mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
We need a key to register our out of tree backend: https://github.com/graphcore/poptorch Pull Request resolved: https://github.com/pytorch/pytorch/pull/74763 Approved by: https://github.com/bdhirsh
1134 lines
50 KiB
C++
1134 lines
50 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_scalars.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/DLConvertor.h>
|
|
#include <ATen/dlpack.h>
|
|
#include <ATen/InitialTensorOptions.h>
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#include <ATen/TracerMode.h>
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/DispatchKeySet.h>
|
|
#include <c10/core/Layout.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/irange.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
using at::Backend;
|
|
using at::Device;
|
|
using at::IntArrayRef;
|
|
using at::kCPU;
|
|
using at::kCUDA;
|
|
using at::kLong;
|
|
using at::kInt;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Storage;
|
|
using at::Tensor;
|
|
using at::TensorOptions;
|
|
using at::Type;
|
|
using c10::optional;
|
|
|
|
namespace torch { namespace utils {
|
|
namespace {
|
|
const int MAX_DIMS = 128;
|
|
|
|
TensorOptions build_options(c10::TensorOptions options, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
|
|
options = options.dtype(scalar_type);
|
|
if (device.has_value()) {
|
|
return options.device(device);
|
|
}
|
|
return options;
|
|
}
|
|
|
|
void maybe_initialize_cuda(const Device device) {
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
// NB: It appears there is some consistency invariant between options and device, where
|
|
// if device is non-empty, its type must be consistent with the device type in
|
|
// options.
|
|
// TODO: Refactor this so we just pass everything in via options
|
|
|
|
Tensor dispatch_ones(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(options.device());
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::ones(sizes, build_options(options, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_sizes(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(options.device());
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::empty(sizes, build_options(options, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_storage(c10::TensorOptions options, at::ScalarType scalar_type, Storage storage) {
|
|
auto tensor = at::empty({}, build_options(options, scalar_type));
|
|
tensor.set_(std::move(storage));
|
|
return tensor;
|
|
}
|
|
|
|
std::vector<int64_t> compute_sizes(PyObject* seq, ScalarType scalar_type) {
|
|
bool is_storage = isStorage(seq);
|
|
std::vector<int64_t> sizes;
|
|
THPObjectPtr handle;
|
|
while (PySequence_Check(seq)) {
|
|
auto length = PySequence_Length(seq);
|
|
if (length < 0) throw python_error();
|
|
if (is_storage) {
|
|
length /= elementSize(scalar_type);
|
|
}
|
|
sizes.push_back(length);
|
|
if (sizes.size() > MAX_DIMS) {
|
|
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
if (length == 0) break;
|
|
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
|
|
if (!handle) {
|
|
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
seq = handle.get();
|
|
}
|
|
|
|
return sizes;
|
|
}
|
|
|
|
ScalarType infer_scalar_type(PyObject *obj) {
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available()) {
|
|
if (PyArray_Check(obj)) {
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
|
|
}
|
|
if (PyArray_CheckScalar(obj)) {
|
|
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
|
|
}
|
|
}
|
|
#endif
|
|
if (PyFloat_Check(obj)) {
|
|
// this is always guaranteed to be a floating-point type, and makes it more
|
|
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
if (THPUtils_checkLong(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (PyBool_Check(obj)) {
|
|
return ScalarType::Bool;
|
|
}
|
|
if (PyComplex_Check(obj)) {
|
|
switch (torch::tensors::get_default_scalar_type()) {
|
|
case ScalarType::Float: return ScalarType::ComplexFloat;
|
|
case ScalarType::Double: return ScalarType::ComplexDouble;
|
|
default: TORCH_CHECK(false, "invalid default scalar type for complex");
|
|
}
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
const auto& var = THPVariable_Unpack(obj);
|
|
return var.scalar_type();
|
|
}
|
|
if (THPUtils_checkString(obj)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
|
|
}
|
|
if (PySequence_Check(obj)) {
|
|
c10::optional<ScalarType> scalarType;
|
|
auto length = PySequence_Length(obj);
|
|
if (length < 0) throw python_error();
|
|
// match NumPy semantics, except use default tensor type instead of double.
