Files
pytorch/torch/_inductor/codegen/cpp.py
Karthick Panner Selvam cddcaa1903 [Inductor] Add DeviceAssert op to enable device-side assertion in torch.compile (#160677)
This PR introduces a device_assert op to trigger device-side assertions within torch.compile. This implementation is based on the suggestion in [this comment](https://github.com/pytorch/pytorch/issues/147282#issuecomment-2756056084).

Changes Included

- Implemented device_assert op and overrides has_side_effect to return True to avoid removal by dead code elimination.
- Commented out the assert_async_msg_decomp and functional_assert_async_msg_decomp decompositions to disable the default assert decomposition inside Inductor.
- Added lowering for torch.ops.aten._assert_async.msg to convert assert calls into the ops_handler.
- Implemented the codegen method for the device_assert op. This supports generating C++ and Triton code.
- Added test cases to verify both "should throw" and "should not throw" scenarios.

Fixes #147282

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160677
Approved by: https://github.com/mlazos
2025-08-26 22:33:23 +00:00

5787 lines
227 KiB
Python

# mypy: allow-untyped-defs
import contextlib
import dataclasses
import functools
import itertools
import math
import operator
import re
import sys
import warnings
from collections.abc import Sequence
from enum import Enum
from typing import Any, Callable, cast, Optional, Union
import sympy
import torch
import torch.fx
from torch._inductor import dependencies
from torch._prims_common import is_float_dtype, is_integer_dtype
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.functions import CeilDiv, FloorDiv, ModularIndexing
from torch.utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT
from ..._dynamo.utils import counters
from .. import config, cpp_builder, cpu_vec_isa, ir, metrics
from ..debug import set_kernel_post_grad_provenance_tracing
from ..loop_body import LoopBody
from ..scheduler import (
BaseSchedulerNode,
BaseScheduling,
ExternKernelSchedulerNode,
ForeachKernelSchedulerNode,
FusedSchedulerNode,
Scheduler,
SchedulerNode,
)
from ..utils import (
cache_on_self,
get_bounds_index_expr,
get_fused_kernel_name,
has_free_symbols,
is_multi_outputs_template,
is_welford_reduction,
parallel_num_threads,
Placeholder,
sympy_index_symbol,
sympy_index_symbol_with_prefix,
sympy_product,
sympy_subs,
)
from ..virtualized import NullKernelHandler, ops, OpsValue, V
from .common import (
BackendFeature,
BracesBuffer,
CSE,
CSEVariable,
DataTypePropagation,
DeferredLine,
DTYPE_TO_COMPUTATION_DTYPE,
IndentedBuffer,
Kernel,
KernelArgs,
OpOverrides,
OptimizationContext,
)
from .cpp_utils import (
_get_dtype_from_loopbodies,
_get_loop_body,
cexpr,
cexpr_index,
codegen_rand,
CppCSEVariable,
DTYPE_TO_CPP,
get_promote_dtype,
INDEX_TYPE,
LocalBufferContext,
may_unify_binary_op_mask_type,
promote_args,
template_fusion_with_epilogues_supported,
unify_mask_base_type,
value_to_cpp,
)
_IS_WINDOWS = sys.platform == "win32"
@functools.cache
def get_export_declaration():
return "__declspec(dllexport)" if _IS_WINDOWS else ""
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
NATIVE_OMP_RTYPES = OrderedSet(["+", "*", "^", "||", "min", "max"])
RTYPE_TO_CPP = {
"sum": "+",
"prod": "*",
"xor_sum": "^",
"min": "min",
"max": "max",
"argmin": "argmin",
"argmax": "argmax",
"any": "||",
"welford_reduce": "welford",
"welford_combine": "welford",
}
VECTORIZABLE_RTYPES = OrderedSet(
[
"max",
"min",
"sum",
"prod",
"xor_sum",
"welford_reduce",
"welford_combine",
"argmin",
"argmax",
"any",
]
)
PYTHON_TO_CPP = {
"Tensor": "at::Tensor",
"int": "long",
"float": "double",
"bool": "bool",
"str": "std::string",
"ScalarType": "c10::ScalarType",
"MemoryFormat": "at::MemoryFormat",
"Layout": "at::Layout",
"Device": "at::Device",
"number": "at::Scalar",
}
CONTAINER_PYTHON_TO_CPP = {
"List": "std::vector",
"Optional": "std::optional",
}
DTYPE_LOWP_FP = [
torch.bfloat16,
torch.float16,
]
VECTORIZABLE_DTYPES: list[torch.dtype] = [
torch.float64,
torch.float,
torch.bfloat16,
torch.float16,
torch.bool,
torch.uint8,
torch.int8,
torch.int32,
torch.int64,
torch.float8_e4m3fn,
torch.float8_e5m2,
]
MASKED_VECTORIZABLE_DTYPES: list[torch.dtype] = [
torch.float,
torch.bfloat16,
torch.float16,
torch.uint8,
torch.int8,
]
def reduction_init(reduction_type, dtype):
if dtype in DTYPE_LOWP_FP:
# Since load promotes all half-precision inputs to float, the initial
# constant for reduction must be promoted as well
dtype = torch.float32
if reduction_type in ("xor_sum", "sum", "any"):
return 0
if reduction_type == "prod":
return 1
if reduction_type in ("max", "argmax", "min", "argmin"):
cdtype = DTYPE_TO_CPP[dtype]
if dtype == torch.bool and reduction_type in ("argmin", "argmax"):
cdtype = DTYPE_TO_CPP[torch.float]
min_var = (
f"-std::numeric_limits<{cdtype}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{cdtype}>::min()"
)
max_var = (
f"std::numeric_limits<{cdtype}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{cdtype}>::max()"
)
init_var = min_var if reduction_type in ("max", "argmax") else max_var
return (
init_var
if reduction_type in ("max", "min")
else f"IndexValue<{cdtype}>{{0, {init_var}}}"
)
if is_welford_reduction(reduction_type):
return f"Welford<{DTYPE_TO_CPP[dtype]}>()"
raise AssertionError(reduction_type)
def reduction_acc_type(reduction_type, dtype):
scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]]
if is_welford_reduction(reduction_type):
return f"Welford<{scalar_type}>"
if reduction_type in ("argmin", "argmax"):
if dtype == torch.bool:
scalar_type = DTYPE_TO_CPP[torch.float]
return f"IndexValue<{scalar_type}>"
return scalar_type
def reduction_combine(
reduction_type,
var,
next_value,
helper_val=None,
index: Optional[sympy.Symbol] = None,
src_dtype=None,
):
is_bool = src_dtype == torch.bool
if reduction_type == "sum":
if helper_val:
return f"cascade_sum_combine({next_value}, &{helper_val})"
else:
conjunction = "|" if is_bool else "+"
return f"{var} {conjunction} {next_value}"
if reduction_type == "prod":
return f"{var} * {next_value}"
if reduction_type == "xor_sum":
return f"{var} ^ {next_value}"
if reduction_type == "any":
return f"{var} || {next_value}"
if reduction_type in ("min", "max"):
return f"{reduction_type}_propagate_nan({var}, {next_value})"
if reduction_type == "welford_reduce":
return f"welford_combine({var}, {next_value})"
if reduction_type == "welford_combine":
if isinstance(next_value, tuple):
mean, m2, weight = next_value
else:
mean, m2, weight = reduction_project(reduction_type, next_value)
return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})"
if reduction_type in ("argmin", "argmax"):
if (
hasattr(next_value, "dtype")
and next_value.dtype == torch.bool
and not next_value.is_vec
):
if index is not None:
return f"{reduction_type}_combine({var}, static_cast<float>({next_value}), {index})"
else:
return (
f"{reduction_type}_combine({var}, static_cast<float>({next_value}))"
)
if index is not None:
return f"{reduction_type}_combine({var}, {next_value}, {index})"
else:
return f"{reduction_type}_combine({var}, {next_value})"
raise AssertionError(reduction_type)
def reduction_project(reduction_type, acc):
if is_welford_reduction(reduction_type):
return f"{acc}.mean", f"{acc}.m2", f"{acc}.weight"
elif reduction_type in ("argmin", "argmax"):
return f"{acc}.index"
return acc
def move_code_under_inner_loop(
code: IndentedBuffer,
iter_var: sympy.Expr,
new_iter_var: str,
loop_start: sympy.Expr,
loop_end: sympy.Expr,
) -> BracesBuffer:
r"""
f(iter_var) is transformed to f(new_iter_var) under the inner loop
\/
for (new_iter_var = loop_start; new_iter_var < loop_end; new_iter_var++) {
f(new_iter_var)
}
Please be careful while using this function,
as the variable defined in f(iter_var) will be invalid outside the for loop.
For example:
auto tmp0 = in_ptr[x0]; ->
for (new_x0 = start; new_x0 < end; new_x0++){
auto tmp0 = in_ptr[new_x0];
}
The tmp0 is invalid outside the loop.
"""
transformed_code = BracesBuffer()
with contextlib.ExitStack() as stack:
transformed_code.writeline(
f"for ({INDEX_TYPE} {new_iter_var} = {cexpr_index(loop_start)};"
+ f"{new_iter_var} < {cexpr_index(loop_end)}; {new_iter_var}++)"
)
stack.enter_context(transformed_code.indent())
for _, line in enumerate(code._lines):
assert isinstance(
line,
(
str,
DeferredLine,
),
)
deferred_name = None
if isinstance(line, DeferredLine):
deferred_name = line.name
line = line.line
new_line = re.sub(r"\b" + f"{iter_var}" + r"\b", f"{new_iter_var}", line)
if deferred_name:
new_line = DeferredLine(deferred_name, new_line) # type: ignore[assignment]
transformed_code.writeline(new_line)
return transformed_code
def reduction_prefix_array(
acc_var: Union[str, CSEVariable],
acc_type: str,
reduction_type: str,
dtype: torch.dtype,
len: Union[str, int],
init_fn,
):
"""
MSVC don't support dynamic array(VLA). So we use std::unique_ptr here.
Ref: https://stackoverflow.com/questions/56555406/creating-dynamic-sized-array-using-msvc-c-compiler
MSVC is the only one compiler without VLA. support. Since MSVC can't get good performance here.
We just use unique_ptr make it works on MSVC.
For other compilers, we continue to use VLA to get best performance.
"""
code_buffer = IndentedBuffer()
acc_decl = (
f"auto {acc_var}_arr = std::make_unique<{acc_type}[]>({len});"
if cpp_builder.is_msvc_cl()
else f"{acc_type} {acc_var}_arr[{len}];"
)
code_buffer.writeline(f"{acc_decl}")
code_buffer.writelines(
[
f"for (int i = 0; i < {len}; i++)",
"{",
f" {acc_var}_arr[i] = {init_fn(reduction_type, dtype)};",
"}",
],
)
return code_buffer
def replace_acc_name(buffer: IndentedBuffer, name: str, new_name: str):
for i, line in enumerate(buffer._lines):
assert isinstance(
line,
(
str,
DeferredLine,
),
)
if isinstance(line, DeferredLine):
line.line = re.sub(r"\b" + f"{name}" + r"\b", f"{new_name}", line.line)
else:
buffer._lines[i] = re.sub(r"\b" + f"{name}" + r"\b", f"{new_name}", line)
def replace_cascade_sum_with_add(buffer: IndentedBuffer):
"""
Replaces `acc = cascade_sum_combine(value, ...)` with `acc = acc + value;`
"""
pattern = r"(.*?)\s*=\s*cascade_sum_combine\(([^,]+),.*?\);"
for i, line in enumerate(buffer._lines):
assert isinstance(
line,
(
str,
DeferredLine,
),
)
content = line.line if isinstance(line, DeferredLine) else line
match = re.search(pattern, content)
if match:
acc, value = match.groups()
new_content = re.sub(pattern, f"{acc} = {acc} + {value};", content)
if isinstance(line, DeferredLine):
line.line = new_content
else:
buffer._lines[i] = new_content
@functools.lru_cache
def stride_at(index: sympy.Expr, var: sympy.Symbol):
if not index.has(var):
# see test_torchinductor_dynamic_shapes.py::test_full_boolean_dynamic_shapes_cpu
# which has tmp0 = ops.index_expr(s0 >= 1024, torch.bool) and fails below calculation.
# in this case, there is no dependencies between index and var.
return sympy.S.Zero
replacement = {var: var + 1}
new_index = sympy_subs(index, replacement) # type: ignore[arg-type]
return sympy.simplify(new_index - index)
@functools.lru_cache
def simplify_index_in_vec_range(index: sympy.Expr, var: sympy.Expr, vec_length: int):
"""
Simplifies the index expression within the range of a vectorized loop.
Given a vectorized loop variable `var` in the range of a loop with `vec_length`,
this function transforms the `index` into an equivalent form. It handles
simplifications for cases where `var` can be expressed as `vec_length * a + b`,
where `b` ranges from 0 to `vec_length - 1`. The function reduces occurrences
of `FloorDiv` and `ModularIndexing` in the `index` with best-effort optimizations.
NOTE:
The simplified index expression is intended for analysis purposes only, not
for code generation. It replaces `FloorDiv` and `ModularIndexing` with free variables
which are not dependent on the loop variable `var` in the vectorized range. Check
https://github.com/pytorch/pytorch/pull/117221#discussion_r1449746217 for more details.
Examples:
1. If `var` is `x3` and `vec_length` is 16, and `x3 = 16*a + b`, then
`FloorDiv(x3, div)` or `ModularIndexing(x3, div, mod)` becomes a free variable
when `div` is divisible by 16.
2. `ModularIndexing(x3, 1, mod)` can be simplified to `x3 + c` where `c` is a free
variable when `mod` is divisible by 16.
"""
div_freevar_id = 0
mod_freevar_id = 0
def visit_indexing_div(divisor):
nonlocal div_freevar_id
result = FloorDiv(var, divisor)
if sympy.gcd(divisor, vec_length) == vec_length:
result = sympy.Symbol(f"{var}_div_c{div_freevar_id}")
div_freevar_id += 1
return result
def visit_modular_indexing(divisor, modulus):
nonlocal mod_freevar_id
result = ModularIndexing(var, divisor, modulus)
if sympy.gcd(divisor, vec_length) == vec_length:
result = sympy.Symbol(f"{var}_mod_c{mod_freevar_id}")
mod_freevar_id += 1
elif divisor == 1 and sympy.gcd(modulus, vec_length) == vec_length:
result = var + sympy.Symbol(f"{var}_mod_c{mod_freevar_id}")
mod_freevar_id += 1
return result
original_index = index
div = sympy.Wild("divisor", integer=True)
if index.has(FloorDiv):
index = index.replace(FloorDiv(var, div), visit_indexing_div)
mod = sympy.Wild("modulus", integer=True)
if index.has(ModularIndexing):
index = index.replace(ModularIndexing(var, div, mod), visit_modular_indexing)
index = sympy.simplify(index)
if index != original_index:
return simplify_index_in_vec_range(index, var, vec_length)
return index
@functools.lru_cache
def stride_at_vec_range(
index: sympy.Expr, var: sympy.Symbol, vec_length: Optional[int] = None
):
if vec_length:
index = simplify_index_in_vec_range(index, var, vec_length)
return stride_at(index, var)
@dataclasses.dataclass
class ParallelDepth:
"""
A class representing parallel depth.
Includes the starting depth of parallelism and the depth of parallelism.
"""
parallel_depth: int
start_depth: int
class OuterLoopFusedSchedulerNode(FusedSchedulerNode):
@classmethod
def fuse( # type: ignore[override]
cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode, outer_loop_fusion_depth
):
assert node1.scheduler is node2.scheduler
assert all(
type(node)
in (
OuterLoopFusedSchedulerNode,
SchedulerNode,
FusedSchedulerNode,
)
for node in (node1, node2)
)
if any(type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2)):
return cls(
node1.scheduler,
(
list(node1.get_outer_nodes())
if type(node1) is OuterLoopFusedSchedulerNode
else [
node1,
]
)
+ (
list(node2.get_outer_nodes())
if type(node2) is OuterLoopFusedSchedulerNode
else [
node2,
]
),
outer_loop_fusion_depth,
)
else:
return cls(node1.scheduler, [node1, node2], outer_loop_fusion_depth) # type: ignore[list-item]
def __init__(
self,
scheduler: "Scheduler",
outer_fused_nodes: list[Union[FusedSchedulerNode, SchedulerNode]],
outer_loop_fusion_depth,
):
self.outer_fused_nodes: list[Union[FusedSchedulerNode, SchedulerNode]] = (
outer_fused_nodes
)
self.outer_loop_fusion_depth = outer_loop_fusion_depth
flatten_snodes = []
for _node in self.outer_fused_nodes:
assert isinstance(_node, (SchedulerNode, FusedSchedulerNode))
flatten_snodes.extend(list(_node.get_nodes()))
super().__init__(scheduler, flatten_snodes) # type: ignore[arg-type]
def get_outer_nodes(self):
return self.outer_fused_nodes
def check_outer_fusion_loop_level_attr(
self, cpp_kernel_proxy_list, outer_loop_fusion_depth
):
# This function ensures that the same tiling split is applied at each loop level within the outer loop fusion depth.
# In the fusion stage, we only examine nodes with same vars and reduce.
# However, for nodes with same vars and reduce, the loops may still have different tile splits.
# For example (test_expr_vec_non_contiguous in test_cpu_repro.py):
# * buf0 tiling along the 2nd loop level, buf1 tiling along the 3rd loop level.
# If the check failed, we should fall back to standard loop codegen.
def _inner(
left_loop_nest: LoopNest,
right_loop_nest: LoopNest,
loop_fusion_depth: int,
current_checking_depth: int,
) -> bool:
assert left_loop_nest.loops
assert right_loop_nest.loops
left_loop_level = left_loop_nest.loops[current_checking_depth]
right_loop_level = right_loop_nest.loops[current_checking_depth]
# Check if same loop level attr
outer_loops_attr_compare_list = [
"var",
"size",
"offset",
"steps",
]
if not (
all(
getattr(left_loop_level, attr_compare)
== getattr(right_loop_level, attr_compare)
for attr_compare in outer_loops_attr_compare_list
)
):
return False
assert loop_fusion_depth >= 1
if (loop_fusion_depth := loop_fusion_depth - 1) > 0:
# Check next loop level attr
current_checking_depth = current_checking_depth + 1
assert current_checking_depth < len(left_loop_nest.loops)
assert current_checking_depth < len(right_loop_nest.loops)
if not _inner(
left_loop_nest,
right_loop_nest,
loop_fusion_depth,
current_checking_depth,
):
return False
return True
for idx in range(len(cpp_kernel_proxy_list) - 1):
left_loop_nest = cpp_kernel_proxy_list[idx].loop_nest
right_loop_nest = cpp_kernel_proxy_list[idx + 1].loop_nest
if not _inner(
left_loop_nest,
right_loop_nest,
outer_loop_fusion_depth,
0,
):
return False
for cpp_kernel_proxy in cpp_kernel_proxy_list:
outer_ranges = functools.reduce(
operator.mul,
cpp_kernel_proxy.ranges[:outer_loop_fusion_depth],
)
# When the range of the first inner loop is much larger than the range of
# all outer loops, do not fuse outer loop and fallback to standard loop codegen,
# so that the inner loops with larger range have a chance to be parallelized.
# We set a conservative threshold here:
# First inner loop range / all outer loops range > 300.
if (
len(cpp_kernel_proxy.ranges) > outer_loop_fusion_depth
and isinstance(outer_ranges, sympy.Integer)
and isinstance(
cpp_kernel_proxy.ranges[outer_loop_fusion_depth],
sympy.Integer,
)
and outer_ranges * 300
< cpp_kernel_proxy.ranges[outer_loop_fusion_depth]
):
return False
return True
def merge_outer_fusion_kernels(
self,
cpp_kernel_proxy_list,
):
kernel_group = cpp_kernel_proxy_list[0].kernel_group
outer_loop_fused_kernel = OuterLoopFusedKernel(kernel_group)
outer_loop_fused_kernel.inner = [
proxy.loop_nest.from_loop_level(self.outer_loop_fusion_depth)
for proxy in cpp_kernel_proxy_list
]
outer_fused_proxy = cpp_kernel_proxy_list[0]
outer_fused_proxy.loop_nest.kernel = outer_loop_fused_kernel
outer_fused_proxy.loop_nest.loops = outer_fused_proxy.loop_nest.loops[
: self.outer_loop_fusion_depth
]
return outer_fused_proxy
class RecordOptimizationContext:
def __init__(self, func_name: str = ""):
self.func_name = func_name
self.current_node: Optional[torch.fx.Node] = None
self.opt_ctx: Optional[OptimizationContext] = None
def __enter__(self):
assert V.interpreter
assert V.interpreter.current_node
self.current_node = V.interpreter.current_node
assert self.current_node is not None
if OptimizationContext.key in self.current_node.meta:
self.opt_ctx = self.current_node.meta[OptimizationContext.key]
else:
self.opt_ctx = OptimizationContext()
assert self.opt_ctx is not None
self.opt_ctx.ops_name = self.func_name
return self
def __exit__(self, exc_type, exc_val, exc_tb):
assert self.current_node
assert self.opt_ctx
self.current_node.meta[OptimizationContext.key] = self.opt_ctx
def get_opt_ctx(self):
return self.opt_ctx
def get_fx_node(self):
assert self.current_node
return self.current_node
def decltype_promoted(*args):
assert not any(isinstance(arg, CppCSEVariable) and arg.is_vec for arg in args), (
"Promotion of vector types is not supported"
)
if (dt := get_promote_dtype(args)) is not None:
return DTYPE_TO_CPP[dt]
else:
return f"decltype({args[0]})"
class CppOverrides(OpOverrides):
"""Map element-wise ops to C++"""
@staticmethod
def add(a, b):
return f"{decltype_promoted(a, b)}({a} + {b})"
@staticmethod
def sub(a, b):
return f"{decltype_promoted(a, b)}({a} - {b})"
@staticmethod
def mul(a, b):
return f"{decltype_promoted(a, b)}({a} * {b})"
@staticmethod
def to_dtype(x, dtype, src_dtype=None, use_compute_types=True):
assert isinstance(x, CppCSEVariable)
if src_dtype is None:
src_dtype = x.dtype
expr = V.kernel.get_to_dtype_expr(x, dtype, src_dtype)
csevar = V.kernel.cse.generate(V.kernel.compute, expr)
csevar.update_on_args("to_dtype", (x, dtype), {"src_dtype": src_dtype})
if dtype in DTYPE_LOWP_FP and src_dtype == torch.float:
"""
https://github.com/pytorch/pytorch/issues/115260
For FusedSchedulerNode[node1, node2], the node2 loads what node1 stores and the buffer is
in low-precision floating point data type. When the output of node1 also serves as the output of the
kernel, the result of nodes would be different from the case when output of node1 is not the output
of the kernel (where we don't need to insert `to_dtype` for legalization). To address the problem, on
storing the lowp node1 output, we also add the inverse dtype conversion to high precision data type
to the cse cache.
