: _int) -> Any: ...
def _len_torch_function_stack() -> _int: ...
def _set_torch_dispatch_mode(cls: Any) -> None: ...
def _push_on_torch_dispatch_stack(cls: TorchDispatchMode) -> None: ...
def _pop_torch_dispatch_stack(mode_key: _TorchDispatchModeKey | None = None) -> Any: ...
def _get_dispatch_mode(mode_key: _TorchDispatchModeKey | None) -> Any: ...
def _unset_dispatch_mode(mode: _TorchDispatchModeKey) -> TorchDispatchMode | None: ...
def _set_dispatch_mode(mode: TorchDispatchMode) -> None: ...
def _get_dispatch_stack_at(idx: _int) -> Any: ...
def _len_torch_dispatch_stack() -> _int: ...
def _activate_gpu_trace() -> None: ...
class _DisableTorchDispatch:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _EnableTorchFunction:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _EnablePythonDispatcher:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _DisablePythonDispatcher:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _EnablePreDispatch:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _DisableFuncTorch:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _DisableAutocast:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _InferenceMode:
def __init__(self, enabled: _bool) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
def _set_autograd_fallback_mode(mode: str) -> None: ...
def _get_autograd_fallback_mode() -> str: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase: ...
class NoopLogger(LoggerBase): ...
class LockingLogger(LoggerBase): ...
class AggregationType(Enum):
SUM = 0
AVG = 1
class FileCheck:
def run(self, test_string: str) -> None: ...
def check(self, test_string: str) -> FileCheck: ...
def check_not(self, test_string: str) -> FileCheck: ...
def check_same(self, test_string: str) -> FileCheck: ...
def check_next(self, test_string: str) -> FileCheck: ...
def check_count(
self,
test_string: str,
count: _int,
exactly: _bool = False,
) -> FileCheck: ...
def check_dag(self, test_string: str) -> FileCheck: ...
def check_source_highlighted(self, test_string: str) -> FileCheck: ...
def check_regex(self, test_string: str) -> FileCheck: ...
# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader:
@overload
def __init__(self, name: str) -> None: ...
@overload
def __init__(self, buffer: IO[bytes]) -> None: ...
def get_record(self, name: str) -> bytes: ...
def get_all_records(self) -> list[str]: ...
def serialization_id(self) -> str: ...
class PyTorchFileWriter:
@overload
def __init__(
self,
name: str,
compute_crc32: _bool = True,
storage_alignment: _int = 64,
) -> None: ...
@overload
def __init__(
self,
buffer: IO[bytes],
compute_crc32: _bool = True,
storage_alignment: _int = 64,
) -> None: ...
def write_record(
self,
name: str,
data: Storage | bytes | _int,
size: _int,
) -> None: ...
def write_end_of_file(self) -> None: ...
def set_min_version(self, version: _int) -> None: ...
def get_all_written_records(self) -> list[str]: ...
def archive_name(self) -> str: ...
def serialization_id(self) -> str: ...
def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_cse(Graph) -> _bool: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_dce_graph(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...
# Defined in torch/csrc/jit/python/python_custom_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...
# Defined in torch/csrc/Module.cpp
def _rename_privateuse1_backend(backend: str) -> None: ...
def _get_privateuse1_backend_name() -> str: ...
# Defined in torch/csrc/Generator.cpp
class Generator:
device: _device
def __init__(self, device: DeviceLikeType | None = None) -> None: ...
def __reduce__(
self,
) -> tuple[type[Generator], tuple[_device], tuple[_int, _int | None, Tensor]]: ...
def __setstate__(self, state: tuple[_int, _int | None, Tensor]) -> None: ...
def get_state(self) -> Tensor: ...
def set_state(self, _new_state: Tensor) -> Generator: ...
def clone_state(self) -> Generator: ...
def graphsafe_get_state(self) -> Generator: ...
def graphsafe_set_state(self, _new_state: Generator) -> Generator: ...
def set_offset(self, offset: _int) -> Generator: ...
def get_offset(self) -> _int: ...
def manual_seed(self, seed: _int) -> Generator: ...
def seed(self) -> _int: ...
def initial_seed(self) -> _int: ...
# Defined in torch/csrc/utils/python_dispatch.cpp
class _DispatchOperatorHandle:
def schema(self) -> FunctionSchema: ...
def debug(self) -> str: ...
def redispatch_boxed(self, keyset: DispatchKeySet, *args, **kwargs) -> Any: ...
class _DispatchModule:
def reset(self) -> None: ...
def def_(self, schema: str, alias: str = "") -> _DispatchModule: ...
def def_legacy(self, schema: str) -> _DispatchModule: ...
def def_name_t_t(
self,
name: str,
dispatch: str,
debug: str = "default_def_name_t_t",
) -> _DispatchModule: ...
def def_schema_t_t(
self,
schema: str,
dispatch: str,
alias: str,
debug: str = "default_def_schema_t_t",
) -> _DispatchModule: ...
def impl_t_t(
self,
name: str,
dispatch: str,
debug: str = "impl_t_t",
) -> _DispatchModule: ...
def impl_with_aoti_compile(
self,
ns: str,
op_name_with_overload: str,
dispatch: _dispatchkey,
) -> None: ...
def impl(self, name: str, dispatch: _dispatchkey, func: Callable) -> None: ...
def define(self, schema: str, alias: str = "") -> str: ...
def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ...
def fallback(
self,
dispatch: _dispatchkey,
func: Callable,
with_keyset: _bool = False,
) -> None: ...