|
|
if (length == 0) return torch::tensors::get_default_scalar_type();
|
|
for (const auto i : c10::irange(length)) {
|
|
THPObjectPtr handle(PySequence_GetItem(obj, i));
|
|
if (!handle) throw python_error();
|
|
auto cur_item = handle.get();
|
|
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
|
|
ScalarType item_scalarType = infer_scalar_type(cur_item);
|
|
scalarType = (scalarType) ?
|
|
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
|
|
if (scalarType == ScalarType::ComplexDouble) {
|
|
// this won't change (unless we hit undefined, but that will fail later).
|
|
return *scalarType;
|
|
}
|
|
}
|
|
return *scalarType;
|
|
}
|
|
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
|
|
ScalarType scalarType, int elementSize, PyObject* obj) {
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data != nullptr);
|
|
|
|
int64_t ndim = sizes.size();
|
|
if (dim == ndim) {
|
|
torch::utils::store_scalar(data, scalarType, obj);
|
|
return;
|
|
}
|
|
|
|
auto n = sizes[dim];
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
|
|
if (!seq) throw python_error();
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
|
|
if (seq_size != n) {
|
|
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
|
|
(long long)n, (long long)dim, (long long)seq_size);
|
|
}
|
|
|
|
PyObject** items = PySequence_Fast_ITEMS(seq.get());
|
|
for(const auto i : c10::irange(n)) {
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available() && PyArray_Check(items[i])) {
|
|
TORCH_WARN_ONCE(
|
|
"Creating a tensor from a list of numpy.ndarrays is extremely slow. "
|
|
"Please consider converting the list to a single numpy.ndarray with "
|
|
"numpy.array() before converting to a tensor.");
|
|
}
|
|
#endif
|
|
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
|
|
data += strides[dim] * elementSize;
|
|
}
|
|
}
|
|
|
|
Tensor internal_new_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device_opt,
|
|
PyObject* data,
|
|
bool copy_variables,
|
|
bool copy_numpy,
|
|
bool type_inference,
|
|
bool pin_memory = false) {
|
|
if (THPUtils_checkString(data)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
if (THPVariable_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
|
|
// TODO: use MaybeOwned
|
|
auto var = THPVariable_Unpack(data);
|
|
if (copy_variables) {
|
|
var = var.detach();
|
|
}
|
|
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
|
|
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
|
|
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : var.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
|
|
auto tensor = tensor_from_cuda_array_interface(data);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
|
|
if (is_numpy_available() && PyArray_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
|
|
auto tensor = tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
#endif
|
|
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
|
|
auto sizes = compute_sizes(data, scalar_type);
|
|
|
|
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
|
|
// This exists to prevent us from tracing the call to empty(). The actual
|
|
// autograd code doesn't really matter, because requires_grad is always false
|
|
// here.
|
|
Tensor tensor;
|
|
{
|
|
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
|
|
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
|
c10::impl::ExcludeDispatchKeyGuard pythonmode_guard(c10::DispatchKey::Python);
|
|
c10::impl::ExcludeDispatchKeyGuard pythonmode_snapshot_guard(c10::DispatchKey::PythonTLSSnapshot);
|
|
// functorch uses FuncTorchDynamicLayerBackMode as a mode key to wrap all
|
|
// tensors returned from operators in special TensorWrapper tensor extension
|
|
// The problem with this is that TensorWrapper does not have storage so
|
|
// accessing the data_ptr (for recursive_store) internal asserts.