Example (pseudo code):
node1_output = ...
node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16)
store(buf, node1_output_lowp)
node2_input_lowp = load(buf)
node2_input = to_dtype(node2_input_lowp, dtype=torch.float)
Without cse cache trick:
node1_output = ...
node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16)
store(buf, node1_output_lowp)
node2_input_lowp = node_output_lowp # hit store cache
node2_input = to_dtype(node2_input_lowp, dtype=torch.float)
With cse cache trick:
node1_output = ...
node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16)
# also add `to_dtype(node1_input_lowp, dtype=torch.float)` -> `node1_output` to cse cache
store(buf, node1_output_lowp)
node2_input_lowp = node_output_lowp # hit store cache
node2_input = node1_output # hit cse cache
"""
V.kernel.cache_dtype_convert(x, src_dtype, csevar, dtype)
return csevar
@staticmethod
def to_dtype_bitcast(x, dtype, src_dtype):
assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP"
return f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({x})"
@staticmethod
def abs(x):
return f"std::abs({x})"
@staticmethod
def sin(x):
return f"std::sin({x})"
@staticmethod
def cos(x):
return f"std::cos({x})"
@staticmethod
def neg(x):
return f"decltype({x})(-{x})"
@staticmethod
def exp(x):
# return f"Sleef_expf_u10({x})"
return f"std::exp({x})"
@staticmethod
def exp2(x):
return f"std::exp2({x})"
@staticmethod
def expm1(x):
return f"std::expm1({x})"
@staticmethod
def erf(x):
return f"std::erf({x})"
@staticmethod
def erfc(x):
return f"std::erfc({x})"
@staticmethod
def erfinv(x):
return f"calc_erfinv({x})"
@staticmethod
def sqrt(x):
return f"std::sqrt({x})"
@staticmethod
def rsqrt(x):
return f"1 / std::sqrt({x})"
@staticmethod
def log1p(x):
bug = config.cpp.inject_log1p_bug_TESTING_ONLY
if bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"std::log1p({x})"
else:
raise AssertionError(
f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def tan(x):
return f"std::tan({x})"
@staticmethod
def tanh(x):
return f"std::tanh({x})"
@staticmethod
def signbit(x):
"""
On windows std::signbit only support float type.
Ref: https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/signbit?view=msvc-170
"""
return (
f"std::signbit(static_cast<float>({x}))"
if _IS_WINDOWS
else f"std::signbit({x})"
)
@staticmethod
def pow(a, b):
return f"std::pow({a}, {b})"
@staticmethod
def log(x):
return f"std::log({x})"
@staticmethod
def round(x):
return f"std::nearbyint({x})"
@staticmethod
def floor(x):
return f"std::floor({x})"
@staticmethod
def floordiv(a, b):
# a and b are integer type
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})"
@staticmethod
def ceil(x):
return f"std::ceil({x})"
@staticmethod
def trunc(x):
return f"std::trunc({x})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
return f"{a} / {b}"
@staticmethod
def fmod(a, b):
return f"std::fmod({a}, {b})"
@staticmethod
def isinf(x):
return f"std::isinf({x})"
@staticmethod
def isnan(x):
return f"std::isnan({x})"
@staticmethod
def lgamma(x):
return f"std::lgamma({x})"
@staticmethod
def acos(x):
return f"std::acos({x})"
@staticmethod
def acosh(x):
return f"std::acosh({x})"
@staticmethod
def cosh(x):
return f"std::cosh({x})"
@staticmethod
def sinh(x):
return f"std::sinh({x})"
@staticmethod
def asin(x):
return f"std::asin({x})"
@staticmethod
def asinh(x):
return f"std::asinh({x})"
@staticmethod
def atan2(x, y):
return f"std::atan2({x}, {y})"
@staticmethod
def atan(x):
return f"std::atan({x})"
@staticmethod
def atanh(x):
return f"std::atanh({x})"
@staticmethod
def copysign(x, y):
return f"std::copysign({x}, {y})"
@staticmethod
def frexp(x):
cache_keys = f"frexp({x})[0]", f"frexp({x})[1]"
if all(V.kernel.cse.try_get(cache_key) is not None for cache_key in cache_keys):
return tuple(V.kernel.cse.try_get(cache_key) for cache_key in cache_keys)
code = BracesBuffer()
exponent = V.kernel.cse.newvar(dtype=torch.int32, shape=x.shape)
mantissa = V.kernel.cse.newvar(dtype=x.dtype, shape=x.shape)
code.writeline(f"int32_t {exponent};")
code.writeline(f"auto {mantissa} = std::frexp({x}, &{exponent});")
V.kernel.compute.splice(code)
cse_vars = (mantissa, exponent)
for cache_key, cse_var in zip(cache_keys, cse_vars):
V.kernel.cse.put(cache_key, cse_var)
return mantissa, exponent
@staticmethod
def hypot(x, y):
return f"std::hypot({x}, {y})"
@staticmethod
def log10(x):
return f"std::log10({x})"
@staticmethod
def log2(x):
return f"std::log2({x})"
@staticmethod
def nextafter(x, y):
return f"std::nextafter({x}, {y})"
@staticmethod
def relu(x):
bug = config.cpp.inject_relu_bug_TESTING_ONLY
if bug == "compile_error":
return "compile error!"
elif bug == "runtime_error":
return f"{x}; throw 1"
elif bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"std::max({x}, decltype({x})(0))"
else:
raise AssertionError(
f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def minimum(a, b):
return f"min_propagate_nan({a}, {b})"
@staticmethod
def maximum(a, b):
return f"max_propagate_nan({a}, {b})"
@staticmethod
def where(a, b, c):
return f"{a} ? {b} : {c}"
@staticmethod
def mod(a, b):
return f"mod({a}, {b})"
@staticmethod
def constant(val, dtype):
return value_to_cpp(val, DTYPE_TO_CPP[dtype])
@staticmethod
def index_expr(expr, dtype):
idx_str = cexpr(V.kernel.rename_indexing(expr))
var = V.kernel.cse.generate(
V.kernel.compute, idx_str, bounds=get_bounds_index_expr(expr)
)
return ops.to_dtype(var, dtype)
@staticmethod
def masked(mask, body, other):
code = BracesBuffer()
# Write masked operation into a lambda
body_var = V.kernel.cse.newvar()
code.writeline(f"auto {body_var} = [&]")
with V.kernel.swap_buffers(code), code.indent():
result = body()
code.writeline(f"return {result};")
code.writeline(";")
V.kernel.compute.splice(code)
# Use the lambda's return type as the type of other
other_code = value_to_cpp(other, f"decltype({body_var}())")
return f"{mask} ? {body_var}() : {other_code}"
@staticmethod
def logical_and(a, b):
return f"{a} && {b}"
@staticmethod
def logical_not(a):
return f"!{a}"
@staticmethod
def logical_or(a, b):
return f"{a} || {b}"
@staticmethod
def logical_xor(a, b):
return f"{a} != {b}"
@staticmethod
def bitwise_and(a, b):
return f"decltype({a})({a} & {b})"
@staticmethod
def bitwise_not(a):
return f"decltype({a})(~{a})"
@staticmethod
def bitwise_or(a, b):
return f"decltype({a})({a} | {b})"
@staticmethod
def bitwise_xor(a, b):
return f"decltype({a})({a} ^ {b})"
@staticmethod
def bitwise_left_shift(a, b):
code = BracesBuffer()
code.writeline("[&]()")
with code.indent():
scalar_t = DTYPE_TO_CPP[a.dtype]
code.writeline(
f"constexpr decltype({b}) max_shift = sizeof({scalar_t}) * CHAR_BIT;"
)
code.writeline(
f"if ((static_cast<std::make_signed_t<{scalar_t}>>({b}) < 0) || ({b} >= max_shift))"
)
with code.indent():
code.writeline(f"return decltype({a})(0);")
code.writeline(
f"return decltype({a})(static_cast<std::make_unsigned_t<{scalar_t}>>({a}) << {b});"
)
code.writeline("()")
return code
@staticmethod
def bitwise_right_shift(a, b):
code = BracesBuffer()
code.writeline("[&]()")
with code.indent():
scalar_t = DTYPE_TO_CPP[a.dtype]
code.writeline(
f"constexpr decltype({b}) max_shift = sizeof({scalar_t}) * CHAR_BIT - std::is_signed_v<{scalar_t}>;"
)
code.writeline(
f"if ((static_cast<std::make_signed_t<{scalar_t}>>({b}) < 0) || ({b} >= max_shift))"
)
with code.indent():
code.writeline(f"return decltype({a})({a} >> max_shift);")
code.writeline(f"return decltype({a})({a} >> {b});")
code.writeline("()")
return code
@staticmethod
def rand(seed: sympy.Expr, offset: sympy.Expr):
return f"normalized_rand_cpu({seed}, {offset})"
@staticmethod
def randn(seed: sympy.Expr, offset: sympy.Expr):
return f"randn_cpu({seed}, {offset})"
@staticmethod
def randint64(seed: sympy.Expr, offset: sympy.Expr, low, high):
return f"randint64_cpu({seed}, {offset}, {low}, {high})"
@staticmethod
def sigmoid(x):
return f"decltype({x})(1) / (decltype({x})(1) + std::exp(-{x}))"
@staticmethod
def sign(x):
code = BracesBuffer()
scalar_zero = f"decltype({x})(0)"
scalar_one = f"decltype({x})(1)"
code.writeline("[&]()")
with code.indent():
code.writeline(f"auto left = {x} > 0 ? {scalar_one} : {scalar_zero};")
code.writeline(f"auto right = {x} < 0 ? {scalar_one} : {scalar_zero};")
code.writeline("return left - right;")
code.writeline("()")
return code
@staticmethod
def device_assert_async(cond, msg):
return f'({cond} ? 0 : (throw std::runtime_error("{msg}"), 0))'
CppOverrides._initialize_pointwise_overrides("cpp")
class CppVecOverrides(CppOverrides):
"""Map element-wise ops to aten vectorization C++"""
def __new__(cls, *args, **kargs):
self = super().__new__(cls)
def wrap(func):
# `CppVecKernel` generates both scalar ops and vector ops according to
# whether the inputs are scalars or vectors while all ops in `CppVecOverrides`
# (except for some ops explained below) assume the inputs are vectors. We wrap the ops in
# `CppVecOverrides` to broadcast scalar inputs to vectors if needed or fallback to
# `CppOverrides` when all inputs are scalars.
#
# Notes on ops handled separately in their own functions:
# `ops.masked`:
# needs recursive handling of masked body.
# `ops.index_expr`:
# needs to further analyze the dependency of the index expression on
# the tiling itervar.
def wrapper(*args, **kwargs):
scalars = [
arg
for arg in args
if isinstance(arg, (int, sympy.Expr))
or (isinstance(arg, CppCSEVariable) and not arg.is_vec)
]
vectors = [
arg
for arg in args
if isinstance(arg, CppCSEVariable) and arg.is_vec
]
new_args = list(args)
if scalars and vectors:
new_args = []
for arg in args:
if isinstance(arg, (int, sympy.Expr)):
if isinstance(arg, sympy.Expr) and not arg.is_number:
arg = ops.index_expr(arg, torch.int64)
else:
arg = ops.constant(arg, torch.int64)
arg = arg.value if isinstance(arg, OpsValue) else arg
new_args.append(arg)
# DType Promotion
if vectors:
# We have saw several data type mismatch issues related with index_expr in
# the lowering phase of torch.int8. torch.int32, torch.int64.
# 1. int32 and int64 in test_torchinductor.py::test_max_pool2d_with_indices_backward3_cpu
# 2. int8 and int32 in test_torchinductor.py::test_max_pool2d5_cpu
# 3. int32 and fp32 in test_torchinductor_dynamic_shapes.py::test_avg_pool2d8_dynamic_shapes_cpu
if len(new_args) == 2:
new_args = promote_args(new_args)
elif func == CppVecOverrides.where:
new_args[1:] = promote_args(new_args[1:])
# Broadcast scalar args to vector
if scalars and vectors:
assert isinstance(V.kernel, CppVecKernel)
new_args = [
(
V.kernel.broadcast(new_arg)
if (
isinstance(new_arg, CppCSEVariable)
and not new_arg.is_vec
and func
not in [
CppVecOverrides.rand,
CppVecOverrides.randn,
CppVecOverrides.randint64,
]
)
else new_arg
)
for new_arg in new_args
]
if vectors:
return func(*new_args, **kwargs)
else:
# fallback to scalar ops
scalar_ops = super(CppVecOverrides, self)
scalar_func = getattr(scalar_ops, func.__name__)
assert scalar_func is not None
return scalar_func(*args, **kwargs)
return wrapper
for name, method in vars(CppVecOverrides).items():
if getattr(method, "__class__", None) == staticmethod and name not in [
"masked",
"index_expr",
]:
setattr(self, name, wrap(method.__func__))
return self
@staticmethod
def add(a, b):
return f"{a} + {b}"
@staticmethod
def sub(a, b):
return f"{a} - {b}"
@staticmethod
def mul(a, b):
return f"{a} * {b}"
@staticmethod
def truediv(a, b):
return f"{a} / {b}"
@staticmethod
def abs(x):
return f"{x}.abs()"
@staticmethod
def sin(x):
return f"{x}.sin()"
@staticmethod
def cos(x):
return f"{x}.cos()"
@staticmethod
def exp(x):
return f"{x}.exp()"
@staticmethod
def exp2(x):
return f"{x}.exp2()"
@staticmethod
def expm1(x):
# decompose for a better performance
vec_one = f"decltype({x})(1)"
return f"{x}.exp() - {vec_one}"
@staticmethod
def erf(x):
return f"{x}.erf()"
@staticmethod
def erfc(x):
return f"{x}.erfc()"
@staticmethod
def erfinv(x):
return f"{x}.erfinv()"
@staticmethod
def sqrt(x):
return f"{x}.sqrt()"
@staticmethod
def eq(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} == {y})"
@staticmethod
def ne(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
if x.dtype == torch.bool:
assert y.dtype == torch.bool
x_cast, y_cast = unify_mask_base_type(V.kernel.compute, (x, y))
return f"{x_cast} != {y_cast}"
else:
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} != {y})"
@staticmethod
def lt(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} < {y})"
@staticmethod
def gt(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} > {y})"
@staticmethod
def le(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} <= {y})"
@staticmethod
def ge(x, y):
assert isinstance(V.kernel, CppVecKernel)
assert isinstance(x, CppCSEVariable)
assert x.dtype is not None
return f"{V.kernel._get_mask_type(x.dtype)}({x} >= {y})"
@staticmethod
def and_(x, y):
return f"{x} & {y}"
@staticmethod
def rsqrt(x):
return f"{x}.rsqrt()"
@staticmethod
def pow(a, b):
return f"{a}.pow({b})"
@staticmethod
def log(x):
return f"{x}.log()"
@staticmethod
def round(x):
return f"{x}.round()"
@staticmethod
def floor(x):
return f"{x}.floor()"
@staticmethod
def ceil(x):
return f"{x}.ceil()"
@staticmethod
def trunc(x):
return f"{x}.trunc()"
@staticmethod
def fmod(a, b):
return f"{a}.fmod({b})"
@staticmethod
def lgamma(x):
return f"{x}.lgamma()"
@staticmethod
def logical_and(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} & {b}"
@staticmethod
def logical_not(a):
return f"~{a}"
@staticmethod
def logical_or(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} | {b}"
@staticmethod
def logical_xor(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} ^ {b}"
@staticmethod
def bitwise_and(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} & {b}"
@staticmethod
def bitwise_not(a):
return f"~{a}"
@staticmethod
def bitwise_or(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} | {b}"
@staticmethod
def bitwise_xor(a, b):
a, b = may_unify_binary_op_mask_type(a, b)
return f"{a} ^ {b}"
@staticmethod
def bitwise_left_shift(a, b):
return f"{a} << {b}"
@staticmethod
def bitwise_right_shift(a, b):
return f"{a} >> {b}"
@staticmethod
def load_seed(name, offset):
assert isinstance(V.kernel, CppVecKernel)
return f"{V.kernel.load(name, offset)}"
@staticmethod
def rand(seed, offset):
assert isinstance(V.kernel, CppVecKernel)
code = BracesBuffer()
rand_function = (
f"result[offset_idx] = normalized_rand_cpu({seed}, offset[offset_idx]);"
)
return codegen_rand(offset, code, rand_function)
@staticmethod
def randn(seed, offset):
assert isinstance(V.kernel, CppVecKernel)
code = BracesBuffer()
rand_function = f"result[offset_idx] = randn_cpu({seed}, offset[offset_idx]);"
return codegen_rand(offset, code, rand_function)
@staticmethod
def randint64(seed, offset, low, high):
assert isinstance(V.kernel, CppVecKernel)
code = BracesBuffer()
rand_function = f"result[offset_idx] = randint64_cpu({seed}, offset[offset_idx], {low}, {high});"
return codegen_rand(offset, code, rand_function, torch.int64)
@staticmethod
def remainder(a, b):
assert a.dtype == b.dtype, (
"remainder vec implementation expect the same inputs' dtype."