_after_ADInplaceOrView_keyset: DispatchKeySet
_after_autograd_keyset: DispatchKeySet
class _SafeKernelFunction:
def call_boxed(self, keyset: DispatchKeySet, *args, **kwargs) -> Any: ...
@property
def op_handle(self) -> _DispatchOperatorHandle: ...
def _dispatch_library(
kind: str,
name: str,
dispatch: str,
file: str = "",
linenum: Any = 0,
) -> _DispatchModule: ...
def _dispatch_dump(name: str) -> str: ...
def _dispatch_dump_table(name: str) -> str: ...
def _dispatch_check_invariants(name: str) -> None: ...
def _dispatch_check_all_invariants() -> None: ...
def _dispatch_call_boxed(handle: _DispatchOperatorHandle, *args, **kwargs) -> Any: ...
def _dispatch_find_schema_or_throw(
name: str,
overload_name: str,
) -> _DispatchOperatorHandle: ...
def _dispatch_set_report_error_callback(
handle: _DispatchOperatorHandle,
callback: Callable,
) -> None: ...
def _dispatch_has_kernel(name: str) -> _bool: ...
def _dispatch_has_kernel_for_dispatch_key(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_has_kernel_for_any_dispatch_key(
name: str,
dispatch_key_set: DispatchKeySet,
) -> _bool: ...
def _dispatch_kernel_for_dispatch_key_is_fallthrough(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_has_computed_kernel_for_dispatch_key(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_get_computed_kernel_for_dispatch_key(
name: str,
dispatch: _dispatchkey,
) -> _SafeKernelFunction: ...
def _dispatch_find_dangling_impls() -> list[str]: ...
def _dispatch_get_all_op_names() -> list[str]: ...
def _dispatch_tls_set_dispatch_key_excluded(
dispatch: _dispatchkey,
val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_tls_set_dispatch_key_included(
dispatch: _dispatchkey,
val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ...
def _dispatch_key_name(dispatch: _dispatchkey) -> str: ...
def _dispatch_key_for_device(device_type: str) -> str: ...
def _parse_dispatch_key(key: str) -> DispatchKey | None: ...
def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ...
def _dispatch_num_backends() -> _int: ...
def _dispatch_pystub(name: str, overload: str) -> tuple[str, str] | None: ...
def _dispatch_is_alias_key(dispatch: _dispatchkey) -> _bool: ...
def _functionality_to_backend_keys(dispatch: _dispatchkey) -> list[DispatchKey]: ...
def _functionalization_reapply_views_tls() -> _bool: ...
def _only_lift_cpu_tensors() -> _bool: ...
def _set_only_lift_cpu_tensors(value: _bool) -> None: ...
def _set_throw_on_mutable_data_ptr(tensor: Tensor) -> None: ...
def _set_warn_deprecated_on_mutable_data_ptr(tensor: Tensor) -> None: ...
class DispatchKey(Enum):
${dispatch_key_hints}
class DispatchKeySet:
def __init__(self, key: DispatchKey) -> None: ...
def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def raw_repr(self) -> _int: ...
@staticmethod
def from_raw_repr(raw: _int) -> DispatchKeySet: ...
def highestPriorityTypeId(self) -> DispatchKey: ...
def has(self, k: _dispatchkey) -> _bool: ...
def add(self, k: _dispatchkey) -> DispatchKeySet: ...
def remove(self, k: _dispatchkey) -> DispatchKeySet: ...
_dispatch_autogradother_backends: DispatchKeySet
_additional_keys_to_prop_for_wrapper_tensors: DispatchKeySet
def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ...
def _dispatch_keyset_full() -> DispatchKeySet: ...
def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ...
def _dispatch_get_backend_keyset_from_autograd(
dispatch: _dispatchkey,
) -> DispatchKeySet: ...
def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ...
def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ...
def _dispatch_tls_local_include_set() -> DispatchKeySet: ...
def _dispatch_is_included_in_alias(
dispatch_a: _dispatchkey,
dispatch_b: _dispatchkey,
) -> _bool: ...
def _propagate_xla_data(a: Tensor, b: Tensor) -> None: ...
def _replace_(a: Tensor, b: Tensor) -> None: ...
def _commit_update(a: Tensor) -> None: ...
class _ExcludeDispatchKeyGuard:
def __init__(self, keyset: DispatchKeySet) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _IncludeDispatchKeyGuard:
def __init__(self, k: DispatchKey) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _ForceDispatchKeyGuard:
def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _PreserveDispatchKeyGuard:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _AutoDispatchBelowAutograd:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
class _AutoDispatchBelowADInplaceOrView:
def __init__(self) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
def _dispatch_get_registrations_for_dispatch_key(
dispatch_key: str = "",
) -> list[str]: ...
def _are_functorch_transforms_active() -> _bool: ...