|
|
// As a quick hack, the guard here prevents functorch from wrapping the empty
|
|
// tensor in a TensorWrapper and instead when `tensor.to` is called later,
|
|
// the tensor gets wrapped. A more long-term solution is to think about
|
|
// what the extensibility mechanism for this function (internal_new_from_data)
|
|
// looks like for mode-based dispatch keys and C++ tensor extensions.
|
|
c10::impl::ExcludeDispatchKeyGuard functorch_guard(c10::DispatchKey::FuncTorchDynamicLayerBackMode);
|
|
|
|
if (isStorage(data)) {
|
|
ScalarType storage_scalar_type;
|
|
bool is_typed_storage = false;
|
|
Storage storage = createStorageGetType(data, storage_scalar_type, is_typed_storage);
|
|
TORCH_CHECK(!is_typed_storage || storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ", scalar_type,
|
|
" or an _UntypedStorage, but got ", storage_scalar_type);
|
|
tensor = at::empty(sizes, at::initialTensorOptions().dtype(is_typed_storage ? storage_scalar_type : inferred_scalar_type).pinned_memory(pin_memory).device(storage.device()));
|
|
tensor.set_(storage);
|
|
|
|
} else {
|
|
TensorOptions opts = at::initialTensorOptions().dtype(inferred_scalar_type);
|
|
|
|
// If the device is Meta, take the shortcut. We don't want to allocate an
|
|
// empty CPU tensor which would break our contract for meta tensors.
|
|
if (device == at::kMeta) {
|
|
return at::empty(sizes, opts.device(device));
|
|
}
|
|
tensor = at::empty(sizes, opts.pinned_memory(pin_memory));
|
|
if (c10::multiply_integers(tensor.sizes()) != 0) {
|
|
recursive_store(
|
|
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
|
|
inferred_scalar_type, tensor.dtype().itemsize(), data);
|
|
}
|
|
}
|
|
}
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
// However, it is VERY important that we trace the to() call here (even
|
|
// though the reason this is important is a hack). Without *some* factory
|
|
// function call that is traced at construction time, we will consider
|
|
// a tensor constant as originating from "outside" the trace, and if you
|
|
// try to return it directly we will fail with the error saying no
|
|
// "no observable data dependence". In an ideal world, we wouldn't trace
|
|
// a to() call but I need to think harder about what exactly we should trace
|
|
// in this case.
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
|
|
Tensor new_from_data_copy(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/true, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
Tensor legacy_new_from_sequence(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
if (!PySequence_Check(data)) {
|
|
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
|
|
}
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
// "base" here refers to the Tensor type on which the function was invoked, e.g.:
|
|
// in x.new(y), 'x' is the base.
|
|
// TODO: Rewrite this using dispatchKeyToTensorOptions
|
|
void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) {
|
|
if (expected_layout == c10::kStrided) {
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::CPU,
|
|
c10::DispatchKey::CUDA,
|
|
c10::DispatchKey::HIP,
|
|
c10::DispatchKey::XLA,
|
|
c10::DispatchKey::Lazy,
|
|
c10::DispatchKey::IPU,
|
|
c10::DispatchKey::XPU,
|
|
c10::DispatchKey::HPU,
|
|
});
|
|
TORCH_CHECK(expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else if(expected_layout == c10::kSparse) {
|
|
// NOTE: no sparse XLA or Lazy
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::SparseCPU,
|
|
c10::DispatchKey::SparseCUDA,
|
|
c10::DispatchKey::SparseHIP,
|
|
c10::DispatchKey::SparseXPU,
|
|
});
|
|
TORCH_CHECK(expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
|
|
}
|
|
}
|
|
|
|
// TODO: Make this accept options instead of dispatch key
|
|
void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) {
|
|
if (device.has_value()) {
|
|
TORCH_CHECK(dispatchKeyToDeviceType(dispatch_key) == device.value().type(),
|
|