)
return f"{a} - ({CppVecOverrides.floordiv(a, b)}) * {b}"
@staticmethod
def tan(a):
return f"{a}.tan()"
@staticmethod
def tanh(a):
if config.cpp.use_decompose_tanh:
vec_one = f"decltype({a})(1)"
vec_two = f"decltype({a})(2)"
vec_minus_two = f"decltype({a})(-2)"
return (
f"{vec_two} / ({vec_one} + ({vec_minus_two} * {a}).exp()) - {vec_one}"
)
else:
return f"{a}.tanh()"
@staticmethod
def reciprocal(a):
return f"{a}.reciprocal()"
@staticmethod
def atan(x):
return f"{x}.atan()"
@staticmethod
def acos(x):
return f"{x}.acos()"
@staticmethod
def asin(x):
return f"{x}.asin()"
@staticmethod
def cosh(x):
return f"{x}.cosh()"
@staticmethod
def sinh(x):
return f"{x}.sinh()"
@staticmethod
def log10(x):
return f"{x}.log10()"
@staticmethod
def log2(x):
return f"{x}.log2()"
@staticmethod
def nextafter(x, y):
return f"{x}.nextafter({y})"
@staticmethod
def copysign(a, b):
return f"{a}.copysign({b})"
@staticmethod
def atan2(a, b):
return f"{a}.atan2({b})"
@staticmethod
def hypot(a, b):
return f"{a}.hypot({b})"
@staticmethod
def atanh(x):
# For real x, atanh(x) = 1/2 * log((1+x)/(1-x))
vec_one = f"decltype({x})(1)"
vec_one_half = f"decltype({x})(0.5)"
return f"{vec_one_half} * (({vec_one} + {x})/({vec_one} - {x})).log()"
@staticmethod
def asinh(x):
return f"{x}.asinh()"
@staticmethod
def acosh(x):
return f"{x}.acosh()"
@staticmethod
def relu(x):
bug = config.cpp.inject_relu_bug_TESTING_ONLY
if bug == "compile_error":
return "compile error!"
elif bug == "runtime_error":
return f"{x}; throw 1"
elif bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"at::vec::clamp_min({x}, decltype({x})(0))"
else:
raise AssertionError(
f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}"
)
# TODO: this seems to be dead
@staticmethod
def sigmoid(x):
return f"decltype({x})(1)/(decltype({x})(1) + {x}.neg().exp())"
@staticmethod
def neg(x):
return f"{x}.neg()"
@staticmethod
def floordiv(a, b):
if is_float_dtype(a.dtype):
assert a.dtype == b.dtype, (
"div_floor_floating_vec implementation expect the same inputs' dtype."
)
return f"div_floor_floating_vec({a}, {b})"
else:
assert all(is_integer_dtype(item.dtype) for item in [a, b])
# a and b are integer type
_t = f"decltype({a})"
if V.kernel._get_raw_num_vectors(b.dtype) < 1:
# Doing blend to set the remaining bits of b to non-zero
b = f"{_t}::blend<{(1 << V.kernel.tiling_factor) - 1}>({_t}(1), {b})"
quot = f"{a} / {b}"
has_rem = f"({a} % {b} != {_t}(0))"
is_neg = f"(({a} < {_t}(0)) != ({b} < {_t}(0)))"
return f"{_t}::blendv({quot}, {quot} - {_t}(1), {has_rem} & {is_neg})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
if V.kernel._get_raw_num_vectors(b.dtype) < 1:
# Doing blend to set the remaining bits of b to non-zero
_t = f"decltype({b})"
b = f"{_t}::blend<{(1 << V.kernel.tiling_factor) - 1}>({_t}(1), {b})"
return f"{a} / {b}"
@staticmethod
def minimum(a, b):
if a.dtype == torch.bool:
assert b.dtype == torch.bool
a_cast, b_cast = unify_mask_base_type(V.kernel.compute, (a, b))
return f"{a_cast} & {b_cast}"
else:
return f"at::vec::minimum({a}, {b})"
@staticmethod
def maximum(a, b):
if a.dtype == torch.bool:
assert b.dtype == torch.bool
a_cast, b_cast = unify_mask_base_type(V.kernel.compute, (a, b))
return f"{a_cast} | {b_cast}"
else:
return f"at::vec::maximum({a}, {b})"
@staticmethod
def square(a):
return f"{a} * {a}"
@staticmethod
def where(a, b, c):
assert isinstance(V.kernel, CppVecKernel)
if b.dtype == torch.bool:
assert c.dtype == torch.bool
blendv_a, blendv_b, blendv_c = unify_mask_base_type(
V.kernel.compute, (a, b, c)
)
return f"decltype({blendv_b})::blendv({blendv_c}, {blendv_b}, {blendv_a})"
else:
return f"decltype({b})::blendv({c}, {b}, {V.kernel._get_mask_cast(a, b.dtype)})"
@staticmethod
def sign(x):
code = BracesBuffer()
vec_zero = f"decltype({x})(0)"
vec_one = f"decltype({x})(1)"
blendv_l = f"decltype({x})::blendv({vec_zero}, {vec_one}, {vec_zero} < {x})"
blendv_r = f"decltype({x})::blendv({vec_zero}, {vec_one}, {x} < {vec_zero})"
code.writeline("[&]()")
with code.indent():
code.writeline(f"auto left = {blendv_l};")
code.writeline(f"auto right = {blendv_r};")
code.writeline("return left - right;")
code.writeline("()")
return code
@staticmethod
def to_dtype(x, dtype, src_dtype=None, use_compute_dtypes=True):
assert dtype in [
torch.bool,
torch.float64,
torch.float,
torch.bfloat16,
torch.float16,
torch.uint8,
torch.int8,
torch.int32,
torch.int64,
torch.float8_e4m3fn,
torch.float8_e5m2,
], f"{__name__} does not support {dtype}"
assert isinstance(x, CppCSEVariable)
src_dtype = x.dtype
expr = V.kernel.get_to_dtype_expr(x, dtype, src_dtype)
csevar = V.kernel.cse.generate(V.kernel.compute, expr)
csevar.update_on_args("to_dtype", (x, dtype), {"src_dtype": src_dtype})
if dtype in DTYPE_LOWP_FP and src_dtype == torch.float:
V.kernel.cache_dtype_convert(x, src_dtype, csevar, dtype)
return csevar
@staticmethod
def log1p(x):
bug = config.cpp.inject_log1p_bug_TESTING_ONLY
if bug == "accuracy":
return f"{x} + decltype({x})(1)"
elif bug is None:
return f"{x}.log1p()"
else:
raise AssertionError(
f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def masked(mask, body, other):
assert isinstance(V.kernel, CppVecKernel)
code = BracesBuffer()
var = V.kernel.cse.newvar()
with V.kernel.masked(mask) as new_mask:
code.writeline(f"auto {var} = [&]")
with V.kernel.swap_buffers(code), code.indent():
result = body()
code.writeline(f"return {result};")
code.writeline(";")
V.kernel.compute.splice(code)
dtype = result.dtype
body_code = f"{var}()"
def maskify_or_vecify(code):
return (
f"{V.kernel._get_mask_type()}::from({code})"
if dtype == torch.bool
else f"{V.kernel._get_vec_type(dtype)}({code})"
)
if result.is_vec:
body_code_vec = body_code
else:
body_code_vec = maskify_or_vecify(body_code)
other_code = value_to_cpp(other, DTYPE_TO_CPP[dtype])
# loading bool as VecMask<float, N>
other_code_vec = maskify_or_vecify(other_code)
assert isinstance(new_mask, CppCSEVariable), new_mask
if new_mask.is_vec:
code = BracesBuffer()
code.writeline("[&]")
with V.kernel.swap_buffers(code), code.indent():
code.writeline(f"if ({new_mask}.all_zero())")
with code.indent():
code.writeline(f"return {other_code_vec};")
code.writeline("else")
with code.indent():
# Create cse variable to reuse kernel.overrides.where
body_vec_var = V.kernel.cse.generate(
V.kernel.compute,
body_code_vec,
)
other_vec_var = V.kernel.cse.generate(
V.kernel.compute,
other_code_vec,
)
assert isinstance(body_vec_var, CppCSEVariable), body_vec_var
assert isinstance(other_vec_var, CppCSEVariable), other_vec_var
body_vec_var.dtype = dtype
other_vec_var.dtype = dtype
overrides: type[Union[CppOverrides, CppVecOverrides]] = (
V.kernel.overrides
) # type: ignore[has-type]
code.writeline(
f"return {overrides.where(new_mask, body_vec_var, other_vec_var)};"
)
code.writeline("()")
csevar = V.kernel.cse.generate(
V.kernel.compute,
code,
)
elif result.is_vec:
csevar = V.kernel.cse.generate(
V.kernel.compute, f"{mask} ? {body_code_vec} : {other_code_vec}"
)
else:
csevar = V.kernel.cse.generate(
V.kernel.compute, f"{mask} ? {body_code} : {other_code}"
)
# `result` is explicitly added to the args for correct propagation
# of relevant itervars and vectorization status.
csevar.update_on_args("masked", (mask, body, other, result), {})
return csevar
@staticmethod
def index_expr(expr, dtype):
assert isinstance(V.kernel, CppVecKernel)
index = V.kernel.rename_indexing(expr)
tiling_var = V.kernel.itervars[V.kernel.tiling_idx]
stride = V.kernel._try_get_const_stride(index, tiling_var)
if stride == 0:
return CppOverrides.index_expr(expr, dtype)
elif stride is not None:
idx = V.kernel.cse.generate(
V.kernel.compute, cexpr(index), bounds=get_bounds_index_expr(expr)
)
value = ops.to_dtype(idx, dtype)
if isinstance(value, OpsValue):
value = value.value
csevar = V.kernel.arange(value, stride)
else:
csevar = V.kernel._load_or_store_non_contiguous( # type: ignore[assignment]
None, index, dtype, V.kernel.compute
)
csevar.update_on_args("index_expr", (expr, dtype), {})
return csevar
@staticmethod
def frexp(x):
cache_keys = f"frexp({x})[0]", f"frexp({x})[1]"
if all(V.kernel.cse.try_get(cache_key) is not None for cache_key in cache_keys):
return tuple(V.kernel.cse.try_get(cache_key) for cache_key in cache_keys)
cdtype = DTYPE_TO_CPP[x.dtype]
size = V.kernel.tail_size if V.kernel.tail_size else V.kernel.tiling_factor
code = BracesBuffer()
exponent = V.kernel.cse.newvar(dtype=torch.int32)
mantissa = V.kernel.cse.newvar(dtype=x.dtype)
exponent.update_on_args("frexp", (x,), kwargs={})
mantissa.update_on_args("frexp", (x,), kwargs={})
n_vec = V.kernel._get_num_vectors(x.dtype)
mantissa_t = (
f"at::vec::Vectorized<{cdtype}>"
if n_vec == 1
else f"at::vec::VectorizedN<{cdtype}, {n_vec}>"
)
code.writeline(
f"at::vec::Vectorized<int32_t> {exponent};"
if n_vec == 1
else f"at::vec::VectorizedN<int32_t, {n_vec}> {exponent};"
)
code.writeline(f"{mantissa_t} {mantissa};")
code.writeline("[&]()")
with code.indent():
code.writeline(
f"__at_align__ std::array<{cdtype}, {V.kernel.tiling_factor}> tmpbuf;"
)
code.writeline(f"{x}.store(tmpbuf.data(), {cexpr_index(size)});")
code.writeline(
f"__at_align__ std::array<int32_t, {V.kernel.tiling_factor}> tmpbuf_exponent;"
)
code.writeline(
f"__at_align__ std::array<{cdtype}, {V.kernel.tiling_factor}> tmpbuf_mantissa;"
)
code.writeline(f"for (int i = 0; i < {cexpr_index(size)}; i++)")
with code.indent():
code.writeline(
"tmpbuf_mantissa[i] = std::frexp(tmpbuf[i], &tmpbuf_exponent[i]);"
)
code.writeline(
f"{exponent} = at::vec::Vectorized<int32_t>::loadu(tmpbuf_exponent.data(), {cexpr_index(size)});"
if n_vec == 1
else f"{exponent} = at::vec::VectorizedN<int32_t, {n_vec}>::loadu(tmpbuf_exponent.data(), {cexpr_index(size)});"
)
code.writeline(
f"{mantissa} = {mantissa_t}::loadu(tmpbuf_mantissa.data(), {cexpr_index(size)});"
)
code.writeline("();")
V.kernel.compute.splice(code)
cse_vars = (mantissa, exponent)
for cache_key, cse_var in zip(cache_keys, cse_vars):
V.kernel.cse.put(cache_key, cse_var)
return mantissa, exponent
@classmethod
def _scalarize(cls, scalar_func):
def inner(*args, **kwargs):
assert not kwargs
kernel = V.kernel
assert isinstance(kernel, CppVecKernel)
code = BracesBuffer()
code.writeline("[&]()")
vec_dtype = args[0].dtype
n_vec = kernel._get_num_vectors(vec_dtype)
size = kernel.tail_size if kernel.tail_size else kernel.tiling_factor
scalar_args = []
cdtype = DTYPE_TO_CPP[vec_dtype]
output_mask = scalar_func.__name__ in (
"isinf",
"isnan",
"signbit",
)
octype = "bool" if output_mask else cdtype
octype = (
DTYPE_TO_CPP[args[-2]]
if (scalar_func.__name__ == "to_dtype_bitcast")
else octype
)
with code.indent():
for argidx, arg in enumerate(args):
if isinstance(arg, CppCSEVariable):
assert arg.is_vec
assert arg.dtype == vec_dtype
code.writeline(
f"__at_align__ std::array<{cdtype}, {kernel.tiling_factor}> tmpbuf{argidx};"
)
code.writeline(
f"{arg}.store(tmpbuf{argidx}.data(), {cexpr_index(size)});"
)
scalar_args.append(f"tmpbuf{argidx}[i]")
else:
scalar_args.append(arg)
code.writeline(
f"__at_align__ std::array<{octype}, {kernel.tiling_factor}> tmpbuf_out;"
)
res = scalar_func(*scalar_args)
code.writeline(f"for (int i = 0; i < {cexpr_index(size)}; i++)")
with code.indent():
code.writeline(f"tmpbuf_out[i] = {res};")
if output_mask:
assert not kernel.tail_size
load_args = "tmpbuf_out.data()"
load_fn = f"at::vec::VecMask<{cdtype},{n_vec}>::from"
else:
load_args = f"tmpbuf_out.data(), {cexpr_index(size)}"
if n_vec == 1:
load_fn = f"at::vec::Vectorized<{octype}>::loadu"
else:
load_fn = f" at::vec::VectorizedN<{octype}, {n_vec}>::loadu"
code.writeline(f"return {load_fn}({load_args});")
code.writeline("()")
return code
return inner
@classmethod
def _initialize_scalarize(cls):
vec_vars = vars(CppVecOverrides)
for name, method in vars(CppOverrides).items():
if isinstance(method, staticmethod) and name not in vec_vars:
func = cls._scalarize(method.__func__)
func.__name__ = name
setattr(cls, name, staticmethod(func))
CppVecOverrides._initialize_pointwise_overrides("cppvec")
CppVecOverrides._initialize_scalarize()
class CppTile2DOverrides(CppVecOverrides):
@staticmethod
def index_expr(expr, dtype):
assert isinstance(V.kernel, CppTile2DKernel)
expr = V.kernel.transform_indexing(expr)
return CppVecOverrides.index_expr(expr, dtype)
class CppKernel(Kernel):
"""
Base class for C++ kernel code generation in PyTorch Inductor.
This class is responsible for generating C++ code from the intermediate representation.
Args:
args: Kernel arguments used for code generation
num_threads: Number of threads for parallel execution
"""
overrides = CppOverrides # type: ignore[assignment]
sexpr = cexpr
newvar_prefix = "auto "
suffix = ";"
def __init__(self, args, num_threads):
super().__init__(args)
# Indicate when this kernel is active, for example
# {x0, {24, 26}} -> this kernel is active when x0 >= 24 and x0 < 26
self.active_ranges: dict[sympy.Expr, tuple[sympy.Expr, ...]] = {}
# Indicate this kernel will be moved under the inner for-loop
# See move_code_under_inner_loop
self.inner_itervars: list[sympy.Symbol] = []
self.call_ranges: Optional[tuple[sympy.Expr, ...]] = None
self.ranges: list[sympy.Expr] = []
self.itervars: list[sympy.Symbol] = []
self.reduction_depth = None
self.reduction_prefix = IndentedBuffer()
# We need this because when we run "reduction" nodes here, we lack
# "loop" information to decide whether we need a scalar init or an array init
# in the reduction prefix. Meanwhile, we have other information like
# reduction types and dtype to generate the reduction prefix. We record the information
# with a callable lambda function, and when we have enough information to finalize
# the reduction prefix, we can invoke the functions here with additional information.
self.reduction_prefix_generators: list[Callable] = [] # type: ignore[type-arg]
self.reduction_suffix = IndentedBuffer()
self.parallel_reduction_prefix = IndentedBuffer()
self.parallel_reduction_suffix = IndentedBuffer()
self.local_reduction_init = IndentedBuffer()
self.local_reduction_stores = IndentedBuffer()
self.is_reduction = False
self.non_parallel_reduction_prefix = IndentedBuffer()
self.non_parallel_reduction_suffix = IndentedBuffer()
self.reduction_cse = CSE(self.newvar_prefix, self.suffix, name_prefix="tmp_acc")
self.welford_helper_cse = CSE(
self.newvar_prefix, self.suffix, name_prefix="welford_helper"
)
self.cascade_helper_cse = CSE(
self.newvar_prefix, self.suffix, name_prefix="cascade_helper"
)
self.preloads = IndentedBuffer()
self.poststores = IndentedBuffer()
self.num_threads = num_threads # num_threads the kernel specialized for
self.reduction_omp_dec: dict[tuple[str, str], str] = {}
self.reduction_var_names: list[str] = []
def _gen_parallel_reduction_buffers(
self,
acc,
acc_type,
reduction_type,
dtype,
reduction_combine_fn=reduction_combine,
reduction_init_fn=reduction_init,
):
if config.cpp.dynamic_threads and not self.parallel_reduction_prefix:
self.parallel_reduction_prefix.writeline(
"int max_threads = omp_get_max_threads();"
)
acc_local = f"{acc}_local"
num_threads = (
"max_threads" if config.cpp.dynamic_threads else parallel_num_threads()
)
acc_local_in_array = f"{acc}_arr[tid]"
self.local_reduction_init.writeline(
f"{acc_type} {acc_local} = {reduction_init_fn(reduction_type, dtype)};"
)
self.parallel_reduction_prefix.splice(
reduction_prefix_array(
acc,
acc_type,
reduction_type,
dtype,
num_threads,
reduction_init_fn,
)
)
self.local_reduction_stores.writeline(f"{acc_local_in_array} = {acc_local};")
self.parallel_reduction_suffix.writelines(
[
f"for (int tid = 0; tid < {num_threads}; tid++)",
"{",
f" {acc} = {reduction_combine_fn(reduction_type, acc, acc_local_in_array, src_dtype=dtype)};",
"}",
],
)
def update_stores_with_parallel_reduction(self):
for var_name in self.reduction_var_names:
replace_acc_name(self.stores, var_name, f"{var_name}_local")
def gen_body(self, code: Optional[BracesBuffer] = None):
assert code is None
code = BracesBuffer()
with contextlib.ExitStack() as stack:
if hasattr(self, "codegen_inner_loops"):
code.splice(self.preloads)
self.codegen_inner_loops(code)
stack.enter_context(code.indent())
code.splice(self.loads)
code.splice(self.compute)
code.splice(self.stores)
if hasattr(self, "codegen_inner_loops"):
code.splice(self.poststores)
if self.inner_itervars:
for idx in self.inner_itervars:
start, end = self.active_ranges[idx]
code = move_code_under_inner_loop(code, idx, f"{idx}_tail", start, end)
return code
@contextlib.contextmanager
def masked(self, mask):
"""Context manager to add an additional mask to loads and stores."""
prior = self._load_mask
if prior:
mask = ops.and_(mask, prior)
if isinstance(mask, OpsValue):
mask = mask.value
assert isinstance(mask, CppCSEVariable)
# see NOTE [dtype of CppCSEVariable]
# mask's dtype should be bool
mask.dtype = torch.bool
self._load_mask = mask
try:
yield mask
finally:
self._load_mask = prior
def scale_index_with_offset(
self, index: sympy.Expr, scale=1, itervar_idx=-1, offset=0
):
var = self.itervars[itervar_idx]
replacement = {var: var * scale + offset}
new_index = sympy_subs(index, replacement)
return new_index
def index_to_str(self, index: sympy.Expr) -> str:
"""
Convert an index expr to a string that can be used in cpp code.
e.g. a sympy expression "s2" may actually appear as "ks1" in the cpp kernel.