# Define in torch/csrc/autograd/init.cpp
def _set_python_dispatcher(dispatcher: object) -> None: ...
def _get_nested_int(id: _int, coeff: _int) -> SymInt: ...
def _get_constant_bool_symnode(val: _bool) -> Any: ...
class _TorchDispatchModeKey(Enum):
${torch_dispatch_mode_key_hints}
class _SetExcludeDispatchKeyGuard:
def __init__(self, k: DispatchKey, enabled: _bool) -> None: ...
def __enter__(self): ...
def __exit__(self, *exc_info: object) -> None: ...
# Defined in torch/csrc/utils/schema_info.h
class _SchemaInfo:
def __init__(self, schema: FunctionSchema) -> None: ...
@overload
def is_mutable(self) -> _bool: ...
@overload
def is_mutable(self, name: str) -> _bool: ...
def has_argument(self, name: str) -> _bool: ...
# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig:
num_calling_threads: _int
num_worker_threads: _int
num_warmup_iters: _int
num_iters: _int
profiler_output_path: str
class BenchmarkExecutionStats:
latency_avg_ms: _float
num_iters: _int
class ThroughputBenchmark:
def __init__(self, module: Any) -> None: ...
def add_input(self, *args: Any, **kwargs: Any) -> None: ...
def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...
# Defined in torch/csrc/Storage.cpp
${legacy_storage_base_hints}
# TODO: where
${legacy_class_hints}
# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
def queue_callback(self, callback: Callable[[], None]) -> None: ...
def run_backward(self, *args: Any, **kwargs: Any) -> tuple[Tensor, ...]: ...
def is_checkpoint_valid(self) -> _bool: ...
# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type): ...
${index_type_def}
# Defined in torch/csrc/autograd/python_variable.cpp
class TensorBase(metaclass=_TensorMeta):
requires_grad: _bool
retains_grad: _bool
shape: Size
data: Tensor
names: list[str]
device: _device
dtype: _dtype
layout: _layout
real: Tensor
imag: Tensor
T: Tensor
H: Tensor
mT: Tensor
mH: Tensor
ndim: _int
output_nr: _int
_version: _int
_base: Tensor | None
_cdata: _int
grad_fn: _Node | None
_grad_fn: Any
_grad: Tensor | None
grad: Tensor | None
_backward_hooks: dict[_int, Callable[[Tensor], Tensor | None]] | None
nbytes: _int
itemsize: _int
_has_symbolic_sizes_strides: _bool
def _view_func_unsafe(
self,
new_base: Tensor,
symint_visitor_fn: Callable[[_int], _int] | None = None,
tensor_visitor_fn: Callable[[Tensor], Tensor] | None = None,
): ...
${tensor_method_hints}
_TensorBase = TensorBase
# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...
def _set_thread_name(name: str) -> None: ...
def _get_thread_name() -> str: ...
# Defined in torch/csrc/Module.cpp
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int: ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int: ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int: ...
def _get_accelerator(check: _bool = False) -> _device: ...
def _storage_Use_Count(storage_ptr: _int) -> _int: ...
# Defined in torch/csrc/mtia/Module.cpp
def _mtia_init() -> None: ...
def _mtia_isBuilt() -> _bool: ...
def _mtia_isInBadFork() -> _bool: ...
def _mtia_deviceSynchronize() -> None: ...
def _mtia_getCurrentStream(device: _int) -> Stream: ...
def _mtia_getCurrentRawStream(device: _int) -> _int: ...
def _mtia_setCurrentStream(stream: Stream) -> None: ...
def _mtia_getDefaultStream(device: _int) -> Stream: ...
def _mtia_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _mtia_memoryStats(device: _int) -> dict[str, Any]: ...
def _mtia_getDeviceCapability(device: _int) -> tuple[_int, _int]: ...
def _mtia_getDeviceProperties(device: _int) -> dict[str, Any]: ...
def _mtia_emptyCache() -> None: ...
def _mtia_recordMemoryHistory(
enabled: str | None,
stacks: str,
max_entries,
) -> None: ...
def _mtia_memorySnapshot() -> dict[str, Any]: ...
def _mtia_attachOutOfMemoryObserver(
observer: Callable[[_int, _int, _int, _int], None],
) -> None: ...
def _mtia_getDeviceCount() -> _int: ...
def _mtia_resetPeakMemoryStats(device: _int) -> None: ...