"legacy constructor expects device type: ", dispatchKeyToDeviceType(dispatch_key),
|
|
" but device type: ", device.value().type(), " was passed");
|
|
}
|
|
}
|
|
|
|
enum class CtorOrNew {
|
|
BASE_CTOR,
|
|
CTOR,
|
|
NEW,
|
|
};
|
|
|
|
Tensor legacy_sparse_tensor_generic_ctor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs, CtorOrNew ctor_or_new) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
if (ctor_or_new == CtorOrNew::NEW) check_base_legacy_new(dispatch_key, c10::kSparse);
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type, deviceOptional));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
if (ctor_or_new == CtorOrNew::CTOR) {
|
|
throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
} else {
|
|
throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::CTOR);
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::NEW);
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::TensorOptions typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
if (!r.isNone(device_idx)) {
|
|
// TODO: This line doesn't seem to be exercised at all in tests
|
|
options = options.device(r.device(device_idx).type());
|
|
}
|
|
return options;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Tensor legacy_tensor_generic_ctor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs, CtorOrNew ctor_or_new) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
// This constructor is no longer legacy, it will also be usable for
|
|
// subclass initialization
|
|
"new(Tensor other)",
|
|
"new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject*
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, ctor_or_new);
|
|
}
|
|
|
|
if (ctor_or_new == CtorOrNew::NEW) check_base_legacy_new(dispatch_key, c10::kStrided);
|
|
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
at::ScalarType storage_scalar_type;
|
|
bool is_typed_storage = false;
|
|
at::Storage storage = r.storage(0, storage_scalar_type, is_typed_storage);
|
|
if (storage_scalar_type != at::ScalarType::Undefined && is_typed_storage) {
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ", scalar_type,
|
|
" or an _UntypedStorage, but got type ", storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
}
|
|
return new_with_storage(options, scalar_type, storage);
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
const auto& other = r.tensor(0);
|
|
// BASE_CTOR (aka torch.Tensor) is now relaxed to accept any
|
|
// dtype; previously it was "float" biased
|
|
if (ctor_or_new != CtorOrNew::BASE_CTOR) {
|
|
options = options.dtype(scalar_type);
|
|
TORCH_CHECK_TYPE(other.options().type_equal(options), "expected ",
|
|
options, " (got ", other.options(), ")");
|
|
}
|
|
return other.alias();
|
|
} else if (r.idx == 4) {
|
|
if (ctor_or_new == CtorOrNew::CTOR || ctor_or_new == CtorOrNew::BASE_CTOR) {
|
|
TORCH_CHECK(false, "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " \
|
|
"is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead.");
|
|
} else {
|
|
TORCH_CHECK(false, "Legacy tensor new of the form tensor.new(tensor, device=device) " \
|
|
"is not supported. Use torch.as_tensor(...) instead.");
|
|
}
|
|
} else if (r.idx == 5) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 6) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// Handles ONLY torch.Tensor
|
|
// Unlike the legacy dtype/device specialized constructors, this one is
|
|
// relaxed to accept any device/dtype input tensor (even if it doesn't
|
|
// match the default)
|
|
Tensor base_tensor_ctor(PyObject* args, PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(
|
|
torch::tensors::get_default_dispatch_key(),
|
|
torch::tensors::get_default_scalar_type(),
|
|
args, kwargs, CtorOrNew::BASE_CTOR
|
|
);
|
|
}
|
|
|
|
// Handles calls like torch.DoubleTensor, torch.cuda.FloatTensor,
|
|
// torch.sparse.FloatTensor, etc.
|
|
Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::CTOR);
|
|
}
|
|
|
|
// Handles tensor.new(...)