"""
return cexpr(self.rename_indexing(index))
def index_indirect_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol):
"""
Check if an index has free symbol CppCSEVariable that depends on `itervar`.
"""
return any(
self.cse.varname_map[s.name].depends_on(itervar) # type: ignore[attr-defined]
for s in index.free_symbols
if s.name in self.cse.varname_map # type: ignore[attr-defined]
and isinstance(self.cse.varname_map[s.name], CppCSEVariable) # type: ignore[attr-defined]
)
def index_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol):
return itervar in index.free_symbols or self.index_indirect_depends_on(
index, itervar
)
def var_ranges(self):
return dict(zip(self.itervars, self.ranges))
def check_bounds(
self,
expr: sympy.Expr,
size: sympy.Expr,
lower: bool,
upper: bool,
):
if not (lower or upper):
return
indirect = free_symbol_is_type(expr, SymT.TMP)
if indirect:
# indexing in compute
csevar = ops.index_expr(expr, torch.int64).value
buffer = V.kernel.compute
else:
# indexing in loads
prior_compute = V.kernel.compute
try:
V.kernel.compute = self.loads
csevar = ops.index_expr(expr, torch.int64).value
finally:
V.kernel.compute = prior_compute
buffer = self.loads
size_str = V.kernel.sexpr(self.rename_indexing(size)) if upper else None
line = self.indirect_assert(
csevar, "0" if lower else None, size_str, self._load_mask
)
self.cse.generate(buffer, line, assignment=False)
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
line = f"{var}[{cexpr_index(index)}]"
csevar = self.cse.generate(self.loads, line, dtype=V.graph.get_dtype(name))
csevar.update_on_args("load", (self, name, index), {})
return csevar
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
index = self.rename_indexing(index)
if mode is None:
line = f"{var}[{cexpr_index(index)}] = {value};"
elif mode == "atomic_add":
if not config.cpp.dynamic_threads and self.num_threads == 1:
line = f"{var}[{cexpr_index(index)}] += {value};"
else:
dtype = V.graph.get_dtype(name)
# mirroring static_cast<float>(...) in load:
value = f"static_cast<{DTYPE_TO_CPP[dtype]}>({value})"
line = f"atomic_add(&{var}[{cexpr_index(index)}], {value});"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(DeferredLine(name, line))
def _gen_reduction_prefix(
self,
acc: Union[CSEVariable, str],
acc_type: str,
rtype: str,
dtype: torch.dtype,
init_fn,
):
# Generate reduction prefix
# If size is None, we will define and initialize a single reduction variable
# => float tmp_acc0 = 0;
# Otherwise, we will define and initialize a reduction array
# => float tmp_acc0_arr[size];
# => for (int i = 0; i < size; i++) tmp_acc0_arr[i] = 0;
def inner(size: Optional[int] = None):
if size is None:
return f"{acc_type} {acc} = {init_fn(rtype, dtype)};"
else:
return reduction_prefix_array(
acc,
acc_type,
rtype,
dtype,
size,
init_fn,
)
return inner
def finalize_reduction_prefix(self, size: Optional[int] = None):
for gen_fn in self.reduction_prefix_generators:
self.reduction_prefix.splice(gen_fn(size))
def need_use_acc_helper(self, reduction_type, dtype, use_scalar):
# Check if we need accumulate helper for the reduction operation.
# using accumulate helper generates the necessary code to improve precision for
# sum and welford
# Note: using helper has non-negligible impact on performance
# keep the original behavior for welford_reduce
# acc helper is not used for scalar welford_reduce
if reduction_type == "welford_reduce":
return not use_scalar
# TODO add supports for more data types when needed
if reduction_type == "sum" and dtype == torch.float:
assert self.call_ranges is not None
reduction_size = functools.reduce(
operator.mul, self.call_ranges[self.reduction_depth :]
)
if config.cpp.dynamic_threads:
# If dynamic threads, to be conservative,
# use reduction_size as the range size
rt_size = reduction_size
else:
rt_size = CeilDiv(reduction_size, parallel_num_threads())
# chunk size to balance accuracy and performance
chunk_size = 2**20
# use acc helper If cannot get size_hint
try:
rt_size_hint = V.graph.sizevars.size_hint(rt_size)
except Exception:
return True
if rt_size_hint > chunk_size:
# use helper if the reduction size is too large
V.graph.sizevars.check_lt(chunk_size, rt_size)
return True
else:
V.graph.sizevars.check_leq(rt_size, chunk_size)
return False
def _acc_helper_init(
self,
reduction_type,
helper_val,
helper_range,
dtype,
num_threads=None,
use_scalar=False,
):
num_range_thread = (
CeilDiv(helper_range, num_threads) if num_threads else helper_range
)
num_range_thread_expr = cexpr_index(num_range_thread)
assert reduction_type in ["welford_reduce", "sum"]
chunk_size = 4096 if reduction_type == "welford_reduce" else 2**20
num_chunks = CeilDiv(num_range_thread, chunk_size)
helper_type = (
"WelfordHelper"
if reduction_type == "welford_reduce"
else "CascadeSumHelper"
)
if use_scalar:
h_type = DTYPE_TO_CPP[dtype]
else:
h_type = (
self._get_vec_type(dtype)
if hasattr(self, "_get_vec_type")
else DTYPE_TO_CPP[dtype]
)
helper_init_line = (
f"{helper_type}<{h_type}, {chunk_size}> {helper_val}"
f"("
f"{num_range_thread_expr}"
f");"
)
if reduction_type == "sum":
return helper_init_line
if isinstance(num_chunks, sympy.Integer) and num_chunks <= 1:
# When the number of chunks <= 1, there is no need to use cascade summation to improve
# reduction accuracy. We can initialize a static WelfordHelper to improve performance.
return f"static {helper_init_line}"
else:
return helper_init_line
def _use_acc_helper(
self, reduction_type, acc, helper_val, helper_range, dtype, use_scalar=False
):
num_threads = (
"max_threads" if config.cpp.dynamic_threads else parallel_num_threads()
)
self.non_parallel_reduction_prefix.writeline(
self._acc_helper_init(
reduction_type, helper_val, helper_range, dtype, None, use_scalar
)
)
self.local_reduction_init.writeline(
self._acc_helper_init(
reduction_type, helper_val, helper_range, dtype, num_threads, use_scalar
)
)
result = acc if use_scalar else f"{acc}_vec"
if reduction_type == "welford_reduce":
self.non_parallel_reduction_suffix.writeline(
f"{result} = welford_combine({result}, &{helper_val});"
)
self.local_reduction_stores.writeline(
f"{result}_local = welford_combine({result}_local, &{helper_val});"
)
else:
self.non_parallel_reduction_suffix.writeline(
f"{result} = cascade_sum_final(&{helper_val});"
)
self.local_reduction_stores.writeline(
f"{result}_local = cascade_sum_final(&{helper_val});"
)
def reduction(self, dtype, src_dtype, reduction_type, value):
argmax_or_argmin = reduction_type in ("argmax", "argmin")
reduction_key = src_dtype, reduction_type, value
if reduction_key in self.reduction_cse.reduction_cache:
return self.reduction_cse.reduction_cache[reduction_key]
acc = self.reduction_cse.generate(
self.loads, f"reduction {reduction_key}", write=False
)
self.reduction_var_names.append(f"{acc}")
self.is_reduction = True
init_dtype = src_dtype if argmax_or_argmin else dtype
acc_type = reduction_acc_type(reduction_type, init_dtype)
self.reduction_prefix_generators.append(
self._gen_reduction_prefix(
acc, acc_type, reduction_type, init_dtype, reduction_init
)
)
if self.need_use_acc_helper(reduction_type, dtype, True):
# use cascade_helper for vec kernel
reduction_size = functools.reduce(
operator.mul, self.ranges[self.reduction_depth :]
)
helper_val = self.cascade_helper_cse.generate(
self.compute, f"reduction {reduction_key}", write=False
)
# rename the helper variable to distinguish it from vectorized version
scalar_helper_val = f"scalar_{helper_val}"
self._use_acc_helper(
reduction_type,
acc,
scalar_helper_val,
reduction_size,
dtype,
use_scalar=True,
)
self.stores.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, value, scalar_helper_val)};"
)
else:
assert self.reduction_depth is not None
index = self.itervars[self.reduction_depth]
for i in range(self.reduction_depth + 1, len(self.itervars)):
index = index * self.ranges[i] + self.itervars[i]
self.stores.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, value, index=index)};"
)
self._gen_parallel_reduction_buffers(acc, acc_type, reduction_type, init_dtype)
result = reduction_project(reduction_type, acc)
self.reduction_cse.reduction_cache[reduction_key] = result
return result
def store_reduction(self, name, index, value):
index = self.rename_indexing(index)
var = self.args.output(name)
self.reduction_suffix.writeline(
DeferredLine(name, f"{var}[{cexpr_index(index)}] = {value};")
)
def set_ranges(self, lengths, reduction_lengths):
if self.call_ranges:
assert self.call_ranges == tuple(lengths) + tuple(reduction_lengths), (
f"{self.call_ranges} == {tuple(lengths)} + {tuple(reduction_lengths)}"
)
assert self.reduction_depth == len(lengths)
else:
self.call_ranges = tuple(lengths) + tuple(reduction_lengths)
self.ranges = [self.rename_indexing(x) for x in self.call_ranges]
self.itervars = [
sympy_index_symbol_with_prefix(SymT.XBLOCK, n)
for n in range(len(self.ranges))
]
self.reduction_depth = len(lengths)
return (
self.itervars[: self.reduction_depth],
self.itervars[self.reduction_depth :],
)
def size_hint(self):
assert self.call_ranges is not None
return V.graph.sizevars.size_hint(
sympy_product(self.call_ranges), fallback=8192
)
def codegen_loops_impl(self, loop_nest, code, worksharing):
assert isinstance(self, CppKernelProxy)
threads = parallel_num_threads()
assert self.call_ranges is not None
if isinstance(loop_nest.kernel, OuterLoopFusedKernel):
par_depth = loop_nest.kernel.decide_parallel_depth(
loop_nest.max_parallel_depth(), threads
)
else:
par_depth = self.decide_parallel_depth(
loop_nest.max_parallel_depth(), threads
)
is_reduction_loop = (
loop_nest.loops is not None
and loop_nest.loops[par_depth.start_depth].is_reduction
)
with contextlib.ExitStack() as stack:
if par_depth.parallel_depth:
if is_reduction_loop:
# need to close the worksharing scope to define reduction vars outside it
worksharing.close()
else:
worksharing.parallel(threads)
loop_nest.mark_parallel(par_depth)
elif threads > 1:
if worksharing.single():
stack.enter_context(code.indent())
def gen_kernel(_loop_nest: LoopNest):
def is_parallel_reduction():
assert _loop_nest.loops
root = _loop_nest.loops[par_depth.start_depth]
return root.is_reduction and root.parallel
kernel = _loop_nest.get_kernel()
if isinstance(kernel, OuterLoopFusedKernel):
for _loop_nest in kernel.inner:
gen_loop_nest(_loop_nest)
else:
assert isinstance(kernel, CppKernelProxy)
if _loop_nest.loops is not None and is_parallel_reduction():
kernel.update_stores_with_parallel_reduction()
with contextlib.ExitStack() as stack:
stack.enter_context(code.indent())
kernel.gen_body(code)
def get_reduction_prefix_suffix(kernel, parallel=False, is_suffix=False):
if is_suffix:
suffix = kernel.reduction_suffix
if parallel:
suffix = kernel.parallel_reduction_suffix + suffix
else:
suffix = kernel.non_parallel_reduction_suffix + suffix
return suffix
else:
prefix = kernel.reduction_prefix
if parallel:
prefix = prefix + kernel.parallel_reduction_prefix
else:
prefix = prefix + kernel.non_parallel_reduction_prefix
return prefix
def gen_loop_with_reduction(
_loop_nest: LoopNest, depth: int = 0, in_reduction=False
):
kernel = _loop_nest.get_kernel()
assert _loop_nest.loops
loop = _loop_nest.loops[depth]
with contextlib.ExitStack() as stack_outer:
if loop.is_reduction and not in_reduction:
reduction_prefix = get_reduction_prefix_suffix(
kernel, loop.parallel, is_suffix=False
)
if reduction_prefix:
stack_outer.enter_context(code.indent())
code.splice(reduction_prefix)
if is_reduction_loop and loop.parallel:
worksharing.parallel(threads)
if kernel.local_reduction_init:
assert kernel.local_reduction_stores
code.splice(kernel.local_reduction_init)
gen_loop_at(_loop_nest, depth)
if is_reduction_loop and loop.parallel:
if kernel.local_reduction_stores:
code.splice(kernel.local_reduction_stores)
worksharing.close()
if loop.is_reduction and not in_reduction:
code.splice(
get_reduction_prefix_suffix(
kernel, loop.parallel, is_suffix=True
)
)
def gen_loop_at(_loop_nest: LoopNest, depth: int = 0):
with contextlib.ExitStack() as stack:
assert _loop_nest.loops
loop = _loop_nest.loops[depth]
loop_lines = loop.lines()
if loop_lines is None:
return
code.writelines(loop_lines)
stack.enter_context(code.indent())
gen_loop_nest(_loop_nest, depth + 1, loop.is_reduction)
def gen_loop_nest(
_loop_nest: LoopNest,
depth: int = 0,
in_reduction: bool = False,
):
if _loop_nest.loops is None or depth == len(_loop_nest.loops): # type: ignore[arg-type]
gen_kernel(_loop_nest)
else:
gen_loop_with_reduction(_loop_nest, depth, in_reduction)
stack.enter_context(code.indent())
if (
isinstance(loop_nest.kernel, OuterLoopFusedKernel)
and isinstance(V.local_buffer_context, LocalBufferContext)
and V.local_buffer_context.local_buffers
):
# Allocate local buffer
local_buffers = V.local_buffer_context.local_buffers
for local_buffer in local_buffers.values():
# For dynamic size, rename s to ks
local_buf_size = sympy_product(
[
self.rename_indexing(size_val)
for size_val in local_buffer.get_layout().size
]
)
local_buf_dtype = DTYPE_TO_CPP[local_buffer.get_layout().dtype]
allocate = f"std::make_unique<{local_buf_dtype} []>({cexpr(local_buf_size)})"
local_buffer_name = local_buffer.get_name()
code.splice(
f"std::unique_ptr<{local_buf_dtype} []> buf_{local_buffer_name} = {allocate};"
)
code.splice(
f"{local_buf_dtype}* {local_buffer_name} = buf_{local_buffer_name}.get();"
)
gen_loop_nest(loop_nest)
def codegen_loops(self, code, worksharing):
loop_nest = LoopNest.build(self)
self.codegen_loops_impl(loop_nest, code, worksharing)
@property
def assert_function(self) -> str:
if V.graph.aot_mode:
return "AOTI_TORCH_CHECK"
else:
return "TORCH_CHECK"
def decide_parallel_depth(self, max_parallel_depth, threads):
assert self.call_ranges is not None
ranges = self.call_ranges[
max_parallel_depth.start_depth : (
max_parallel_depth.start_depth + max_parallel_depth.parallel_depth
)
]
seq = self.size_hint()
par = 1
depth = 0
for expr in ranges:
hint = V.graph.sizevars.size_hint(expr, fallback=8192)
if par >= 2 * threads or par == threads:
break
if seq // threads < config.cpp.min_chunk_size:
# not enough work
break
depth += 1
par *= hint
seq /= hint
# if we assume thread number is dynamic, make sure we
# have at least one parallel scope and let OMP runtime
# to manage the serial vs. parallel.
if config.cpp.dynamic_threads and depth == 0 and len(ranges) > 0:
depth = 1
return ParallelDepth(
parallel_depth=depth, start_depth=max_parallel_depth.start_depth
)
@contextlib.contextmanager
def write_to_suffix(self):
prior = (self.loads, self.compute, self.stores, self.cse)
self.loads = IndentedBuffer()
self.compute = IndentedBuffer()
self.stores = IndentedBuffer()
self.cse = self.cse.clone()
yield
self.reduction_suffix.splice(self.loads)
self.reduction_suffix.splice(self.compute)
self.reduction_suffix.splice(self.stores)
(self.loads, self.compute, self.stores, self.cse) = prior
def create_cse_var(self, *args, **kwargs):
return CppCSEVariable(*args, **kwargs)
def get_to_dtype_expr(self, src, dtype, src_dtype):
return f"c10::convert<{DTYPE_TO_CPP[dtype]}>({src})"
def cache_dtype_convert(self, dst, dst_dtype, src, src_dtype):
expr = self.get_to_dtype_expr(src, dst_dtype, src_dtype)
self.cse.put(expr, dst)
def codegen_conditions(
self,
code: BracesBuffer,
prefix: Optional[str] = None,
var: Optional[sympy.Symbol] = None,
):
if prefix is None:
prefix = ""
if not self.active_ranges:
return True
conditions = []
def gen(start, end, var):
if start == end:
return False
var_id = None
for i, _var in enumerate(self.itervars):
if var == _var:
var_id = i
break
if (
type(self) == CppKernel
and var_id
and start == 0
and end == self.ranges[var_id]
):
end = 1
conditions.append(f"{var} >= {cexpr_index(start)}")
conditions.append(f"{var} < {cexpr_index(end)}")
return True
if var is not None:
assert var in self.active_ranges
start, end = self.active_ranges[var]
if not gen(start, end, var):
return False
else:
for _var, _range in self.active_ranges.items():
start, end = _range
if not gen(start, end, _var):
return False
joined_conditions = " && ".join(conditions)
if joined_conditions:
code.writeline(f"if({prefix}({joined_conditions}))")
return True
else:
return False
class CppVecKernel(CppKernel):
overrides = CppVecOverrides # type: ignore[assignment]
def __init__(
self,
args,
num_threads,
tiling_factor,
tiling_idx,
tail_size=None,
):
super().__init__(args, num_threads)
self.vec_isa = cpu_vec_isa.pick_vec_isa()
assert self.vec_isa
assert tiling_factor > 0, "Expect pass in Non-Zero tiling_factor explicitly"
self.tiling_factor = tiling_factor
self.tiling_idx = tiling_idx
self.tail_size = tail_size
self.num_elems = tail_size if tail_size else tiling_factor
def _try_get_const_stride(self, index: sympy.Expr, itervar: sympy.Symbol):
if self.index_indirect_depends_on(index, itervar):
return None
for indirect_var in (
self.cse.varname_map[s.name] # type: ignore[attr-defined]
for s in index.free_symbols
if symbol_is_type(s, SymT.TMP)
):
assert isinstance(indirect_var, CppCSEVariable)
if indirect_var.is_vec:
return None
stride = stride_at_vec_range(index, itervar, self.tiling_factor)
return stride if stride.is_number else None
def _get_num_vectors(self, dtype: torch.dtype) -> int:
num_vectors = math.ceil(
self.tiling_factor * dtype.itemsize * 8 / self.vec_isa.bit_width()
)
assert num_vectors >= 1
return num_vectors
def _get_raw_num_vectors(self, dtype: torch.dtype) -> float:
# This utility function is used to check if the vector lanes has been
# fully utilized. For example, uint8 will only use 1/4 of the vector lanes.
return self.tiling_factor * dtype.itemsize * 8 / self.vec_isa.bit_width()
def _get_vec_type(self, dtype: torch.dtype) -> str:
num_vectors = self._get_num_vectors(dtype)
if num_vectors == 1:
return f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>"
else:
return f"at::vec::VectorizedN<{DTYPE_TO_CPP[dtype]},{num_vectors}>"
def _get_mask_type(self, dtype: torch.dtype = torch.float) -> str:
if dtype == torch.bool:
return ""
num_vectors = self._get_num_vectors(dtype)
return f"at::vec::VecMask<{DTYPE_TO_CPP[dtype]},{num_vectors}>"
def _get_mask_cast(self, mask: CppCSEVariable, dtype: torch.dtype) -> str:
assert mask.dtype == torch.bool, repr(mask)
num_vectors = self._get_num_vectors(dtype)
return f"{mask}.template cast<{DTYPE_TO_CPP[dtype]},{num_vectors}>()"
def _get_vec_load_line(
self,
var: str,
index: sympy.Expr,
dtype: torch.dtype,
load_mask: Optional[CppCSEVariable] = None,
):
"""
Get a load line str that loads a vector from `var` at `index` of type `dtype`.