# Defined in torch/csrc/mps/Module.cpp
def _mps_deviceSynchronize() -> None: ...
def _mps_get_core_count() -> _int: ...
def _mps_get_default_generator() -> Generator: ...
def _mps_get_name() -> _str: ...
def _mps_emptyCache() -> None: ...
def _mps_setMemoryFraction(fraction: _float) -> None: ...
def _mps_currentAllocatedMemory() -> _int: ...
def _mps_driverAllocatedMemory() -> _int: ...
def _mps_recommendedMaxMemory() -> _int: ...
def _mps_is_available() -> _bool: ...
def _mps_is_on_macos_or_newer(major: _int, minor: _int) -> _bool: ...
def _mps_profilerStartTrace(mode: str, wait_until_completed: _bool) -> None: ...
def _mps_profilerStopTrace() -> None: ...
def _mps_acquireEvent(enable_timing: _bool) -> _int: ...
def _mps_releaseEvent(event_id: _int) -> None: ...
def _mps_recordEvent(event_id: _int) -> None: ...
def _mps_waitForEvent(event_id: _int) -> None: ...
def _mps_synchronizeEvent(event_id: _int) -> None: ...
def _mps_queryEvent(event_id: _int) -> _bool: ...
def _mps_elapsedTimeOfEvents(start_event_id: _int, end_event_id: _int) -> _float: ...
def _mps_isCaptureEnabled() -> _bool: ...
def _mps_isCapturing() -> _bool: ...
def _mps_startCapture(name: str) -> None: ...
def _mps_stopCapture() -> None: ...
# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> tuple: ...
def _cuda_getCurrentRawStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> tuple: ...
def _cuda_getStreamFromExternal(data_ptr: _int, device_index: _int) -> tuple: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_clearCublasWorkspaces() -> None: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_exchangeDevice(device: _int) -> _int: ...
def _cuda_maybeExchangeDevice(device: _int) -> _int: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: _int | str) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> str | None: ...
def _cuda_init() -> None: ...
def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_cudaCachingAllocator_enable(val: _bool) -> None: ...
def _cuda_beginAllocateToPool(device: _int, mempool_id: tuple[_int, _int]) -> None: ...
def _cuda_beginAllocateCurrentThreadToPool(
device: _int,
mempool_id: tuple[_int, _int],
) -> None: ...
def _cuda_endAllocateToPool(device: _int, mempool_id: tuple[_int, _int]) -> None: ...
def _cuda_beginAllocateCurrentStreamToPool(
device: _int,
mempool_id: tuple[_int, _int],
) -> None: ...
def _cuda_releasePool(device: _int, mempool_id: tuple[_int, _int]) -> None: ...
def _cuda_checkPoolLiveAllocations(
device: _int,
mempool_id: tuple[_int, _int],
expected_live_allocations: set,
) -> _bool: ...
def _cuda_setCheckpointPoolState(
device: _int,
state: _cuda_CUDAAllocator_AllocatorState,
stale_storages: list[_int],
storages_to_add_deleters_to: list[_int],
) -> None: ...
def _cuda_getMemoryFraction(device: _int) -> _float: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_hostMemoryStats() -> dict[str, Any]: ...
def _cuda_resetAccumulatedHostMemoryStats() -> None: ...
def _cuda_resetPeakHostMemoryStats() -> None: ...
def _cuda_memorySnapshot(mempool_id: tuple[_int, _int] | None) -> dict[str, Any]: ...
def _cuda_record_memory_history_legacy(
enabled: _bool,
record_context: _bool,
record_context_cpp: _bool,
alloc_trace_max_entries: _int,
alloc_trace_record_context: _bool,
clear_history: _bool,
compile_context: _bool,
global_record_annotations: _bool,
) -> None: ...
def _cuda_record_memory_history(
enabled: str | None,
context: str | None,
stacks: str,
max_entries: _int,
clear_history: _bool,
compile_context: _bool,
global_record_annotations: _bool,
) -> None: ...
def _cuda_isHistoryEnabled() -> _bool: ...
def _cuda_getAllocatorBackend() -> str: ...
class _cuda_CUDAAllocator_AllocatorState: ...
def _cuda_getCheckpointState(
device: _int,
mempool: tuple[_int, _int],
) -> _cuda_CUDAAllocator_AllocatorState: ...
def _set_cached_tensors_enabled(enabled: _bool) -> None: ...
def _add_cached_tensor(t: Tensor) -> None: ...
def _remove_cached_tensor(t: Tensor) -> None: ...
def _tensors_data_ptrs_at_indices_equal(
tensors: list[Tensor | _int],
ptrs: list[_int | None],
indices: list[_int],
) -> _bool: ...
def _construct_CUDA_Tensor_From_Storage_And_Metadata(
metadata: dict,
storage: Storage,
) -> Tensor: ...
def _set_storage_access_error_msg(t: Tensor, s: str) -> None: ...
def _set_storage_data_ptr_access_error_msg(storage_ptr: _int, s: str) -> None: ...
def _free_And_Remove_DeleterFn(storage_ptr: _int) -> None: ...
def _has_Standard_Deleter(storage_ptr: _int) -> _bool: ...
class _cuda_CUDAAllocator: ...
def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ...
def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ...