|
|
Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
return legacy_tensor_generic_ctor_new(dispatch_key, scalar_type, args, kwargs, CtorOrNew::NEW);
|
|
}
|
|
|
|
Tensor indexing_tensor_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
// Specific to tensor indexing, converts an indexing list to an
|
|
// indexing tensor (type Byte or Long)
|
|
ScalarType inferred_scalar_type = infer_scalar_type(data);
|
|
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
|
|
return internal_new_from_data(options, inferred_scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
} else {
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
}
|
|
|
|
Tensor sparse_csr_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
static PythonArgParser parser({
|
|
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
|
|
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
|
|
});
|
|
const int NUM_ARGS = 9, CROW_INDICES_ARG = 0, COL_INDICES_ARG = 1, VALUES_ARG = 2;
|
|
ParsedArgs<NUM_ARGS> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto safe_get_attr_string = [](PyObject *o, const char *attr_name) -> PyObject* {
|
|
// Clear error indicator if attribute does not exists.
|
|
// Otherwise subsequent Python C API calls might return bogus values.
|
|
// See https://github.com/pytorch/pytorch/issues/58520 for more details
|
|
auto rc = PyObject_GetAttrString(o, attr_name);
|
|
if (!rc) {
|
|
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
|
|
throw python_error();
|
|
}
|
|
// Warning: a wrong attribute error may be suppressed here
|
|
PyErr_Clear();
|
|
}
|
|
return rc;
|
|
};
|
|
THPObjectPtr crow_indices_dtype_attr(safe_get_attr_string(r.pyobject(CROW_INDICES_ARG), "dtype"));
|
|
THPObjectPtr col_indices_dtype_attr(safe_get_attr_string(r.pyobject(COL_INDICES_ARG), "dtype"));
|
|
at::ScalarType crow_indices_scalar_type = crow_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
|
|
crow_indices_dtype_attr.get())->scalar_type : kInt;
|
|
at::ScalarType col_indices_scalar_type = col_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
|
|
col_indices_dtype_attr.get())->scalar_type : kInt;
|
|
|
|
if (r.idx == 0) {
|
|
const int SIZE_ARRAY_ARG = 3, TYPE_INFERENCE_ARG = 4, DEVICE_TYPE_ARG = 6, REQ_GRAD_ARG = 8;
|
|
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
|
|
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
|
|
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor crow_indices = internal_new_from_data(values.options(),
|
|
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(CROW_INDICES_ARG),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(values.options(),
|
|
col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(COL_INDICES_ARG),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
return at::sparse_csr_tensor(crow_indices, col_indices, values, r.intlist(SIZE_ARRAY_ARG),
|
|
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
|
|
} else if (r.idx == 1) {
|
|
const int TYPE_INFERENCE_ARG = 3, DEVICE_TYPE_ARG = 5, REQ_GRAD_ARG = 7;
|
|
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
|
|
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
|
|
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor crow_indices = internal_new_from_data(values.options(),
|
|
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(CROW_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(values.options(), col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(COL_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
return at::sparse_csr_tensor(crow_indices, col_indices, values,
|
|
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
|
|
}
|
|
throw std::runtime_error("sparse_csr_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor _sparse_csr_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_CROW_INDICES = 0,
|
|
ARG_COL_INDICES,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_REQUIRES_GRAD,
|
|
ARGS_COUNT
|
|
};
|
|
static PythonArgParser parser({
|
|
"_sparse_csr_tensor_unsafe(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
|
|
Tensor crow_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_CROW_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
Tensor col_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_COL_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
return at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
}
|
|
|
|
// Note [Ensuring sparse values and indices match devices]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// In all places where we construct indices, we read out options from values
|
|
// (rather than use inferred_options). Why? This handles the case when
|
|
// values is a CUDA tensor, but indices is a non-Tensor value (and the device
|
|
// argument is not set). Example:
|
|
//
|
|
// torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0))
|
|
//
|
|
// Sparse tensors require both indices and values to live on the same device.
|
|
// If values lives on CUDA, we can infer where the indices should live, and
|
|
// should accept even ordinary index sequences (and just make sure we write them
|
|
// into the correct device). values is the ONLY way we know that the index
|
|
// tensor should go to CUDA, so we have to get the information in somehow.
|
|
//
|
|
// This code is kind of jank. For one, the dtype in options is silently ignored
|
|
// by internal_new_from_data. Also, in classic janky code style, it used to
|
|
// not work quite right: if values lives on "cuda:1", before all we said was
|
|
// "this needs to be CUDA" and indices would be allocated on the wrong tensor.
|
|
// Options is more right and gets this correct.
|
|
|
|
Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
static PythonArgParser parser({
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<6> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(2);
|
|
const auto inferred_options = typeIdWithDefault(r, 3, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
|
|
// if no dtype provided, infer type based on value type.