If `load_mask` is not None, we do a masked load accordingly.
Notes on the `dtype`:
1. We always load `self.tiling_factor` number of elements regardless of the `dtype`.
It means we load half of the vector lanes for 16-bit data types and quarter of the
vector lanes for 8-bit data types.
2. `torch.bool` and `torch.uint8` could mean masks and we load them as float mask vectors.
"""
cpp_type = DTYPE_TO_CPP[dtype]
num_vectors = self._get_num_vectors(dtype)
load_mask_str = None
if load_mask:
if not load_mask.is_vec:
# TODO: avoid hard-code torch.float
load_mask_str = f"{self._get_mask_type(torch.float)}::from({load_mask})"
else:
load_mask_str = f"{self._get_mask_cast(load_mask, torch.float)}"
loadbuf = f"{var} + {cexpr_index(index)}" if index != 0 else var
if dtype == torch.bool:
# TODO: should we consider load mask here?
line = f"{self._get_mask_type()}::from({loadbuf})"
else:
line = (
f"{load_mask_str}.template loadu<{cpp_type},{num_vectors}>({loadbuf})"
if load_mask_str
else f"{self._get_vec_type(dtype)}::loadu({loadbuf}, {cexpr_index(self.num_elems)})"
)
return line
def _load_or_store_non_contiguous(
self,
var: Optional[str],
index: sympy.Expr,
dtype: torch.dtype,
buffer: Optional[IndentedBuffer] = None,
store_value: Optional[Union[str, CppCSEVariable]] = None,
accu_store: bool = False,
) -> Optional[CppCSEVariable]:
"""
Load or store a vector in a non-contiguous way. The vector is initialized from an array that is
filled in an inner loop over the tiling factor.
:param var: buffer to load from or store to, i.e. `var[transformed(index)]`. If None, we load the index
as index expression, i.e. `transformed(index)`.
:param index: index into the `var` or the index expression by its own if `var` is None.
The `index` could contain indirect indexing or the tiling itervar. When used in
the inner loop, the index is transformed as follows:
1. the index is linearized along the tiling dim.
2. the indirect indexing vector variables are transformed into arrays over the tiling dim.
:param dtype: data type of `var` or `index` if `var` is None.
:param buffer: the code buffer to write the generated code to. If None, we write to `self.loads`.
:param store_value: the value to store. If None, we load the vector.
:param accu_store: whether accumulate the store_value to store_ptr. If True, a store_value should be provided
:return: a CppCSEVariable that represents the loaded vector or None if it is a store.
"""
assert not store_value or var is not None, "store var must be provided"
if accu_store:
assert store_value
if buffer is None:
buffer = self.loads
def get_result_size(dtype: torch.dtype) -> int:
if dtype.itemsize < 4:
return self.num_elems * (4 // dtype.itemsize)
else:
return self.num_elems
def get_tiling_size(dtype: torch.dtype) -> int:
if dtype.itemsize < 4:
return self.tiling_factor * (4 // dtype.itemsize)
else:
return self.tiling_factor
def vec_to_array(vec_var: CppCSEVariable) -> CppCSEVariable:
assert vec_var.is_vec
code = BracesBuffer()
code.writeline("[&]")
with code.indent():
vec_dtype = vec_var.dtype
assert vec_dtype is not None
if vec_dtype == torch.bool:
vec_dtype = torch.float
result_size = get_result_size(vec_dtype)
tiling_size = get_tiling_size(vec_dtype)
code.writeline(
f"__at_align__ std::array<{DTYPE_TO_CPP[vec_dtype]}, {tiling_size}> tmpbuf;"
)
line = f"{vec_var}.store(tmpbuf.data(), {cexpr_index(result_size)});"
code.writeline(line)
code.writeline("return tmpbuf;")
code.writeline("()")
csevar = self.cse.generate(buffer, code)
assert isinstance(csevar, CppCSEVariable)
return csevar
code = BracesBuffer()
code.writeline("[&]")
with code.indent():
result_size = get_result_size(dtype)
tiling_size = get_tiling_size(dtype)
result_declare = (
f"__at_align__ std::array<{DTYPE_TO_CPP[dtype]}, {tiling_size}> tmpbuf;"
)
code.writeline(result_declare)
if store_value:
code.writeline(
f"{store_value}.store(tmpbuf.data(), {cexpr_index(result_size)});"
)
itervar_inner = sympy_index_symbol(
f"{self.itervars[self.tiling_idx]}_inner"
)
replacements = {}
for indirect_var in (
self.cse.varname_map[s.name] # type: ignore[attr-defined]
for s in index.free_symbols
if symbol_is_type(s, SymT.TMP)
):
assert isinstance(indirect_var, CppCSEVariable)
if indirect_var.is_vec:
array_var = vec_to_array(indirect_var)
replacements[indirect_var] = f"{array_var}[{itervar_inner}]"
index = self.scale_index_with_offset(
index, itervar_idx=self.tiling_idx, offset=itervar_inner
)
load_mask = None
if self._load_mask is not None:
assert not store_value, "unexpected store with load mask"
assert isinstance(self._load_mask, CppCSEVariable), self._load_mask
if self._load_mask.is_vec:
load_mask = f"{self._load_mask}.is_masked({itervar_inner})"
else:
load_mask = f"{self._load_mask} != 0"
if cpp_builder.is_gcc():
code.writeline(f"#pragma GCC unroll {self.tiling_factor}")
else:
code.writeline(f"#pragma unroll {self.tiling_factor}")
code.writeline(
f"for (long {itervar_inner} = 0; "
+ f"{itervar_inner} < {cexpr_index(self.num_elems)}; "
+ f"{itervar_inner}++)"
)
with code.indent(), contextlib.ExitStack() as stack:
index_c = cexpr_index(index)
for indirect_var in replacements:
index_c = re.sub(
r"\b" + f"{indirect_var}" + r"\b",
replacements[indirect_var],
index_c,
)
rhs = f"{var}[{index_c}]" if var is not None else f"{index_c}"
if load_mask:
code.writeline(f"if ({load_mask})")
stack.enter_context(code.indent())
if store_value:
conjunction = "+=" if accu_store else "="
code.writeline(f"{rhs} {conjunction} tmpbuf[{itervar_inner}];")
else:
code.writeline(f"tmpbuf[{itervar_inner}] = {rhs};")
if not store_value:
load_line = self._get_vec_load_line("tmpbuf.data()", 0, dtype) # type: ignore[arg-type]
code.writeline(f"return {load_line};")
code.writeline("()")
if store_value:
code.writeline(";")
buffer.splice(code)
return None
else:
csevar = self.cse.generate(buffer, code, dtype=dtype)
assert isinstance(csevar, CppCSEVariable)
csevar.is_vec = True
return csevar
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
dtype = V.graph.get_dtype(name)
tiling_var = self.itervars[self.tiling_idx]
stride = self._try_get_const_stride(index, tiling_var)
if stride == 0:
# load scalar and lazily broadcast it on demand
return super().load(name, index)
elif stride == 1:
# load contiguously
line = self._get_vec_load_line(var, index, dtype, self._load_mask) # type: ignore[arg-type]
csevar = self.cse.generate(self.loads, line, dtype=dtype) # type: ignore[assignment]
else:
csevar = self._load_or_store_non_contiguous(var, index, dtype) # type: ignore[assignment]
assert isinstance(csevar, CppCSEVariable)
csevar.update_on_args("load", (self, name, index), {})
csevar.is_vec = True
return csevar
def _get_store_line(
self,
value: Union[str, CppCSEVariable],
var: str,
index: sympy.Expr,
dtype: torch.dtype,
accu_store: bool = False,
):
"""
Get a store line buffer that stores `value` into `var` at `index` of `dtype`. It handles
both contiguous and non-contiguous store cases.
:param value: Vectorized type templaterized on `dtype`.
:param var: buffer to store into.
:index: index into the `var`.
"""
# when value's type is str (e.g., welford reduction), caller should make sure
# it is a vector
assert isinstance(value, str) or (
isinstance(value, CppCSEVariable) and value.is_vec
), value
tiling_var = self.itervars[self.tiling_idx]
var_expr = f"{var} + {cexpr_index(index)}"
stride = self._try_get_const_stride(index, tiling_var)
code = IndentedBuffer()
if stride == 1:
if accu_store:
load = (
f"{self._get_vec_type(dtype)}::loadu({var_expr})"
if dtype == torch.float and self.tail_size is None
else f"{self._get_vec_type(dtype)}::loadu({var_expr}, {cexpr_index(self.num_elems)})"
)
value = f"({value} + {load})"
if dtype == torch.float and self.tail_size is None:
code.writeline(f"{value}.store({var_expr});")
else:
code.writeline(
f"{value}.store({var_expr}, {cexpr_index(self.num_elems)});"
)
else:
self._load_or_store_non_contiguous(
var, index, dtype, buffer=code, store_value=value, accu_store=accu_store
)
return code
def store(self, name, index, value, mode=None):
assert "buf" in name
assert isinstance(value, CppCSEVariable), value
if not value.is_vec:
# this happens when we store a scalar into a vectorized buffer like "fill"
value = self.broadcast(value)
var = self.args.output(name)
index = self.rename_indexing(index)
dtype = V.graph.get_dtype(name)
if mode is None:
code = self._get_store_line(value, var, index, dtype)
self.stores.splice(code.map(lambda x: DeferredLine(name, x)))
elif mode == "atomic_add":
if not config.cpp.dynamic_threads and self.num_threads == 1:
code = self._get_store_line(
f"{value}",
var,
index,
dtype,
accu_store=True,
)
self.stores.splice(code.map(lambda x: DeferredLine(name, x)))
else:
n_src = self._get_num_vectors(dtype)
n_idx = self._get_num_vectors(torch.int64)
cdtype = DTYPE_TO_CPP[dtype]
index = ops.index_expr(index, torch.int64).value
assert isinstance(index, CppCSEVariable) and index.is_vec
line = f"atomic_add_vec<{cdtype}, {n_idx}, {n_src}>({var}, {index}, {value});"
self.stores.writeline(DeferredLine(name, line))
else:
raise NotImplementedError(f"store mode={mode}")
def reduction(self, dtype, src_dtype, reduction_type, value):
"""
Perform vectorized reduction operation.
This method handles vectorized reduction for different reduction types.
It manages special cases for low-precision floating point types and
employs precision improvement techniques for certain reduction operations.
Args:
dtype: The output data type for the reduction result
src_dtype: The source data type of the input value
reduction_type: Type of reduction operation (sum, min, max, etc.)
value: The input value to reduce
Returns:
The result of the reduction operation
"""
# Note: For argmax and argmin on bool type, we always convert bool to float.
# Fix issue: https://github.com/pytorch/pytorch/issues/143568
assert reduction_type in VECTORIZABLE_RTYPES
argmax_or_argmin = reduction_type in ("argmax", "argmin")
horizontal_reduction = self.tiling_idx >= self.reduction_depth
init_dtype = src_dtype if argmax_or_argmin else dtype
assert isinstance(value, CppCSEVariable), value
if not value.is_vec:
value = self.broadcast(value)
reduction_key = src_dtype, reduction_type, value
if reduction_key in self.reduction_cse.reduction_cache:
return self.reduction_cse.reduction_cache[reduction_key]
vec_ns = "at::vec"
vec = f"{vec_ns}::Vectorized<{DTYPE_TO_CPP[dtype]}>"
acc_type = reduction_acc_type(reduction_type, init_dtype)
acc_type_vec = self.reduction_acc_type_vec(reduction_type, init_dtype)
acc = self.reduction_cse.generate(
self.loads, f"reduction {reduction_key}", write=False
)
assert isinstance(acc, CppCSEVariable)
acc_vec = f"{acc}_vec"
masked_acc = f"masked_{acc}"
masked_acc_vec = f"masked_{acc_vec}"
self.reduction_var_names += [f"{acc}", acc_vec, masked_acc_vec]
self.is_reduction = True
self.reduction_prefix_generators.append(
self._gen_reduction_prefix(
acc, acc_type, reduction_type, init_dtype, reduction_init
)
)
self.reduction_prefix_generators.append(
self._gen_reduction_prefix(
acc_vec,
acc_type_vec,
reduction_type,
init_dtype,
self.reduction_init_vec,
)
)
use_acc_helper = self.need_use_acc_helper(reduction_type, dtype, False)
if use_acc_helper:
# use masked acc_vec for tail vec kernel
self.reduction_prefix_generators.append(
self._gen_reduction_prefix(
masked_acc_vec,
acc_type_vec,
reduction_type,
dtype,
self.reduction_init_vec,
)
)
# use welford_helper/cascade_helper for vec kernel
assert self.reduction_depth is not None
reduction_size = functools.reduce(
operator.mul, self.ranges[self.reduction_depth :]
)
if reduction_type == "welford_reduce":
helper_val = self.welford_helper_cse.generate(
self.compute, f"reduction {reduction_key}", write=False
)
else:
helper_val = self.cascade_helper_cse.generate(
self.compute, f"reduction {reduction_key}", write=False
)
masked_helper_val = f"masked_{helper_val}"
helper_vec_range = (
(
FloorDiv(reduction_size, self.ranges[self.tiling_idx])
* FloorDiv(self.ranges[self.tiling_idx], self.tiling_factor)
if self.tiling_idx >= self.reduction_depth
else reduction_size
)
if FloorDiv(self.ranges[self.tiling_idx], self.tiling_factor)
else sympy.Integer(0)
)
masked_helper_vec_range = (
(
FloorDiv(reduction_size, self.ranges[self.tiling_idx])
if self.tiling_idx >= self.reduction_depth
else reduction_size
)
if self.ranges[self.tiling_idx] % self.tiling_factor
else sympy.Integer(0)
)
# scalar helper for scalar sum is also needed when vec kernel is included
# Note: is it different from welford reduction as welford reduction of scalar version
# does not need helper, and the helper needs the information of reduction size to initialize
if reduction_type == "sum":
scalar_helper_val = f"scalar_{helper_val}"
self._use_acc_helper(
reduction_type,
acc,
scalar_helper_val,
reduction_size,
dtype,
use_scalar=True,
)
self._use_acc_helper(
reduction_type, acc, helper_val, helper_vec_range, dtype
)
self._use_acc_helper(
reduction_type,
masked_acc,
masked_helper_val,
masked_helper_vec_range,
dtype,
)
# use masked acc_vec for tail vec kernel
acc_vec_ = masked_acc_vec if self.tail_size else acc_vec
helper_val_ = masked_helper_val if self.tail_size else helper_val
if reduction_type == "sum":
self.stores.writeline(
f"{acc_vec_} = {self.reduction_combine_vec(reduction_type, acc_vec_, value, helper_val_)};"
)
else:
self.stores.writeline(
f"{acc_vec_} = {self.reduction_combine_vec(reduction_type, acc_vec_, value, helper_val_)};"
)
else:
assert self.reduction_depth is not None
index = self.itervars[self.reduction_depth]
for i in range(self.reduction_depth + 1, len(self.itervars)):
index = index * self.ranges[i] + self.itervars[i]
kwargs = {
"next_value": value,
"index": index,
"horizontal_reduction": horizontal_reduction,
"src_dtype": src_dtype,
}
self.stores.writeline(
f"{acc_vec} = {self.reduction_combine_vec(reduction_type, acc_vec, **kwargs)};"
)
self._gen_parallel_reduction_buffers(
acc_vec,
acc_type_vec,
reduction_type,
init_dtype,
reduction_combine_fn=self.reduction_combine_vec,
reduction_init_fn=self.reduction_init_vec,
)
self._gen_parallel_reduction_buffers(
acc,
acc_type,
reduction_type,
init_dtype,
reduction_combine_fn=reduction_combine,
reduction_init_fn=reduction_init,
)
if use_acc_helper:
# use masked acc_vec for tail vec kernel
self._gen_parallel_reduction_buffers(
masked_acc_vec,
acc_type_vec,
reduction_type,
dtype,
reduction_combine_fn=self.reduction_combine_vec,
reduction_init_fn=self.reduction_init_vec,
)
tmpvar: Union[str, CSEVariable]
is_bool = dtype == torch.bool
if horizontal_reduction:
# Horizontal reduction
if is_welford_reduction(reduction_type):
assert self._get_num_vectors(dtype) in [
1,
2,
], "Welford reduction does not support VectorizedN (N>2)"
next_value = f"welford_vec_reduce_all({acc_vec})"
masked_next_value = f"welford_vec_reduce_all({masked_acc_vec})"
self.reduction_suffix.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, masked_next_value)};"
)
elif argmax_or_argmin:
next_value = f"{reduction_type}_vec_reduce_all({acc_vec})"
elif is_bool:
if reduction_type in (
"any",
"sum",
"max",
):
next_value = f"!{acc_vec}.all_zero()"
else:
assert reduction_type == "min"
next_value = f"{acc_vec}.all_masked()"
else:
reduce_all_body = (
"{ return "
+ self.reduction_combine_vec(reduction_type, "x", "y")
+ "; }"
)
is_bool = dtype == torch.bool
# we are using at::vec::VecMask<float, N> for bool
vec_dtype = torch.float if is_bool else dtype
vec = f"at::vec::Vectorized<{DTYPE_TO_CPP[vec_dtype]}>"
vec_reduce_all_func = f"at::vec::vec_reduce_all<{DTYPE_TO_CPP[vec_dtype]}, {self._get_num_vectors(vec_dtype)}>"
result_vec = f"{acc_vec}"
if use_acc_helper:
assert reduction_type == "sum"
result_vec = f"{acc_vec} + {masked_acc_vec}"
next_value = f"{vec_reduce_all_func}([]({vec}& x, {vec}& y) {reduce_all_body}, {result_vec})"
self.reduction_suffix.writeline(
f"{acc} = {reduction_combine(reduction_type, acc, next_value, src_dtype=src_dtype)};"
)
tmpvar = acc
else:
tmpvar = acc_vec
if is_welford_reduction(reduction_type):
masked_tmpvar = f"masked_{tmpvar}"
self.reduction_suffix.writeline(
f"{tmpvar} = {reduction_combine(reduction_type, tmpvar, masked_tmpvar)};"
)
elif use_acc_helper:
assert reduction_type == "sum"
masked_tmpvar = f"masked_{tmpvar}"
self.reduction_suffix.writeline(
f"{tmpvar} = {tmpvar} + {masked_tmpvar};"
)
result = reduction_project(reduction_type, tmpvar)
self.reduction_cse.reduction_cache[reduction_key] = result
return result
def store_reduction(self, name, index, value):
index = self.rename_indexing(index)
var = self.args.output(name)
out_dtype = V.graph.get_dtype(name)
if out_dtype.is_floating_point and out_dtype != torch.double:
dtype = torch.float
else:
dtype = out_dtype
out_num_vectors = V.kernel._get_num_vectors(out_dtype)
src_num_vectors = V.kernel._get_num_vectors(dtype)
code = IndentedBuffer()
if self.tiling_idx >= self.reduction_depth:
# Horizontal reduction
code.writeline(
f"{var}[{cexpr_index(index)}] = static_cast<{DTYPE_TO_CPP[out_dtype]}>({value});"