def _cuda_getAllocator() -> _cuda_CUDAAllocator: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(
code_string: str,
kernel_name: str,
return_by_ref: _bool,
num_outputs: _int,
tensors: tuple,
kwargs: dict[str, _int | _float | _bool],
) -> Tensor: ...
def _cuda_get_cudnn_benchmark_limit() -> _int: ...
def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ...
def _cuda_get_conv_benchmark_empty_cache() -> _bool: ...
def _cudnn_set_conv_benchmark_empty_cache(enable: _bool) -> None: ...
def _nccl_version() -> _int: ...
def _nccl_version_suffix() -> bytes: ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(
input: Sequence[Tensor],
output: Tensor,
root: _int,
op: _int,
streams: Sequence[_CudaStreamBase] | None,
comms: Sequence[object] | None,
) -> None: ...
def _nccl_all_reduce(
input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Sequence[_CudaStreamBase] | None,
comms: Sequence[object] | None,
) -> None: ...
def _nccl_broadcast(
input: Sequence[Tensor],
root: _int,
streams: Sequence[_CudaStreamBase] | None,
comms: Sequence[object] | None,
) -> None: ...
def _nccl_all_gather(
input: Sequence[Tensor],
output: Sequence[Tensor],
streams: Sequence[_CudaStreamBase] | None,
comms: Sequence[object] | None,
) -> None: ...
def _nccl_reduce_scatter(
input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Sequence[_CudaStreamBase] | None,
comms: Sequence[object] | None,
) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...
def _cuda_tunableop_enable(val: _bool) -> None: ...
def _cuda_tunableop_is_enabled() -> _bool: ...
def _cuda_tunableop_tuning_enable(val: _bool) -> None: ...
def _cuda_tunableop_tuning_is_enabled() -> _bool: ...
def _cuda_tunableop_set_max_tuning_duration(duration: _int) -> None: ...
def _cuda_tunableop_get_max_tuning_duration() -> _int: ...
def _cuda_tunableop_set_max_tuning_iterations(iterations: _int) -> None: ...
def _cuda_tunableop_get_max_tuning_iterations() -> _int: ...
def _cuda_tunableop_set_filename(
filename: str,
insert_device_ordinal: _bool | None,
) -> None: ...
def _cuda_tunableop_get_filename() -> str: ...
def _cuda_tunableop_write_file(filename: str | None) -> _bool: ...
def _cuda_tunableop_read_file(filename: str | None) -> _bool: ...
def _cuda_tunableop_write_file_on_exit(val: _bool) -> None: ...
def _cuda_tunableop_get_results() -> tuple[str, str, str, _float]: ...
def _cuda_tunableop_get_validators() -> tuple[str, str]: ...
def _cuda_tunableop_set_rotating_buffer_size(buffer_size: _int) -> None: ...
def _cuda_tunableop_get_rotation_buffer_size() -> _int: ...
class _CudaDeviceProperties:
name: str
major: _int
minor: _int
multi_processor_count: _int
total_memory: _int
is_integrated: _int
is_multi_gpu_board: _int
max_threads_per_multi_processor: _int
gcnArchName: str
warp_size: _int
uuid: str
L2_cache_size: _int
# Functions related to SDPA
class _SDPAParams:
query: Tensor
key: Tensor
value: Tensor
attn_mask: Tensor | None
dropout: _float
is_causal: _bool
enable_gqa: _bool
def __init__(
self,
query: Tensor,
key: Tensor,
value: Tensor,
attn_mask: Tensor | None,
dropout: _float,
is_causal: _bool,
enable_gqa: _bool,
) -> None: ...
class _SDPBackend(Enum):
ERROR = -1
MATH = 0
FLASH_ATTENTION = 1
EFFICIENT_ATTENTION = 2
CUDNN_ATTENTION = 3
OVERRIDEABLE = 4
def _is_flash_attention_available() -> _bool: ...
def _can_use_cudnn_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _can_use_flash_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _can_use_mem_efficient_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _is_ck_sdpa_available() -> _bool: ...
# Defined in torch/csrc/cuda/GdsFile.cpp
def _gds_register_buffer(t: Storage) -> None: ...
def _gds_deregister_buffer(t: Storage) -> None: ...
def _gds_register_handle(fd: _int) -> _int: ...
def _gds_deregister_handle(handle: _int) -> None: ...
def _gds_load_storage(handle: _int, s: Storage, offset: _int) -> None: ...
def _gds_save_storage(handle: _int, s: Storage, offset: _int) -> None: ...
# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: list[_int]) -> list[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: list[Tensor]) -> list[Tensor]: ...
def _broadcast_coalesced(
tensors: list[Tensor],
devices: list[_int],
buffer_size: _int,
) -> list[list[Tensor]]: ...
def _scatter(
tensor: Tensor,
devices: list[_int],
chunk_sizes: list[_int] | None,
dim: _int,
streams: list[Stream] | None,
) -> list[Tensor]: ...
def _scatter_out(
tensor: Tensor,
out_tensors: list[Tensor],
dim: _int,
streams: list[Stream] | None,
) -> list[Tensor]: ...
def _gather(
tensors: list[Tensor],
dim: _int,
destination_index: _int | None,
) -> Tensor: ...
def _gather_out(tensors: list[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...
# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase(Stream):
stream_id: _int
device_index: _int
device_type: _int
device: _device
cuda_stream: _int
priority: _int
def __new__(
cls,
priority: _int = 0,
stream_id: _int = 0,
device_index: _int = 0,
stream_ptr: _int = 0,
) -> Self: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def priority_range(self) -> tuple[_int, _int]: ...
# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
device: _device
cuda_event: _int
def __new__(
cls,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False,
external: _bool = False,
) -> Self: ...
@classmethod
def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
def record(self, stream: _CudaStreamBase) -> None: ...
def wait(self, stream: _CudaStreamBase) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: _CudaEventBase) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
def __new__(cls, keep_graph: _bool = ...) -> Self: ...
def capture_begin(
self,
pool: _POOL_HANDLE | None = ...,
capture_error_mode: str = "global",
) -> None: ...
def capture_end(self) -> None: ...
def instantiate(self) -> None: ...
def register_generator_state(self, Generator) -> None: ...
def replay(self) -> None: ...
def reset(self) -> None: ...
def pool(self) -> _POOL_HANDLE: ...
def enable_debug_mode(self) -> None: ...
def debug_dump(self, debug_path: str) -> None: ...
def raw_cuda_graph(self) -> _int: ...
def raw_cuda_graph_exec(self) -> _int: ...
# Defined in torch/csrc/cuda/MemPool.cpp
class _MemPool:
def __init__(
self,
allocator: _cuda_CUDAAllocator | None = None,
is_user_created: _bool = True,
use_on_oom: _bool = False,
) -> None: ...
@property
def id(self) -> tuple[_int, _int]: ...
@property
def allocator(self) -> _cuda_CUDAAllocator | None: ...
def use_count(self) -> _int: ...
def _cuda_isCurrentStreamCapturing() -> _bool: ...
def _graph_pool_handle() -> tuple[_int, _int]: ...
# Defined in torch/csrc/xpu/Module.cpp
def _xpu_setDevice(device: _int) -> None: ...
def _xpu_exchangeDevice(device: _int) -> _int: ...
def _xpu_maybeExchangeDevice(device: _int) -> _int: ...
def _xpu_getDevice() -> _int: ...
def _xpu_getDeviceCount() -> _int: ...
def _xpu_getArchFlags() -> str | None: ...
def _xpu_init() -> None: ...
def _xpu_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _xpu_getCurrentStream(device: _int) -> tuple: ...
def _xpu_getCurrentRawStream(device: _int) -> _int: ...
def _xpu_getStreamFromExternal(data_ptr: _int, device_index: _int) -> tuple: ...
def _xpu_synchronize(device: _int) -> None: ...
def _xpu_emptyCache() -> None: ...
def _xpu_memoryStats(device: _int) -> dict[str, Any]: ...
def _xpu_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _xpu_resetPeakMemoryStats(device: _int) -> None: ...
def _xpu_getMemoryInfo(device: _int) -> tuple[_int, _int]: ...
class _XpuDeviceProperties:
name: str
platform_name: str
vendor: str
device_id: _int
driver_version: str
version: str
max_compute_units: _int
gpu_eu_count: _int
max_work_group_size: _int
max_num_sub_groups: _int
sub_group_sizes: list[_int]
has_fp16: _bool
has_fp64: _bool
has_atomic64: _bool
has_bfloat16_conversions: _bool
has_subgroup_matrix_multiply_accumulate: _bool
has_subgroup_matrix_multiply_accumulate_tensor_float32: _bool
has_subgroup_2d_block_io: _bool
total_memory: _int
gpu_subslice_count: _int
architecture: _int
type: str
# Defined in torch/csrc/xpu/Stream.cpp
class _XpuStreamBase(Stream):
stream_id: _int
device_index: _int
device_type: _int
device: _device
sycl_queue: _int
priority: _int
def __new__(
cls,
priority: _int = 0,
stream_id: _int = 0,
device_index: _int = 0,
device_type: _int = 0,
) -> Self: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
@staticmethod
def priority_range() -> tuple: ...
# Defined in torch/csrc/xpu/Event.cpp
class _XpuEventBase:
device: _device
sycl_event: _int
def __new__(cls, enable_timing: _bool = False) -> Self: ...
def record(self, stream: _XpuEventBase) -> None: ...
def wait(self, stream: _XpuStreamBase) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: _XpuEventBase) -> _float: ...
def synchronize(self) -> None: ...
# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(
*arg: Any,
) -> None: ... # THPModule_setWorkerSignalHandlers
def _set_worker_pids(
key: _int,
child_pids: tuple[_int, ...],
) -> None: ... # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails
# Defined in torch/csrc/DeviceAccelerator.cpp
def _accelerator_getAccelerator() -> _device: ...
def _accelerator_setDeviceIndex(device_index: _int) -> None: ...
def _accelerator_getDeviceIndex() -> _int: ...
def _accelerator_setStream(Stream) -> None: ...
def _accelerator_getStream(device_index: _int) -> Stream: ...
def _accelerator_synchronizeDevice(device_index: _int) -> None: ...
def _accelerator_exchangeDevice(device_index: _int) -> _int: ...
def _accelerator_maybeExchangeDevice(device_index: _int) -> _int: ...
def _accelerator_setAllocatorSettings(env: str) -> None: ...
def _accelerator_isAllocatorInitialized() -> _bool: ...
def _accelerator_emptyCache() -> None: ...
def _accelerator_getDeviceStats(device_index: _int) -> dict[str, Any]: ...
def _accelerator_resetAccumulatedStats(device_index: _int) -> None: ...
def _accelerator_resetPeakStats(device_index: _int) -> None: ...
# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
def push_scope(self, scope_name: str) -> None: ...
def pop_scope(self) -> None: ...
def current_scope(self) -> str: ...
def set_graph(self, graph: Graph) -> None: ...
def graph(self) -> Graph: ...
def _create_graph_by_tracing(
func: Callable[..., Any],
inputs: Any,
var_name_lookup_fn: Callable[[Tensor], str],
strict: Any,
force_outplace: Any,
self: Any = None,
argument_names: list[str] = ...,
) -> tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...
# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue: ...
Stack: TypeAlias = list[IValue]
class JitType:
annotation_str: str
def isSubtypeOf(self, other: JitType) -> _bool: ...
def with_dtype(self, dtype: _dtype) -> JitType: ...
def with_sizes(self, sizes: list[_int | None]) -> JitType: ...
def kind(self) -> str: ...
def scalarType(self) -> str | None: ...
def getElementType(self) -> JitType: ...
def dtype(self) -> _dtype | None: ...
class InferredType:
def __init__(self, arg: JitType | str) -> None: ...
def type(self) -> JitType: ...
def success(self) -> _bool: ...
def reason(self) -> str: ...
class Type(JitType):
def str(self) -> _str: ...
def containedTypes(self) -> list[JitType]: ...
def dim(self) -> _int | None: ...
def undefined(self) -> _bool | None: ...
def sizes(self) -> list[_int] | None: ...
def symbol_sizes(self) -> list[_int] | None: ...
def varyingSizes(self) -> list[_int | None] | None: ...
def strides(self) -> list[_int] | None: ...
def contiguous(self) -> Self: ...
def device(self) -> _device | None: ...
def is_interface_type(self) -> _bool: ...
def requires_grad(self) -> _bool: ...
@property
def annotation_string(self) -> _str: ...
class AnyType(JitType):
@staticmethod
def get() -> AnyType: ...
class NoneType(JitType):
@staticmethod
def get() -> NoneType: ...
class BoolType(JitType):
@staticmethod
def get() -> BoolType: ...
class FloatType(JitType):
@staticmethod
def get() -> FloatType: ...
class ComplexType(JitType):
@staticmethod
def get() -> ComplexType: ...
class IntType(JitType):
@staticmethod
def get() -> IntType: ...
class SymIntType(JitType):
@staticmethod
def get() -> SymIntType: ...
class SymBoolType(JitType):
@staticmethod
def get() -> SymBoolType: ...
class NumberType(JitType):
@staticmethod
def get() -> NumberType: ...
class StringType(JitType):
@staticmethod
def get() -> StringType: ...
class DeviceObjType(JitType):
@staticmethod
def get() -> DeviceObjType: ...
class _GeneratorType(JitType):
@staticmethod
def get() -> _GeneratorType: ...
class StreamObjType(JitType):
@staticmethod
def get() -> StreamObjType: ...
class ListType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
@staticmethod
def ofInts() -> ListType: ...
@staticmethod
def ofTensors() -> ListType: ...
@staticmethod
def ofFloats() -> ListType: ...
@staticmethod
def ofComplexDoubles() -> ListType: ...
@staticmethod
def ofBools() -> ListType: ...
@staticmethod
def ofStrings() -> ListType: ...
class DictType(JitType):
def __init__(self, key: JitType, value: JitType) -> None: ...
def getKeyType(self) -> JitType: ...
def getValueType(self) -> JitType: ...
class TupleType(JitType):
def __init__(self, a: list[JitType | None]) -> None: ...
def elements(self) -> list[JitType]: ...
class UnionType(JitType):
def __init__(self, a: list[JitType]) -> None: ...
class ClassType(JitType):
def __init__(self, qualified_name: str) -> None: ...
def qualified_name(self) -> str: ...
class InterfaceType(JitType):
def __init__(self, qualified_name: str) -> None: ...
def getMethod(self, name: str) -> FunctionSchema | None: ...
def getMethodNames(self) -> list[str]: ...