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(3), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
|
|
} else if (r.idx == 1) {
|
|
bool type_inference = r.isNone(3);
|
|
const auto inferred_options = typeIdWithDefault(r, 4, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(4), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
|
|
} else if (r.idx == 2) {
|
|
const auto inferred_options = typeIdWithDefault(r, 2, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
|
|
return at::sparse_coo_tensor(r.intlist(0), inferred_options.dtype(inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_INDICES = 0,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_REQUIRES_GRAD,
|
|
ARGS_COUNT
|
|
};
|
|
static PythonArgParser parser({
|
|
"_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
}
|
|
|
|
void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options, scalar_type, c10::nullopt, r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(
|
|
values.options(), kLong, c10::nullopt, r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false);
|
|
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
|
|
}
|
|
|
|
|
|
void _validate_sparse_csr_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options, scalar_type, c10::nullopt, r.pyobject(2),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor crow_indices = internal_new_from_data(
|
|
values.options(), kInt, c10::nullopt, r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(
|
|
values.options(), kInt, c10::nullopt, r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
|
|
at::native::_validate_sparse_csr_tensor_args(crow_indices, col_indices, values, r.intlist(3));
|
|
}
|
|
|
|
Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
|
|
});
|
|
|
|
constexpr int ctor_num_args = 6;
|
|
ParsedArgs<ctor_num_args> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
|
|
if (ret != 0) throw python_error();
|
|
}
|
|
|
|
bool type_inference = r.isNone(1);
|
|
bool pin_memory = r.toBool(3);
|
|
bool args_requires_grad = r.toBool(4);
|
|
auto new_tensor = internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data,
|
|
/*copy_variables=*/true,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference,
|
|
pin_memory);
|
|
auto names = r.toDimnameListOptional(5);
|
|
if (names) {
|
|
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
|
|
}
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
// TODO: add requires_grad once we decide on semantics for sharing data.
|
|
static PythonArgParser parser({
|
|
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(1);
|
|
return internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
r.pyobject(0),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/type_inference);
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
|
|
if (ret != 0) throw python_error();
|
|
}
|
|
|
|
bool args_requires_grad = r.toBool(3);
|
|
auto new_tensor = new_from_data_copy(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data);
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("new_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor tensor_frombuffer(PyObject* buffer, ScalarType dtype, int64_t count, int64_t offset, bool requires_grad) {
|
|
auto elsize = at::elementSize(dtype);