)
else:
# Vertical reduction
if out_dtype != dtype:
converted_value = (
f"{DTYPE_TO_CPP[out_dtype].replace('::', '_')}_{value}"
)
if out_dtype == torch.bool:
convert = f"{value}.template cast<bool,{self._get_num_vectors(torch.bool)}>()"
else:
if src_num_vectors == out_num_vectors == 1:
convert = (
f"at::vec::convert<{DTYPE_TO_CPP[out_dtype]}>({value})"
)
else:
convert = (
f"at::vec::convert<{DTYPE_TO_CPP[out_dtype]},"
f"{out_num_vectors},{DTYPE_TO_CPP[dtype]},{src_num_vectors}>({value})"
)
code.writeline(f"auto {converted_value} = {convert};")
value = converted_value
code.splice(self._get_store_line(value, var, index, out_dtype))
self.reduction_suffix.splice(code.map(lambda x: DeferredLine(name, x)))
def broadcast(self, scalar_var: CppCSEVariable) -> CppCSEVariable:
assert not scalar_var.is_vec
if scalar_var.dtype == torch.bool:
vec_var = self.cse.generate(
self.compute, f"{self._get_mask_type()}::from({scalar_var.name})"
)
else:
assert scalar_var.dtype is not None
vec_var = self.cse.generate(
self.compute,
f"{self._get_vec_type(scalar_var.dtype)}({scalar_var.name})",
)
assert isinstance(vec_var, CppCSEVariable)
vec_var.dtype = scalar_var.dtype
vec_var.dependent_itervars = scalar_var.dependent_itervars
vec_var.is_vec = True
return vec_var
def arange(self, index: CppCSEVariable, stride: sympy.Symbol) -> CppCSEVariable:
assert not index.is_vec
assert index.dtype is not None
csevar = self.cse.generate(
self.compute,
f"{self._get_vec_type(index.dtype)}::arange({index}, {stride})",
)
assert isinstance(csevar, CppCSEVariable)
csevar.dtype = index.dtype
csevar.is_vec = True
return csevar
def reduction_init_vec(self, reduction_type, dtype):
scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype]
vec_type = self._get_vec_type(scalar_type)
if is_welford_reduction(reduction_type):
return f"Welford<{vec_type}>()"
if reduction_type in ("argmin", "argmax"):
cdtype = DTYPE_TO_CPP[scalar_type]
acc_type = self.reduction_acc_type_vec(reduction_type, dtype)
if reduction_type == "argmin":
val = (
f"std::numeric_limits<{cdtype}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{cdtype}>::max()"
)
else:
val = (
f"-std::numeric_limits<{cdtype}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{cdtype}>::min()"
)
return f"{acc_type}({val})"
if reduction_type == "any":
return f"{self._get_mask_type()}::from(0)"
scalar_init = reduction_init(reduction_type, dtype)
vec_init = f"{vec_type}({scalar_init})"
if dtype == torch.bool:
assert reduction_type in ("min", "max", "sum")
return f"{self._get_mask_type()}::from({scalar_init})"
return vec_init
def reduction_acc_type_vec(self, reduction_type, dtype):
scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype]
vec_type = self._get_vec_type(scalar_type)
if is_welford_reduction(reduction_type):
return f"Welford<{vec_type}>"
if reduction_type in ("argmin", "argmax"):
n_src = self._get_num_vectors(scalar_type)
n_idx = self._get_num_vectors(torch.int64)
if dtype == torch.bool:
return f"IndexValueVec<{DTYPE_TO_CPP[torch.float]}, {n_src}, {n_idx}>"
return f"IndexValueVec<{DTYPE_TO_CPP[scalar_type]}, {n_src}, {n_idx}>"
if dtype == torch.bool:
assert reduction_type in ("min", "max", "any", "sum")
return f"{self._get_mask_type()}"
return vec_type
def reduction_combine_vec(
self,
reduction_type,
var,
next_value,
helper_val=None,
index: Optional[sympy.Symbol] = None,
horizontal_reduction: Optional[bool] = None,
src_dtype: Optional[torch.dtype] = torch.float32,
):
is_bool = src_dtype == torch.bool
if reduction_type == "max":
if self.tail_size:
return f"max_masked_reduce({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
return (
f"{var} | {next_value}"
if is_bool
else f"at::vec::maximum({var}, {next_value})"
)
elif reduction_type == "min":
if self.tail_size:
return f"min_masked_reduce({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
return (
f"{var} & {next_value}"
if is_bool
else f"at::vec::minimum({var}, {next_value})"
)
elif reduction_type == "sum":
if helper_val:
if self.tail_size:
return f"cascade_sum_combine({next_value}, {cexpr_index(self.tail_size)}, &{helper_val})"
else:
return f"cascade_sum_combine({next_value}, &{helper_val})"
else:
if self.tail_size:
return f"sum_masked_reduce({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
conjunction = "|" if is_bool else "+"
return f"{var} {conjunction} {next_value}"
elif reduction_type == "prod":
if self.tail_size:
return f"prod_masked_reduce({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
return f"{var} * {next_value}"
elif reduction_type == "xor_sum":
if self.tail_size:
return f"xor_sum_masked_reduce({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
return f"{var} ^ {next_value}"
elif reduction_type == "welford_reduce":
if helper_val:
if self.tail_size:
return f"welford_combine({var}, {next_value}, {cexpr_index(self.tail_size)}, &{helper_val})"
else:
return f"welford_combine({var}, {next_value}, &{helper_val})"
else:
if self.tail_size:
return f"welford_combine({var}, {next_value}, {cexpr_index(self.tail_size)})"
else:
return f"welford_combine({var}, {next_value})"
elif reduction_type == "welford_combine":
if isinstance(next_value, tuple):
# When reading a value from Inductor IR we have a tuple of variable names
mean, m2, weight = next_value
else:
# When combining intermediate accumulators we have a Welford<T> struct
mean, m2, weight = reduction_project(reduction_type, next_value)
if self.tail_size:
return f"welford_combine({var}, {{{mean}, {m2}, {weight}}}, {cexpr_index(self.tail_size)})"
else:
return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})"
elif reduction_type in ("argmin", "argmax"):
assert src_dtype is not None
cdtype = DTYPE_TO_CPP[src_dtype]
if src_dtype == torch.bool:
cdtype = DTYPE_TO_CPP[torch.float]
n_src = self._get_num_vectors(src_dtype)
n_idx = self._get_num_vectors(torch.int64)
t_extra = ""
arg_extra = ""
if index is not None:
assert horizontal_reduction is not None
t_extra = f", {str(horizontal_reduction).lower()}"
arg_extra = f", {index}"
if self.tail_size:
return (
f"{reduction_type}_combine_vec<{cdtype}, {n_src}, {n_idx}{t_extra}>"
f"({var}, {next_value}{arg_extra}, {cexpr_index(self.tail_size)})"
)
else:
return f"{reduction_type}_combine_vec<{cdtype}, {n_src}, {n_idx}{t_extra}>({var}, {next_value}{arg_extra})"
elif reduction_type == "any":
if isinstance(next_value, CppCSEVariable):
assert next_value.dtype == torch.bool
(next_value,) = unify_mask_base_type(V.kernel.compute, (next_value,))
return f"{var} | {next_value}"
else:
raise NotImplementedError
def indirect_assert(self, var, lower, upper, mask=None):
assert isinstance(var, CppCSEVariable)
assert var.dtype is not None
if not var.is_vec:
if isinstance(mask, CppCSEVariable) and mask.is_vec:
mask = f"({mask}).all_masked()"
return super().indirect_assert(var, lower, upper, mask)
lower_scalar = lower
upper_scalar = upper
if lower:
lower = f"{self._get_vec_type(var.dtype)}({lower})"
if upper:
upper = f"{self._get_vec_type(var.dtype)}({upper})"
if lower and upper:
cond = f"({lower} <= {var}) & ({var} < {upper})"
cond_print = f"{lower_scalar} <= {var} < {upper_scalar}"
elif lower:
cond = f"{lower} <= {var}"
cond_print = f"{lower_scalar} <= {var}"
else:
assert upper
cond = f"{var} < {upper}"
cond_print = f"{var} < {upper_scalar}"
cond = f"{self._get_mask_type(var.dtype)}({cond})"
if mask:
if not mask.is_vec:
mask = f"{self._get_mask_type(var.dtype)}({mask})"
# We need not check when the mask is False
cond = f"({cond}) | ~({mask})"
if self.tail_size:
cond = (
f"{self._get_mask_type(var.dtype)}::set({self._get_mask_type(var.dtype)}::from(1)"
f", ({cond}), {cexpr_index(self.tail_size)})"
)
cond = f"({cond}).all_masked()"
return f'{self.assert_function}({cond}, "index out of bounds: {cond_print}")'
def get_to_dtype_expr(self, src, dtype, src_dtype):
assert isinstance(src, CppCSEVariable)
if not src.is_vec:
return super().get_to_dtype_expr(src, dtype, src_dtype)
src_cpp_type = DTYPE_TO_CPP[src_dtype]
src_num_vectors = self._get_num_vectors(src_dtype)
dst_cpp_type = DTYPE_TO_CPP[dtype]
dst_num_vectors = self._get_num_vectors(dtype)
expr = f"({src})"
if src_dtype != torch.bool and dtype == torch.bool:
expr = f"{self._get_mask_type(src_dtype)}::from<{src_cpp_type},{src_num_vectors}>({src})"
elif src_dtype == torch.bool and dtype != torch.bool:
expr = f"{src}.to<{dst_cpp_type},{dst_num_vectors}>()"
elif src_dtype != dtype:
if src_num_vectors == dst_num_vectors == 1:
expr = f"at::vec::convert<{dst_cpp_type}>({src})"
else:
expr = f"at::vec::convert<{dst_cpp_type},{dst_num_vectors},{src_cpp_type},{src_num_vectors}>({src})"
return expr
class CppTile2DKernel(CppVecKernel):
"""
A vector kernel that handles the 2d tiles with the tile size defined in `tiling_factor` on
the inner-most loop level and one of the outer loop level (`outer_tiling_idx`). When the data
tile is accessed in a contiguous way from the outer loop axis, a transposition is applied on the
tile to make the access contiguous from the inner-most loop axis. Then, the same vectorization
logic from its parent `CppVecKernel` is leveraged for load/store/compute. The transposed tile load
and store are generated into kernel.preloads and kernel.poststores buffers.
The loop structure looks like below:
for ...
for i_outer ...
for ...
for inner_most ...
// generated by CppTile2DKernel
float tmp0[16*16]; at::vec::transpose_mxn<...>(tmp0, in_ptr0 + ..., ...); // into kernel.preloads
float tmp1[16*16]; // into kernel.preloads
for i_inner ... { // the kernel inner loop
vectorized loads/compute/stores (e.g., load tmp0, store tmp1) // into kernel.loads/compute/stores
}
at::vec::transpose_mxn(out_ptr0 + ..., tmp1, ...) // into kernel.poststores
for inner_most ... (tail)
// generated by CppVecKernel
...
for i_outer ... (tail)
for ...
for ...
// generated by CppKernel
...
"""
overrides = CppTile2DOverrides # type: ignore[assignment]
def __init__(
self,
args,
num_threads,
tiling_factor,
tiling_indices,
inner_tail_size=None,
outer_tail_size=None,
):
super().__init__(
args,
num_threads,
tiling_factor,
tiling_indices[1],
inner_tail_size,
)
self.tiling_indices = tiling_indices
self.inner_tail_size = inner_tail_size
self.outer_tail_size = outer_tail_size
self.inner_num_elems = inner_tail_size if inner_tail_size else tiling_factor
self.outer_num_elems = outer_tail_size if outer_tail_size else tiling_factor
self.inner_is_tiling_idx = True
def inner_itervar(self):
return sympy_index_symbol(f"{self.itervars[self.outer_idx]}_inner")
def need_vec_transpose(self, index):
outer_var = self.itervars[self.outer_idx]
inner_var = self.itervars[self.tiling_idx]
outer_stride = stride_at_vec_range(index, outer_var, self.tiling_factor)
inner_stride = stride_at_vec_range(index, inner_var, self.tiling_factor)
return (
self._load_mask is None # TODO: support transposition with mask
and outer_stride == 1
and index.has(inner_var)
and not inner_stride.has(inner_var)
and not inner_stride.has(outer_var)
)
def gen_transposed_tile_load_store(
self, name, var, index, is_store, store_mode=None
):
# transposed tile load/store outside the kernel inner loop
dtype = V.graph.get_dtype(name)
factor = self.tiling_factor
src = f"{var} + {cexpr_index(index)}"
dst = "__place_holder__"
ld_src = f"{cexpr_index(stride_at_vec_range(index, self.itervars[self.tiling_idx], self.tiling_factor))}"
ld_dst = f"{cexpr_index(self.num_elems)}"
if is_store:
src, dst = dst, src
ld_src, ld_dst = ld_dst, ld_src
need_define = True
if self.inner_is_tiling_idx ^ is_store:
M, N = self.inner_num_elems, self.outer_num_elems
else:
M, N = (
self.outer_num_elems,
self.inner_num_elems,
)
atomic_add = "true" if (is_store and (store_mode == "atomic_add")) else "false"
if (isinstance(M, sympy.Expr) and not M.is_number) or (
isinstance(N, sympy.Expr) and not N.is_number
):
load_or_store = (
f"transpose_mxn<{DTYPE_TO_CPP[dtype]},{atomic_add}>"
f"({src}, {ld_src}, {dst}, {ld_dst}, {cexpr_index(M)}, {cexpr_index(N)});"
)
else:
load_or_store = (
f"transpose_mxn<{DTYPE_TO_CPP[dtype]},{cexpr_index(M)},{cexpr_index(N)},{atomic_add}>"
f"({src}, {ld_src}, {dst}, {ld_dst});"
)
if is_store:
tile_var = self.cse.newvar()
elif not self.cse.contains(load_or_store):
tile_var = self.cse.generate(self.preloads, load_or_store, write=False)
else:
need_define = False
tile_var = self.cse.get(load_or_store)
if need_define:
cpp_dtype = DTYPE_TO_CPP[dtype]
# tiling_factor might be smaller than the alignment of cpp_dtype, such as
# with a vector that only holds 4 elements due to NEON 128-bit vectors and
# cpp_dtype being a 64-bit integer.
alignas = f"alignas(std::max(std::size_t({factor}), alignof({cpp_dtype})))"
define_line = f"{alignas} {cpp_dtype} {tile_var}[{factor}*{factor}];"
self.preloads.writeline(define_line)
load_or_store = load_or_store.replace("__place_holder__", str(tile_var))
if is_store:
self.poststores.writeline(DeferredLine(name, load_or_store))
else:
self.preloads.writeline(load_or_store)
return tile_var
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
inner = self.inner_itervar()
if self.need_vec_transpose(index):
tile_var = self.gen_transposed_tile_load_store(
name, var, index, is_store=False
)
# vector load inside the kernel inner loop
loadbuf = f"{tile_var} + {cexpr_index(inner * self.num_elems)}"
dtype = V.graph.get_dtype(name)
line = self._get_vec_load_line(loadbuf, 0, dtype) # type: ignore[arg-type]
csevar = self.cse.generate(self.loads, line, dtype=dtype)
csevar.update_on_args("load", (self, name, index), {})
assert isinstance(csevar, CppCSEVariable)
csevar.is_vec = True
return csevar
else:
new_index = self.transform_indexing(index)
return super().load(name, new_index)
def store(self, name, index, value, mode=None):
assert "buf" in name
assert isinstance(value, CppCSEVariable), value
if not value.is_vec:
# this happens when we store a scalar into a vectorized buffer like "fill"
value = self.broadcast(value)
var = self.args.output(name)
inner = self.inner_itervar()
index = self.rename_indexing(index)
if self.need_vec_transpose(index):
tile_var = self.gen_transposed_tile_load_store(
name, var, index, is_store=True, store_mode=mode
)
# vector store inside the kernel inner loop
storebuf = f"{tile_var} + {cexpr_index(inner * self.num_elems)}"
if self.tail_size or V.graph.get_dtype(name) in DTYPE_LOWP_FP + [
torch.uint8,
torch.int8,
]:
line = f"{value}.store({storebuf}, {cexpr_index(self.num_elems)});"
else:
line = f"{value}.store({storebuf});"
self.stores.writeline(DeferredLine(name, line))
else:
new_index = self.transform_indexing(index)
super().store(name, new_index, value, mode)
def codegen_inner_loops(self, code):
inner = self.inner_itervar()
if self.inner_is_tiling_idx:
code.writeline(
f"for (long {inner} = 0; {inner} < {cexpr_index(self.outer_num_elems)}; {inner}++)"
)
else:
code.writeline(
f"for (long {inner} = 0; {inner} < {cexpr_index(self.inner_num_elems)}; {inner}++)"
)
def set_ranges(self, group, reduction_group):
vars = super().set_ranges(group, reduction_group)
# do vertical reduction as the tail loop
self.outer_idx, self.tiling_idx = (
self.tiling_indices
if self.tiling_indices[1] < self.reduction_depth
else reversed(self.tiling_indices)
)
if self.tiling_idx == self.tiling_indices[0]:
self.tail_size = self.outer_tail_size
self.num_elems = self.outer_num_elems
self.inner_is_tiling_idx = False
else:
self.tail_size = self.inner_tail_size
self.num_elems = self.inner_num_elems
self.inner_is_tiling_idx = True
return vars
def transform_indexing(self, index: sympy.Expr) -> sympy.Expr:
return self.scale_index_with_offset(
index,
itervar_idx=self.outer_idx,
offset=self.inner_itervar(),
)
def get_loop_body_lowp_fp(_body: LoopBody) -> tuple[Optional[torch.dtype], bool]:
"""
Returns the low precision data type (torch.float16/torch.bfloat16) contained in the nodes
and if all the nodes can codegen with this data type without converting to float.
Otherwise returns None and True.
"""
sub_blocks = [_body.root_block] + list(_body.subblocks.values())
_lowp_fp_type: Optional[torch.dtype] = None
_use_fp32 = False
for sub_block in sub_blocks:
for _node in sub_block.graph.nodes:
if _node.op == "placeholder" or _node.target in (
"get_index",
"index_expr",
):
continue
# Fast path if all operations can support bf16/fp16 without converting to fp32
if _node.target not in [
"load",
"store",
"abs",
"neg",
"output",
]:
_use_fp32 = True
if hasattr(_node, "meta") and _node.meta:
assert OptimizationContext.key in _node.meta
opt_ctx: OptimizationContext = _node.meta[OptimizationContext.key]
if not opt_ctx.dtype or opt_ctx.dtype not in DTYPE_LOWP_FP:
_use_fp32 = True
elif _lowp_fp_type is not None:
if _lowp_fp_type != opt_ctx.dtype:
warnings.warn("bf16 and fp16 are mixed in the scheduler node.")
else:
_lowp_fp_type = opt_ctx.dtype
else:
_use_fp32 = True
return _lowp_fp_type, _use_fp32
class TilingSelect:
"""
Implement the heuristic to select the tiling factors and tiling indices.
In the future, we can implement advanced heuristic in a subclass.