JitTypeT = TypeVar("JitTypeT", bound=JitType) # noqa: PYI001
class OptionalType(JitType, Generic[JitTypeT]):
def __init__(self, a: JitTypeT) -> None: ...
def getElementType(self) -> JitTypeT: ...
@staticmethod
def ofTensor() -> OptionalType: ...
class FutureType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
class AwaitType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
class RRefType(JitType):
def __init__(self, a: JitType) -> None: ...
class EnumType(JitType):
def __init__(
self,
qualified_name: str,
value_type: JitType,
enum_names_values: list[Any],
) -> None: ...
class TensorType(JitType):
@classmethod
def get(cls) -> TensorType: ...
@classmethod
def getInferred(cls) -> TensorType: ...
def with_sizes(self, other: list[_int | None] | None) -> TensorType: ...
def sizes(self) -> list[_int] | None: ...
def varyingSizes(self) -> list[_int | None] | None: ...
def strides(self) -> list[_int] | None: ...
def device(self) -> _device | None: ...
def dim(self) -> _int: ...
def dtype(self) -> _dtype | None: ...
@staticmethod
def create_from_tensor(t: Tensor) -> TensorType: ...
# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange: ...
class TreeView: ...
class Ident(TreeView):
@property
def name(self) -> str: ...
class ClassDef(TreeView): ...
class Def(TreeView):
def name(self) -> Ident: ...
class Decl(TreeView): ...
# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...
# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...
# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...
# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...
# Defined in torch/csrc/Module.cpp
def _current_graph_task_id() -> _int: ...
def _current_autograd_node() -> _Node: ...
def _will_engine_execute_node(node: _Node) -> _bool: ...
def _dispatch_key_set(tensor) -> str: ...
# Defined in torch/csrc/Exceptions.cpp
class AcceleratorError(RuntimeError): ...
class OutOfMemoryError(RuntimeError): ...
class _DistError(RuntimeError): ...
class _DistBackendError(RuntimeError): ...
class _DistStoreError(RuntimeError): ...
class _DistNetworkError(RuntimeError): ...
class _DistQueueEmptyError(_DistStoreError): ...
# Defined in torch/csrc/profiler/init.cpp
class CapturedTraceback: ...
def gather_traceback(python: _bool, script: _bool, cpp: _bool) -> CapturedTraceback: ...
def symbolize_tracebacks(
tracebacks: list[CapturedTraceback],
) -> list[dict[str, Any]]: ...
def _load_mobile_module_from_file(filename: str): ...
def _load_mobile_module_from_bytes(bytes_: bytes): ...
def _load_jit_module_from_file(filename: str): ...
def _load_jit_module_from_bytes(bytes_: bytes): ...
def _save_mobile_module(m: LiteScriptModule, filename: str): ...
def _save_jit_module(m: ScriptModule, filename: str, extra_files: dict[str, Any]): ...
def _save_mobile_module_to_bytes(m: LiteScriptModule) -> bytes: ...
def _save_jit_module_to_bytes(
m: ScriptModule,
extra_files: dict[str, Any],
) -> bytes: ...
def _get_module_info_from_flatbuffer(data: bytes): ...
def _jit_resolve_packet(op_name: str, *args, **kwargs) -> str: ...
def _swap_tensor_impl(t1: Tensor, t2: Tensor): ...
def _pickle_save(obj: Any) -> bytes: ...
def _pickle_load_obj(bs: bytes) -> Any: ...
# Defined in torch/csrc/jit/runtime/static/init.cpp
def _jit_to_static_module(graph_or_module: Graph | ScriptModule) -> Any: ...
def _fuse_to_static_module(
graph_or_module: Graph | ScriptModule,
min_size: _int,
) -> Any: ...
# Defined in torch/csrc/fx/node.cpp
def _fx_map_aggregate(a: Any, fn: Callable[[Any], Any]) -> Any: ...
def _fx_map_arg(a: Any, fn: Callable[[Any], Any]) -> Any: ...
class _NodeBase:
_erased: _bool
_prev: FxNode
_next: FxNode
def __init__(
self,
graph: Any,
name: str,
op: str,
target: Any,
return_type: Any,
) -> None: ...
def _update_args_kwargs(self, args: tuple[Any, ...], kwargs: dict[str, Any]): ...
class _NodeIter(Iterator[FxNode]):
def __init__(self, root: FxNode, reversed: _bool) -> None: ...
def __iter__(self) -> Self: ...
def __next__(self) -> FxNode: ...
# Defined in torch/csrc/inductor/static_cuda_launcher.cpp
class _StaticCudaLauncher:
@staticmethod
def _load_kernel(
cubin_file: str,
func_name: str,
shared_mem_bytes: _int,
device: _int,
) -> tuple[_int, _int, _int]: ...
@staticmethod
def _launch_kernel(
func: _int,
grid_x: _int,
grid_y: _int,
grid_z: _int,
num_warps: _int,
shared_mem_bytes: _int,
arg_types: str,
args: tuple[Any, ...],
stream: _int,
) -> None: ...