|
|
size_t actual_count = 0;
|
|
|
|
Py_buffer view;
|
|
if (PyObject_GetBuffer(buffer, &view, PyBUF_WRITABLE) < 0) {
|
|
TORCH_CHECK(
|
|
PyObject_GetBuffer(buffer, &view, PyBUF_SIMPLE) >= 0,
|
|
"could not retrieve buffer from object");
|
|
TORCH_WARN_ONCE(
|
|
"The given buffer is not writable, and PyTorch does "
|
|
"not support non-writable tensors. This means you can write to the "
|
|
"underlying (supposedly non-writable) buffer using the tensor. "
|
|
"You may want to copy the buffer to protect its data or make it writable "
|
|
"before converting it to a tensor. This type of warning will be "
|
|
"suppressed for the rest of this program.");
|
|
PyErr_Clear();
|
|
}
|
|
|
|
Py_INCREF(view.obj);
|
|
THPObjectPtr obj(view.obj);
|
|
|
|
auto len = view.len;
|
|
auto buf = view.buf;
|
|
PyBuffer_Release(&view);
|
|
|
|
TORCH_CHECK_VALUE(
|
|
len > 0 && count != 0,
|
|
"both buffer length (", len, ") and count (", count, ") must not be 0");
|
|
TORCH_CHECK_VALUE(
|
|
offset >= 0 && offset < len,
|
|
"offset (", offset, " bytes) must be non-negative and no greater than "
|
|
"buffer length (", len, " bytes) minus 1");
|
|
TORCH_CHECK_VALUE(
|
|
count > 0 || (len - offset) % elsize == 0,
|
|
"buffer length (", len - offset, " bytes) after offset (", offset, " bytes) "
|
|
"must be a multiple of element size (", elsize, ")");
|
|
|
|
if (count < 0) {
|
|
actual_count = (len - offset) / elsize;
|
|
} else {
|
|
actual_count = static_cast<size_t>(count);
|
|
}
|
|
|
|
TORCH_CHECK_VALUE(
|
|
static_cast<size_t>(offset) + actual_count * elsize <= static_cast<size_t>(len),
|
|
"requested buffer length (", actual_count, " * ", elsize, " bytes) "
|
|
"after offset (", offset, " bytes) must not be greater than actual "
|
|
"buffer length (", len, " bytes)");
|
|
|
|
auto offset_buf = static_cast<char*>(buf) + offset;
|
|
auto options = TensorOptions()
|
|
.dtype(dtype)
|
|
.device(c10::kCPU);
|
|
|
|
auto tensor = at::for_blob(offset_buf, static_cast<int64_t>(actual_count))
|
|
.options(options)
|
|
.deleter([obj = obj.release()](void*) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
})
|
|
.make_tensor();
|
|
tensor.set_requires_grad(requires_grad);
|
|
return tensor;
|
|
}
|
|
|
|
Tensor tensor_fromDLPack(PyObject *data) {
|
|
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
|
|
TORCH_CHECK(dlMTensor,
|
|
"from_dlpack received an invalid capsule. "
|
|
"Note that DLTensor capsules can be consumed only once, "
|
|
"so you might have already constructed a tensor from it once.");
|
|
|
|
// atensor steals the ownership of the underlying storage. It also passes a
|
|
// destructor function that will be called when the underlying storage goes
|
|
// out of scope. When the destructor is called, the dlMTensor is destructed too.
|
|
auto atensor = at::fromDLPack(dlMTensor);
|
|
|
|
// Make sure this capsule will never be used again.
|
|
PyCapsule_SetName(data, "used_dltensor");
|
|
|
|
// It is possible that the call to at::fromDLPack is the very first
|
|
// call to create a Tensor in PyTorch. If so, then _lazy_init has
|
|
// not been called, and the attempt to call createPyObject will fail
|
|
// because cuda ATen types have not been registered in Python yet.