"""
def __init__(self):
super().__init__()
def select_tiling(
self,
fn_list,
var_sizes_list,
) -> tuple[list[int], list[int]]:
# TODO(jgong5): support alternative tiling factors and data types
loop_bodies = _get_loop_body(fn_list)
all_dtypes = _get_dtype_from_loopbodies(loop_bodies)
assert all_dtypes
if any(dtype not in VECTORIZABLE_DTYPES for dtype in all_dtypes):
return [], []
dtype = torch.float
_lowp_fp_dtype = get_loop_body_lowp_fp(loop_bodies[0])[0]
if _lowp_fp_dtype and all(
(get_loop_body_lowp_fp(loop_body)[0] == _lowp_fp_dtype)
for loop_body in loop_bodies[1:]
):
dtype = _lowp_fp_dtype
tiling_factor = cpu_vec_isa.pick_vec_isa().nelements(dtype=dtype)
tiling_indices = self._select_tiling_indices(
fn_list, var_sizes_list, tiling_factor
)
if tiling_indices:
group, reduction_group = max(
var_sizes_list, key=lambda sizes: len(sizes[1])
)
call_ranges = tuple(group) + tuple(reduction_group)
if config.cpp.enable_tiling_heuristics:
def _try_get_stride(
index,
itervars,
tiling_factor,
tiling_indices,
):
itervar = itervars[tiling_indices[0]]
stride = stride_at_vec_range(index, itervar, tiling_factor)
return stride if stride.is_number else None
def _update_negative_op_count(
node_name, non_contig_indexing_op_counter
):
if node_name not in non_contig_indexing_op_counter:
non_contig_indexing_op_counter[node_name] = 1
else:
non_contig_indexing_op_counter[node_name] += 1
def _is_valid_indices(
itervars,
tiling_indices,
):
return (
len(tiling_indices) == 1
and len(itervars) > 0
and (
tiling_indices[0]
if tiling_indices[0] >= 0
else tiling_indices[0] + len(itervars)
)
< len(itervars)
)
itervars = [
sympy_index_symbol_with_prefix(SymT.XBLOCK, n)
for n in range(len(call_ranges))
]
reduction_depth = len(group)
vars, reduction_vars = (
itervars[:reduction_depth],
itervars[reduction_depth:],
)
op_counter: dict[str, int] = {}
# ops may cause overhead with vectorization, like non-contiguous
# index_expr, load, store
non_contig_indexing_op_counter: dict[str, int] = {}
for _body in loop_bodies:
sub_blocks = [_body.root_block] + list(_body.subblocks.values())
for sub_block in sub_blocks:
for _node in sub_block.graph.nodes:
if _node.target in ["index_expr", "load", "store"]:
# get the index and replace prefix from z to x
arg_idx = 1 if _node.target == "index_expr" else 2
index = sub_block.body.indexing_from_args(
(vars, reduction_vars)
)[_node.args[arg_idx].args[0]]
if _is_valid_indices(itervars, tiling_indices):
stride = _try_get_stride(
index, itervars, tiling_factor, tiling_indices
)
if (
stride is None
if _node.target == "index_expr"
else stride not in [0, 1]
):
_update_negative_op_count(
_node.target, non_contig_indexing_op_counter
)
if isinstance(_node.target, str) and not (
_node.target.startswith("masked_subblock")
or _node.target
in ["ops", "output", "constant", "get_index"]
):
if _node.target not in op_counter:
op_counter[_node.target] = 1
else:
op_counter[_node.target] += 1
op_num = sum(op_counter.values())
non_contig_indexing_op_num = sum(
non_contig_indexing_op_counter.values()
)
ratio_threshold = 0.12
quantity_threshold = 35
if non_contig_indexing_op_num >= quantity_threshold or (
op_num > 0
and non_contig_indexing_op_num / op_num >= ratio_threshold
):
# Too many non-contiguous load/store/index_expr which hurts the
# vectorization performance. Disable vectorization when exceeding
# the thresholds.
return [], []
if (
not reduction_group
and group
and len(tiling_indices) == 1
and not has_free_symbols(
[
group[tiling_indices[0]],
]
)
and group[tiling_indices[0]] < tiling_factor / 4
and op_num < 10
):
# We found that when the number of elements in the inner loop range is
# relatively small(< tiling_factor / 4) and the number of operations is
# not large(< 10), vectorization is not efficient.
# And found that `#pragma GCC ivdep` has better performance than
# `#pragma omp simd simdlen(8)` for these cases.
return [], []
if dtype in DTYPE_LOWP_FP:
# For lower precision data type, if the call_range is not long enough,
# use tiling_factor // 2 for better performance
factor_lowp = cpu_vec_isa.pick_vec_isa().nelements(dtype=dtype)
for tiling_indice in tiling_indices:
if tiling_indice < 0:
tiling_indice = tiling_indice + len(call_ranges)
if tiling_indice < 0 or tiling_indice >= len(call_ranges):
continue
if has_free_symbols(call_ranges):
call_range = V.graph.sizevars.size_hint(
call_ranges[tiling_indice], fallback=0
)
if call_range < factor_lowp:
V.graph.sizevars.check_lt(call_range, factor_lowp) # type: ignore[arg-type]
tiling_factor = factor_lowp // 2
break
elif call_ranges[tiling_indice] < factor_lowp:
tiling_factor = factor_lowp // 2
break
if len(tiling_indices) == 1:
return [tiling_factor], tiling_indices
if len(tiling_indices) == 2:
return [tiling_factor, tiling_factor], tiling_indices
return [], []
def _select_tiling_indices(
self,
fn_list,
var_sizes_list,
tiling_factor,
):
all_index = []
for fn, var_sizes in zip(fn_list, var_sizes_list):
rw = dependencies.extract_read_writes(fn, *var_sizes)
all_index += [dep.index for dep in itertools.chain(rw.reads, rw.writes)]
contig_vars = OrderedSet[int]()
contig_vars_list = []
non_contig_stride_const = OrderedSet[int]()
non_contig_stride_other = OrderedSet[int]()
for index in all_index:
for var in index.free_symbols:
if not re.search(r"^d\d+$", var.name):
continue
stride = stride_at_vec_range(index, var, tiling_factor)
if stride == 0:
continue
elif stride == 1:
contig_vars.add(int(var.name[1:]))
contig_vars_list.append(int(var.name[1:]))
elif all(symbol_is_type(s, SymT.SIZE) for s in stride.free_symbols):
non_contig_stride_const.add(int(var.name[1:]))
else:
non_contig_stride_other.add(int(var.name[1:]))
contig_only = contig_vars - non_contig_stride_const - non_contig_stride_other
group, reduction_group = max(var_sizes_list, key=lambda sizes: len(sizes[1]))
num_itervars = len(group) + len(reduction_group)
if len(contig_vars) == 0:
# no contiguous vars
return [num_itervars - 1]
if contig_only:
return sorted(contig_only)[-1:]
contig_and_const_stride = (
contig_vars & non_contig_stride_const
) - non_contig_stride_other
contig_vars_sorted = sorted(contig_vars)
if (
len(contig_vars_sorted) == 2
and contig_vars_sorted[-1] in contig_and_const_stride
and contig_vars_sorted[-1] == num_itervars - 1
):
return contig_vars_sorted
return sorted(contig_vars_sorted, key=contig_vars_list.count)[-1:]
class CppKernelProxy(CppKernel):
# Subclass CppKernel, CppVecKernel, etc., to customize code generation.
# Override CppOverrides or CppVecOverrides to emit custom ops.
# Earlier, this meant copying codegen_functions() to use your subclasses.
# Now, use kernel_cls and vec_kernel_cls class attributes instead.
# This lets CppKernelProxy subclasses inject custom behavior cleanly.
# No need to duplicate codegen_functions() just to swap kernel classes.
kernel_cls: type[CppKernel] = CppKernel
vec_kernel_cls: type[CppVecKernel] = CppVecKernel
tile2d_kernel_cls: type[CppTile2DKernel] = CppTile2DKernel
def __init__(self, kernel_group):
super().__init__(kernel_group.args, kernel_group.ws.num_threads)
self.kernel_group = kernel_group
self.loop_nest = None
self.call_ranges = None
self.picked_vec_isa: cpu_vec_isa.VecISA = cpu_vec_isa.pick_vec_isa()
self.kernels: list[CppKernel] = []
def data_type_propagation(self, nodes):
for _node in nodes:
assert isinstance(_node, SchedulerNode)
DataTypePropagation.propagate_scheduler_node(_node)
# Check if all the nodes of a given fx graph can support BF16/FP16
def is_lowp_fp_scheduler(self, scheduler_node: SchedulerNode):
if not isinstance(scheduler_node._body, LoopBody):
return True
# Propagate the dtype to check if all the fx node is bf16/fp16
DataTypePropagation.propagate_scheduler_node(scheduler_node)
return (
get_loop_body_lowp_fp(scheduler_node._body)[0] is not None
and not get_loop_body_lowp_fp(scheduler_node._body)[1]
)
def legalize_lowp_fp_dtype_loopbody(self, loop_body: LoopBody):
def add_to_dtype(sub_graph: torch.fx.Graph):
def get_input_dtype(node: torch.fx.Node) -> Optional[torch.dtype]:
"""Get input dtype for nodes that may consumes lowp fp dt"""
if node.target == "store":
return V.graph.get_dtype(node.args[1]) # type: ignore[arg-type]
elif node.target == "to_dtype_bitcast":
return node.args[-1] # type: ignore[return-value]
elif node.target == "to_dtype":
if len(node.args) > 3:
return node.args[3] # type: ignore[return-value]
else:
return node.kwargs.get("src_dtype", None) # type: ignore[return-value]
else:
return None
def get_output_dtype(node: torch.fx.Node) -> Optional[torch.dtype]:
"""Get output dtype for nodes that may produce lowp fp dt"""
if node.target == "load":
assert len(node.args) == 3
return V.graph.get_dtype(node.args[1]) # type: ignore[arg-type]
elif node.target in ["to_dtype", "constant", "index_expr"]:
return node.args[-1] # type: ignore[return-value]
elif node.target == "to_dtype_bitcast":
return node.args[2] # type: ignore[return-value]
else:
return None
def is_lowp_fp_source(node: torch.fx.Node, dt: torch.dtype):
"""Check if the given node produces output with expected low precision floating point data type."""
assert dt in DTYPE_LOWP_FP
return get_output_dtype(node) == dt
def is_lowp_fp_sink(node: torch.fx.Node, dt: torch.dtype):
"""Check if the given node accept input with expected low precision floating point data type."""
assert dt in DTYPE_LOWP_FP
if input_dtype := get_input_dtype(node):
return input_dtype == dt
elif node.target == "to_dtype":
# The `src_dtype` of a `to_dtype` node might miss, in which case the node accept any input dtype.
return True
else:
return False
def is_lowp_fp_source_no_promote(node: torch.fx.Node, dt: torch.dtype):
"""Check if the node is a lowp fp sources which are all directly fed to ops that accepts lowp fp input
thus no need to promote to float
"""
return is_lowp_fp_source(node, dt) and all(
is_lowp_fp_sink(user, dt) for user in node.users
)
sub_graph_nodes = list(sub_graph.nodes)
to_lowp_fp_legalized_nodes = []
for _node in sub_graph_nodes:
if (
_node.target in ["load", "index_expr"]
and (dt := get_output_dtype(_node)) in DTYPE_LOWP_FP
):
# No need to promote to float if all users are ops that accepts lowp fp input
if all(is_lowp_fp_sink(user, dt) for user in _node.users):
continue
ops = _node.args[0]
with sub_graph.inserting_after(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, _node, torch.float)
)
_node.replace_all_uses_with(
to_type_node, lambda n: n is not to_type_node
)
metrics.cpp_to_dtype_count += 1
elif (
_node.target == "store"
and (dt := get_input_dtype(_node)) in DTYPE_LOWP_FP
):
ops, name, _, value_var, _ = _node.args
if is_lowp_fp_source_no_promote(value_var, dt):
continue
dtype = V.graph.get_dtype(name)
with sub_graph.inserting_before(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, value_var, dtype)
)
_node.replace_input_with(value_var, to_type_node)
metrics.cpp_to_dtype_count += 1
elif _node.target == "reduction":
(
ops,
dtype,
src_dtype,
reduction_type,
value,
) = _node.args
if src_dtype in DTYPE_LOWP_FP:
# Since we always convert the load/store value to float if the tensor is bfloat16/float16.
# Therefore, the reduction should never work with bfloat16/float16 value. Hence, we update
# the bfloat16/float16 reduction by
# 1) updating the src_dtype to float
# and 2) updating the dtype to float if it is bfloat16/float16.
assert dtype in [
torch.float,
torch.bfloat16,
torch.float16,
torch.int64,
]
_node.args = (
ops,
torch.float if dtype in DTYPE_LOWP_FP else dtype,
torch.float,
reduction_type,
value,
)
elif _node.target == "constant" and _node.args[-1] in DTYPE_LOWP_FP:
# No need to promote to float if all users are ops that accepts lowp fp input
(ops, value, dt) = _node.args
if all(is_lowp_fp_sink(user, dt) for user in _node.users): # type: ignore[arg-type]
continue
_node.args = (ops, value, torch.float)
elif _node.target == "to_dtype" and _node.args[-1] in DTYPE_LOWP_FP:
# No need to promote to float if all users are ops that accepts lowp fp input
(ops, x, dt) = _node.args
if all(is_lowp_fp_sink(user, dt) for user in _node.users): # type: ignore[arg-type]
continue
# The legalization always loads the BF16/FP16 tensor as FP32 for computation
# and converts back to BF16/FP16 after the computation.
# Hence, there should be no computation w/ BF16/FP16.
# Therefore, we update the to_dtype by replacing the bf16/fp16 dtype with fp32.
# Save the legalized to_dtype node for the elimination(eliminate_to_dtype step):
# 1) Eliminate the redundant to_dtype node if we have a pattern as follows:
# graph():
# %lowp_fp_legalized = call_method[target=to_dtype](args = (%ops, %input, torch.float))
# %to_dtype2 = call_method[target=to_dtype](args = (%ops, %lowp_fp_legalized, torch.bfloat16/float16))
# Regarding the first to_dtype, it is redundant because
# the second to_type also converts to the torch.bfloat16/torch.float16.
# Hence, we remove the first to_type.
to_lowp_fp_legalized_nodes.append(_node)
_node.args = (ops, x, torch.float)
elif _node.target == "to_dtype_bitcast":
(ops, value_var, dtype, src_dtype) = _node.args
# to_dtype_bitcast act as a lowp fp sink:
# c10::bit_cast requires the source and target have the same bitwidth. Because the input tensor's
# dtype could be promoted, e.g. from float16 to float, we have to cast the tensor to its original
# source dtype before invoking bit_cast.
if src_dtype in DTYPE_LOWP_FP:
# No need to promote to float if it is a user of a lowp fp sources
# which are all directly fed to ops that accepts lowp fp input
if not is_lowp_fp_source_no_promote(value_var, src_dtype):
with sub_graph.inserting_before(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, value_var, src_dtype)
)
_node.replace_input_with(value_var, to_type_node)
metrics.cpp_to_dtype_count += 1
# to_dtype_bitcast act as a lowp fp source:
# We also need to convert the bit-casted tensor back to float to make sure we keep using higher
# precision values for the rest of the computation.
if dtype in DTYPE_LOWP_FP:
# No need to promote to float if all users are ops that accepts lowp fp input
if not (
all(is_lowp_fp_sink(user, dtype) for user in _node.users)
):
ops = _node.args[0]
with sub_graph.inserting_after(_node):
to_type_node = sub_graph.call_method(
"to_dtype", args=(ops, _node, torch.float)
)
_node.replace_all_uses_with(
to_type_node, lambda n: n is not to_type_node
)
metrics.cpp_to_dtype_count += 1
else:
pass
def eliminate_to_dtype(sub_graph: torch.fx.Graph):
def _eliminate_duplicate_to_node(sub_graph: torch.fx.Graph):
# Eliminate the redundant to_dtype node. Let's consider a pattern as follows:
# graph():
# %to_dtype1 = call_method[target=to_dtype](args = (%ops, %input, torch.float), kwargs = {})
# %to_dtype2 = call_method[target=to_dtype](args = (%ops, %to_dtype1, torch.float), kwargs = {})
# Regarding the first to_dtype, it is redundant because the second to_type also converts to the
# torch.float. Hence, we remove the first to_type
def _used_by_to(to_node: torch.fx.Node):
return all(usr.target == "to_dtype" for usr in to_node.users)
all_to_nodes = [
node for node in sub_graph.nodes if node.target == "to_dtype"
]
all_to_nodes_and_users = [
{node: node.users} for node in all_to_nodes if _used_by_to(node)
]
for node_users in all_to_nodes_and_users:
for node, users in node_users.items():
if node in sub_graph.nodes and (
all(usr.args[-1] == node.args[-1] for usr in users)
or (
node in to_lowp_fp_legalized_nodes
and all(
usr.args[-1] in DTYPE_LOWP_FP for usr in users
)
)
):
val_node = node.all_input_nodes[-1]
node.replace_all_uses_with(val_node)
sub_graph.erase_node(node)
# For debug mode, the graph of LoopBody will attach a new GraphModule as
# owning_module for debugging while the release mode will not. The lint will
# check whether the graph has owning_module to decide if it needs to check
# call_module. LoopBody might contain get_index as a module call. But it
# is just a function. Hence, it cannot pass the lint check for debug mode.
# We bypass the check if the owning_module is None. Eventually, we should call
# get_index via call_function but not call_module.
if sub_graph.owning_module is None:
sub_graph.lint()
_eliminate_duplicate_to_node(sub_graph)
eliminate_to_dtype(sub_graph)
sub_blocks = [loop_body.root_block] + list(loop_body.subblocks.values())
for sub_block in sub_blocks:
add_to_dtype(sub_block.graph)
def legalize_lowp_fp_dtype(self, nodes):
if all(
isinstance(_node, SchedulerNode) and self.is_lowp_fp_scheduler(_node)
for _node in nodes
):
# Mark the load node to load bf16/fp16
for _node in nodes:
sub_blocks = [_node._body.root_block] + list(
_node._body.subblocks.values()
)
for sub_block in sub_blocks:
for fx_node in sub_block.graph.nodes:
if fx_node.target in ["load", "store"]:
assert fx_node.meta
assert OptimizationContext.key in fx_node.meta
opt_ctx: OptimizationContext = fx_node.meta[
OptimizationContext.key
]
assert opt_ctx.dtype in DTYPE_LOWP_FP
# Bypass the legalization as the kernel can run with bf16/fp16 directly
return
for _node in nodes:
assert isinstance(_node, SchedulerNode)
assert isinstance(_node._body, LoopBody)
body: LoopBody = _node._body
if not body.is_memory_copy():
self.legalize_lowp_fp_dtype_loopbody(body)
def codegen_functions(self, fn_list, var_sizes_list):
assert len(fn_list) == len(var_sizes_list)
kernel_group = self.kernel_group
group, reduction_group = max(var_sizes_list, key=lambda sizes: len(sizes[1]))
self.set_ranges(group, reduction_group)
def codegen_kernel(cls, *args):
with kernel_group.new_kernel(cls, *args) as kernel:
# Ugly hack to maintain the metrics kernel count since
# we only count in CppKernelProxy, not those contained in it
metrics.generated_kernel_count -= 1
run(kernel)
return kernel
def run(kernel):
vars, reduction_vars = kernel.set_ranges(group, reduction_group)
in_suffix = False
for fn, var_sizes in zip(fn_list, var_sizes_list):
if var_sizes in [
(group, reduction_group),
(tuple(itertools.chain(group, reduction_group)), ()),
]:
assert not in_suffix
fn(vars, reduction_vars)
else:
in_suffix = True
assert var_sizes == (
group,
(),
), f"unexpected group: {var_sizes} != {group}, {reduction_group}"
# we can fuse in some extra pointwise into the suffix
with kernel.write_to_suffix():
fn(vars, ())
scalar_kernel = codegen_kernel(self.kernel_cls)
V.graph.removed_buffers |= scalar_kernel.removed_buffers
V.graph.inplaced_to_remove |= scalar_kernel.inplaced_to_remove
self.loop_nest = LoopNest.build(scalar_kernel)
if not self.picked_vec_isa or not self.itervars:
self.kernels = [scalar_kernel]
self.aggregate_reduction_buffers(False, None)
self.loop_nest.set_kernel(self)
return
# Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args.