|
|
// so if we have a cuda tensor, then we need to make sure
|
|
// we have called _lazy_init here
|
|
if(atensor.is_cuda()) {
|
|
py::module::import("torch.cuda").attr("init")();
|
|
}
|
|
return atensor;
|
|
}
|
|
|
|
Tensor asarray(
|
|
PyObject* obj,
|
|
c10::optional<ScalarType> dtype,
|
|
c10::optional<Device> device,
|
|
c10::optional<bool> copy,
|
|
bool requires_grad) {
|
|
Tensor tensor;
|
|
|
|
bool force_copy = copy.value_or(false);
|
|
bool force_alias = !copy.value_or(true);
|
|
bool should_warn_numpy_not_writable = false;
|
|
|
|
auto dtype_unwrapped =
|
|
dtype.value_or(torch::tensors::get_default_scalar_type());
|
|
|
|
// Check whether 'obj' is a 'Tensor'
|
|
if (THPVariable_Check(obj)) {
|
|
tensor = THPVariable_Unpack(obj);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
// Check whether 'obj' is a NumPy Array
|
|
if (is_numpy_available() && PyArray_Check(obj)) {
|
|
tensor = tensor_from_numpy(obj, /*warn_if_not_writeable=*/false);
|
|
should_warn_numpy_not_writable = !PyArray_ISWRITEABLE((PyArrayObject*) obj);
|
|
}
|
|
#endif
|
|
|
|
// Check whether 'obj' is a 'DLPack' capsule
|
|
if (!tensor.defined() && PyCapsule_IsValid(obj, "dltensor") != 0) {
|
|
tensor = tensor_fromDLPack(obj);
|
|
}
|
|
|
|
// Check whether 'obj' implements the buffer protocol
|
|
if (!tensor.defined() && PyObject_CheckBuffer(obj) != 0) {
|
|
tensor = tensor_frombuffer(obj, dtype_unwrapped, -1, 0, requires_grad);
|
|
}
|
|
|
|
if (tensor.defined()) {
|
|
// Given an aliasable tensor, should we copy it?
|
|
bool wrong_device = device.has_value() && device.value() != tensor.device();
|
|
bool wrong_dtype =
|
|
dtype.has_value() && dtype.value() != tensor.scalar_type();
|
|
bool needs_copying = !copy.has_value() && (wrong_device || wrong_dtype);
|
|
|
|
// Given a defined tensor, we copy it if either we have to (copy=True) or
|
|
// if we need to (copy=None) because of mismatched device or dtype.
|
|
if (force_copy || needs_copying) {
|
|
if (wrong_device || wrong_dtype) {
|
|
tensor = tensor.to(
|
|
device.value_or(tensor.device()),
|
|
dtype.value_or(tensor.scalar_type()));
|
|
} else {
|
|
tensor = tensor.clone();
|
|
}
|
|
} else {
|
|
// If we are not copying, we have to check whther we have the tensor
|
|
// in the right device, with the right dtype.
|
|
TORCH_CHECK_VALUE(
|
|
!wrong_device,
|
|
"can't alias tensor from device '", tensor.device(),
|
|
"' to '", device.value(), "'.");
|
|
TORCH_CHECK_VALUE(
|
|
!wrong_dtype,
|
|
"can't alias tensor with dtype '", tensor.scalar_type(),
|
|
"' into dtype '", dtype.value(), "'.");
|
|
// If tensor is a NumPy Array view, we warn the user about non-writeable
|
|
// arrays if this is the case.
|
|
if (should_warn_numpy_not_writable) {
|
|
warn_numpy_not_writeable();
|
|
}
|
|
}
|
|
|
|
// Setting 'requires_grad' when the tensor is not a leaf does not work.
|
|
// Whenever that happens, we have to use 'detach'.
|
|
if (!tensor.is_leaf() && !requires_grad) {
|
|
tensor = tensor.detach();
|
|
} else {
|
|
tensor.set_requires_grad(requires_grad);
|
|
}
|
|
} else {
|
|
// Undefined tensor means it does not implement neither DLPack nor
|
|
// the buffer protocol. Last case is a sequence, in which case we must
|
|
// copy (copy can't be false).
|
|
TORCH_CHECK_VALUE(
|
|
!force_alias, "can't alias arbitrary sequence into a tensor.");
|
|
|
|
// Make tensor from sequence, inferring its type, and then convert
|
|
// it to the desired type.
|
|
// Type inference is activated only if the dtype has not been specified.
|
|
// Otherwise, we force the unwrapped dtype.
|
|
tensor = internal_new_from_data(
|
|
TensorOptions(), dtype_unwrapped, device, obj,
|
|
/* copy_variables = */ false, /* copy_numpy = */ false, /* type_inference = */ !dtype.has_value());
|
|
tensor.set_requires_grad(requires_grad);
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
}} // namespace torch::utils
|