# But the generated scalar kernel has updated these global contexts. Hence, the other kernels
# should not do this again to avoid context conflict. By now, we only control the
# config.inplace_buffers. In the future, we could maintain more contexts.
with torch._inductor.config.patch(inplace_buffers=False):
tiling_select = TilingSelect()
tiling_factors, tiling_indices = tiling_select.select_tiling(
fn_list, var_sizes_list
)
assert len(tiling_factors) == len(tiling_indices)
# <TODO> This should be removed after full support for vectorization is implemented.
could_masked_vec = True
all_dtypes = _get_dtype_from_loopbodies(_get_loop_body(fn_list))
if any(dtype not in MASKED_VECTORIZABLE_DTYPES for dtype in all_dtypes):
# can be removed after masked vectorizable dtype are same with vectorizable dtype
could_masked_vec = False
_inner_loop_reduction_outer_not = False
_outer_loop = None
if tiling_indices:
inner_loop_reduction = False
outer_loop_level = tiling_indices[0]
inner_loop_level = outer_loop_level + 1
if len(self.loop_nest.loops) > inner_loop_level:
inner_loop_reduction = self.loop_nest.loops[
inner_loop_level
].is_reduction
outer_loop_reduction = self.loop_nest.loops[
outer_loop_level
].is_reduction
_inner_loop_reduction_outer_not = (
inner_loop_reduction and not outer_loop_reduction
)
if len(tiling_indices) == 1:
metrics.generated_cpp_vec_kernel_count += 1
loop = self.loop_nest.tile(tiling_indices[0], factor=tiling_factors[0])
vec_kernel = codegen_kernel(
self.vec_kernel_cls, tiling_factors[0], tiling_indices[0]
)
tail_size = loop.size - loop.tiled_size
vec_kernel.active_ranges = {loop.var: (0, loop.tiled_size)}
if config.cpp.enable_loop_tail_vec and could_masked_vec:
tail_kernel = codegen_kernel(
self.vec_kernel_cls,
tiling_factors[0],
tiling_indices[0],
tail_size,
)
else:
tail_kernel = scalar_kernel
scalar_kernel.inner_itervars = [loop.var]
tail_kernel.active_ranges = {loop.var: (loop.tiled_size, loop.size)}
self.kernels = [vec_kernel, tail_kernel]
_outer_loop = loop
elif len(tiling_indices) == 2:
assert (
tiling_indices[1] == len(self.itervars) - 1
and tiling_factors[0] == tiling_factors[1]
)
metrics.generated_cpp_vec_kernel_count += 2
outer_loop = self.loop_nest.tile(
tiling_indices[0], factor=tiling_factors[0]
)
outer_ranges = {
"main": (0, outer_loop.tiled_size),
"tail": (outer_loop.tiled_size, outer_loop.size),
}
outer_tail_size = outer_loop.size - outer_loop.tiled_size
inner_loop = self.loop_nest.tile(
tiling_indices[1], factor=tiling_factors[0]
)
inner_ranges = {
"main": (0, inner_loop.tiled_size),
"tail": (inner_loop.tiled_size, inner_loop.size),
}
inner_tail_size = inner_loop.size - inner_loop.tiled_size
tile2d_kernel = codegen_kernel(
self.tile2d_kernel_cls,
tiling_factors[0],
tiling_indices,
)
tile2d_kernel.active_ranges = {
outer_loop.var: outer_ranges["main"],
inner_loop.var: inner_ranges["main"],
}
tail_kernel = []
if config.cpp.enable_loop_tail_vec and could_masked_vec:
for outer_r, inner_r in (
("main", "tail"),
("tail", "main"),
("tail", "tail"),
):
_inner_tail_size = (
inner_tail_size if inner_r == "tail" else None
)
_outer_tail_size = (
outer_tail_size if outer_r == "tail" else None
)
kernel = codegen_kernel(
self.tile2d_kernel_cls,
tiling_factors[0],
tiling_indices,
_inner_tail_size,
_outer_tail_size,
)
kernel.active_ranges = {
outer_loop.var: outer_ranges[outer_r],
inner_loop.var: inner_ranges[inner_r],
}
tail_kernel.append(kernel)
else:
vec_kernel = codegen_kernel(
self.vec_kernel_cls, tiling_factors[0], tiling_indices[0]
)
vec_kernel.active_ranges = {
outer_loop.var: outer_ranges["main"],
inner_loop.var: inner_ranges["tail"],
}
vec_kernel.inner_itervars = [inner_loop.var]
tail_kernel.append(vec_kernel)
scalar_kernel.active_ranges = {
outer_loop.var: outer_ranges["tail"],
inner_loop.var: (0, inner_loop.size),
}
scalar_kernel.inner_itervars = [inner_loop.var, outer_loop.var]
tail_kernel.append(scalar_kernel)
self.kernels = [tile2d_kernel] + tail_kernel
_outer_loop = outer_loop
else:
self.kernels = [scalar_kernel]
self.aggregate_reduction_buffers(
_inner_loop_reduction_outer_not, _outer_loop
)
self.loop_nest.set_kernel(self)
def codegen_loop_bodies(self, loop_bodies, var_sizes_list):
for body in loop_bodies:
self.legalize_lowp_fp_dtype_loopbody(body)
DataTypePropagation.propagate_loopbody(body)
self.codegen_functions(loop_bodies, var_sizes_list)
def codegen_nodes(self, nodes: list[SchedulerNode]):
# Legalize BF16 node by adding to_dtype explicitly
self.legalize_lowp_fp_dtype(nodes)
self.data_type_propagation(nodes)
assert len(nodes) >= 1
def fn(node, *index_vars):
node.decide_inplace_update()
node.mark_run()
if isinstance(V.kernel, NullKernelHandler):
return node._body(*index_vars)
else:
return node.codegen(index_vars)
fn_list = [functools.partial(fn, node) for node in nodes]
if (
isinstance(V.local_buffer_context, LocalBufferContext)
and V.local_buffer_context.local_buffers
):
def wrap_fn(fn):
wrapped_fn = V.local_buffer_context.localize_function(
fn,
)
wrapped_fn.original_fn = fn
return wrapped_fn
fn_list = [wrap_fn(fn) for fn in fn_list]
var_sizes_list = [node.group[1] for node in nodes]
self.codegen_functions(fn_list, var_sizes_list)
def codegen_loops(self, code, worksharing):
self.codegen_loops_impl(self.loop_nest, code, worksharing)
def update_stores_with_parallel_reduction(self):
for kernel in self.kernels:
kernel.update_stores_with_parallel_reduction()
def gen_body(self, code: Optional[BracesBuffer] = None):
assert code is not None
if_prefix = "C10_LIKELY"
for kernel in self.kernels:
with contextlib.ExitStack() as stack:
if kernel.codegen_conditions(code, if_prefix):
if_prefix = "C10_UNLIKELY"
stack.enter_context(code.indent())
code.splice(kernel.gen_body())
def aggregate_reduction_buffers(
self, inner_loop_reduction_outer_not: bool, outer_loop: Optional["LoopLevel"]
):
"""
CppKernel/CppVecKernel/CppTile2dKernel have reduction buffers themselves.
Here, we decide how to aggregate them together and place new reduction buffers
under CppKernelProxy.
"""
def aggregate_reduction_prefix_suffix(outer_loop: "LoopLevel"):
assert len(self.kernels) >= 2
main_loop_kernel = self.kernels[0]
tail_loop_kernel = self.kernels[-1]
assert isinstance(main_loop_kernel, self.vec_kernel_cls)
# Prefix
if type(tail_loop_kernel) == self.kernel_cls:
# if tail loop kernel is a scalar kernel, we need to extend tmp_acc -> tmp_acc_arr[] to
# hold the temporary inner loop acc result for outer tail loop
tail_loop_kernel.finalize_reduction_prefix(
main_loop_kernel.tiling_factor
)
main_loop_kernel.finalize_reduction_prefix()
self.reduction_prefix.splice(
tail_loop_kernel.reduction_prefix
+ main_loop_kernel.reduction_prefix
)
else:
main_loop_kernel.finalize_reduction_prefix()
self.reduction_prefix.splice(main_loop_kernel.reduction_prefix)
# Suffix
suffix_buf = BracesBuffer()
with contextlib.ExitStack() as stack:
if main_loop_kernel.codegen_conditions(
suffix_buf, "C10_LIKELY", outer_loop.var
):
stack.enter_context(suffix_buf.indent())
suffix_buf.splice(main_loop_kernel.reduction_suffix)
with contextlib.ExitStack() as stack:
if tail_loop_kernel.codegen_conditions(
suffix_buf, "C10_UNLIKELY", outer_loop.var
):
stack.enter_context(suffix_buf.indent())
if type(tail_loop_kernel) == self.kernel_cls:
reduction_vars = tail_loop_kernel.reduction_var_names
for name in reduction_vars:
new_name = f"{name}_arr[{outer_loop.var}_tail - {cexpr_index(outer_loop.tiled_size)}]"
replace_acc_name(tail_loop_kernel.stores, name, new_name)
replace_acc_name(
tail_loop_kernel.reduction_suffix, name, new_name
)
# If tail loop kernel is a scalar kernel, use direct sum instead of cascade_sum_combine
# as the reduction vars are extended: tmp_acc -> tmp_acc_arr[].
replace_cascade_sum_with_add(tail_loop_kernel.stores)
suffix_buf.splice(
move_code_under_inner_loop(
tail_loop_kernel.reduction_suffix,
outer_loop.var,
f"{outer_loop.var}_tail",
outer_loop.tiled_size,
outer_loop.size,
)
)
else:
suffix_buf.splice(tail_loop_kernel.reduction_suffix)
self.reduction_suffix = suffix_buf
main_kernel = self.kernels[0]
if inner_loop_reduction_outer_not:
assert outer_loop
aggregate_reduction_prefix_suffix(outer_loop)
else:
main_kernel.finalize_reduction_prefix()
self.reduction_prefix.splice(main_kernel.reduction_prefix)
self.reduction_suffix.splice(main_kernel.reduction_suffix)
self.parallel_reduction_prefix.splice(main_kernel.parallel_reduction_prefix)
self.parallel_reduction_suffix.splice(main_kernel.parallel_reduction_suffix)
self.local_reduction_init.splice(main_kernel.local_reduction_init)
self.local_reduction_stores.splice(main_kernel.local_reduction_stores)
self.non_parallel_reduction_prefix.splice(
main_kernel.non_parallel_reduction_prefix
)
self.non_parallel_reduction_suffix.splice(
main_kernel.non_parallel_reduction_suffix
)
class OuterLoopFusedKernel(CppKernel):
def __init__(self, kernel_group):
super().__init__(kernel_group.args, kernel_group.ws.num_threads)
self.inner: list[LoopNest] = []
def decide_parallel_depth(self, max_parallel_depth, threads):
kernels_parallel_depth = []
nested_kernels: list[CppKernel] = [
loop_nest.get_kernel() for loop_nest in self.inner
]
# TODO(leslie-fang-intel): only enable parallel within all outer loop levels.
for kernel in nested_kernels:
# For any ScalarKernel, VecKernel, or Tile2DKernel,
# they should all have the same call_ranges
call_ranges = kernel.call_ranges
assert call_ranges is not None
kernels_parallel_depth.append(
kernel.decide_parallel_depth(
ParallelDepth(
parallel_depth=(
len(call_ranges) - max_parallel_depth.start_depth
),
start_depth=max_parallel_depth.start_depth,
),
threads,
).parallel_depth
)
return ParallelDepth(
parallel_depth=min(
max_parallel_depth.parallel_depth, max(kernels_parallel_depth)
),
start_depth=max_parallel_depth.start_depth,
)
class ReasonFusedNodes(Enum):
SAME_VARS_REDUCE = "same_vars_reduce"
COMPATIBLE_REDUCTION = "compatible_reduction"
COMPATIBLE_RANGES_NO_REDUCTION = "compatible_ranges_no_reduction"
class CppScheduling(BaseScheduling):
# Subclass CppKernelProxy to customize codegen without copying codegen_node().
# Use kernel_proxy_cls to inject custom proxies in CppScheduling subclasses.
# Avoid duplicating codegen_node() just to swap in a custom kernel proxy class.
kernel_proxy_cls: type[CppKernelProxy] = CppKernelProxy
# ctypes limits the number of args to 1024, refer to:
# https://github.com/python/cpython/commit/a285af7e626d1b81cf09f8b2bf7656f100bc1237
# We set a conservative threshold here.
MAX_FUSED_KERNEL_ARGS_NUM = 500
backend_features = OrderedSet(
[
BackendFeature.INPLACE_BUFFERS,
BackendFeature.REDUCE_TO_SINGLE_ELEMENT,
]
)
@classmethod
def get_backend_features(cls, device: torch.device) -> OrderedSet[BackendFeature]:
return cls.backend_features
def __init__(self, scheduler):
super().__init__(scheduler)
if scheduler:
self.reset_kernel_group()
self._ready_to_flush = False
def _set_flush_status(self, status: bool):
self._ready_to_flush = status
def group_fn(self, sizes):
return tuple(tuple(map(V.graph.sizevars.simplify, s)) for s in sizes)
def reset_kernel_group(self):
self.kernel_group = KernelGroup()
def fuse(self, node1, node2):
if node1.is_foreach() or node2.is_foreach():
return ForeachKernelSchedulerNode.fuse(node1, node2)
elif node1.is_template():
assert not node2.is_template()
return FusedSchedulerNode.fuse(node1, node2)
else:
if (
self._why_fuse_nodes(node1, node2)
== ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION
):
assert isinstance(node1, (SchedulerNode, FusedSchedulerNode))
assert isinstance(node2, (SchedulerNode, FusedSchedulerNode))
_, (vars1, reduce1) = node1.group
_, (vars2, reduce2) = node2.group
assert reduce1 == () and reduce2 == (), (reduce1, reduce2)
def get_indexing_ranges_exprs(node):
if isinstance(node, FusedSchedulerNode):
assert len(node.snodes) > 0, node.snodes
var_ranges = None
indexing_exprs = OrderedSet[Any]()
for snode in node.snodes:
v, exprs = get_indexing_ranges_exprs(snode)
if var_ranges is None:
var_ranges = v
assert var_ranges == v, (var_ranges, v, node.snodes)
indexing_exprs.update(exprs)
return var_ranges, list(indexing_exprs)
else:
assert isinstance(node, SchedulerNode)
comp_buffer = node.node
assert isinstance(comp_buffer, ir.ComputedBuffer)
_, body, _ = comp_buffer.get_default_sizes_body()
return body.var_ranges, list(body.indexing_exprs.values())
node_to_recomp = node1 if len(vars1) < len(vars2) else node2
assert isinstance(node_to_recomp, SchedulerNode)
ref_node = node2 if len(vars1) < len(vars2) else node1
ref_indexing_constraints = get_indexing_ranges_exprs(ref_node)
node_to_recomp.recompute_size_and_body(
extra_indexing_constraints=ref_indexing_constraints
)
_, (vars1, _) = node1.group
_, (vars2, _) = node2.group
if vars1 == vars2:
return FusedSchedulerNode.fuse(node1, node2)
# recompute ref_node if its ranges are also changed
node_to_recomp_indexing_constraints = get_indexing_ranges_exprs(
node_to_recomp
)
if isinstance(ref_node, SchedulerNode):
ref_node.recompute_size_and_body(
extra_indexing_constraints=node_to_recomp_indexing_constraints
)
else:
assert isinstance(ref_node, FusedSchedulerNode)
for snode in ref_node.snodes:
assert isinstance(snode, SchedulerNode)
snode.recompute_size_and_body(
extra_indexing_constraints=node_to_recomp_indexing_constraints
)
ref_node = FusedSchedulerNode(ref_node.scheduler, ref_node.snodes)
_, (vars1, _) = node1.group
_, (vars2, _) = node2.group
assert vars1 == vars2, (vars1, vars2)
return FusedSchedulerNode.fuse(node1, node2)
elif self.can_fuse_vertical_outer_loop(node1, node2):
return OuterLoopFusedSchedulerNode.fuse(
node1, node2, self._get_outer_loop_fusion_depth(node1, node2)
)
else:
return FusedSchedulerNode.fuse(node1, node2)
def _why_fuse_nodes(self, node1, node2) -> Optional[ReasonFusedNodes]:
_, (vars1, reduce1) = node1.group
_, (vars2, reduce2) = node2.group
if vars1 == vars2 and reduce1 == reduce2:
return ReasonFusedNodes.SAME_VARS_REDUCE
if reduce1 == () and vars1 == vars2 + reduce2:
return ReasonFusedNodes.COMPATIBLE_REDUCTION
if self._can_fuse_nodes_with_compatible_ranges(node1, node2):
return ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION
# TODO(jansel): allow fusion pointwise (vars1, ()) suffix?
return None
def _can_fuse_nodes_with_compatible_ranges(self, node1, node2):
# Here we try to fuse SchedulerNode/FusedSchedulerNode with compatible ranges
# e.g. (s0, s1, s2) and (s0 * s1 * s2)
_, (vars1, reduce1) = node1.group
_, (vars2, reduce2) = node2.group
c1 = reduce1 == () and reduce2 == ()
c2 = math.prod(vars1) == math.prod(vars2)
c3 = len(vars1) == 1 or len(vars2) == 1
if not (c1 and c2 and c3):
return False
node_to_recomp = node1 if len(vars1) < len(vars2) else node2
ref_node = node2 if len(vars1) < len(vars2) else node1
# We can not recompute sizes and body for nodes other than SchedulerNode
# TODO: we can extend fusion support with compatible ranges for FusedSchedulerNode
if isinstance(node_to_recomp, FusedSchedulerNode):
return False
# It may happen that node1 and node2 compatible number of elements
# but different original ranges, for example:
# {d0: s0, d1: s1, d2: s2} vs {d0: s0*s1*s2}
# See https://github.com/pytorch/pytorch/pull/120077/files#r1500427848 for more details
# TODO: we can fix if it allows us to CSE at least one of the variables
assert isinstance(node_to_recomp, SchedulerNode)
if isinstance(node_to_recomp.node, ir.TemplateBuffer):
return False
assert isinstance(node_to_recomp.node, ir.ComputedBuffer)
# node.data.get_size() is a cheaper version of node.get_read_writes().var_ranges
# but without variable name
ranges2 = node_to_recomp.node.data.get_size()
ranges1 = None
if isinstance(ref_node, FusedSchedulerNode):
ranges_set = OrderedSet[tuple[Any, ...]]()
for snode in ref_node.snodes:
if isinstance(snode.node, ir.TemplateBuffer):
break
assert isinstance(snode.node, ir.ComputedBuffer)
ranges_set.add(tuple(snode.node.data.get_size()))
if len(ranges_set) != 1:
return False
ranges1 = list(next(iter(ranges_set)))
else:
assert isinstance(ref_node, SchedulerNode)
assert isinstance(ref_node.node, ir.ComputedBuffer)
ranges1 = ref_node.node.data.get_size() # type: ignore[assignment]
if ranges1 != ranges2:
return False
return True
def _can_fuse_horizontal_impl(self, node1, node2):
assert isinstance(node1, (FusedSchedulerNode, SchedulerNode))
assert isinstance(node2, (FusedSchedulerNode, SchedulerNode))
if any(
isinstance(node, OuterLoopFusedSchedulerNode) for node in (node1, node2)
):
return False
return self._why_fuse_nodes(node1, node2) is not None
def can_fuse_horizontal(self, node1, node2):
if node1.is_template() or node2.is_template():
return False
if (
len(node1.get_nodes()) + len(node2.get_nodes())
> config.cpp.max_horizontal_fusion_size
):
return False
return self._can_fuse_horizontal_impl(node1, node2)
def can_fuse_multi_outputs_template(
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
) -> bool:
if template_buf := node1.get_template_node():
return (
isinstance(template_buf.layout, ir.MultiOutputLayout)
and isinstance(node2.node, ir.MultiOutput)
and len(node2.node.inputs) == 1
and node2.node.inputs[0].get_name() == template_buf.name # type: ignore[union-attr]
)
return False
def _get_outer_loop_fusion_depth(self, node1, node2):
DISABLE_OUTER_LOOP_FUSION = 0
if not all(
type(node)
in (OuterLoopFusedSchedulerNode, FusedSchedulerNode, SchedulerNode)
for node in (node1, node2)
):
return DISABLE_OUTER_LOOP_FUSION
_node1 = (
node1.get_outer_nodes()[-1]
if isinstance(node1, OuterLoopFusedSchedulerNode)
else node1
)
assert isinstance(_node1, (FusedSchedulerNode, SchedulerNode))
_node2 = (
node2.get_outer_nodes()[0]
if isinstance(node2, OuterLoopFusedSchedulerNode)
else node2
)
assert isinstance(_node2, (FusedSchedulerNode, SchedulerNode))
_, (vars1, reduce1) = _node1.group
_, (vars2, reduce2) = _node2.group
if vars1 == () and vars2 == () and reduce1 != () and reduce2 != ():
# Reduction only
return DISABLE_OUTER_LOOP_FUSION
if all(type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2)):
return (
node1.outer_loop_fusion_depth
if node1.outer_loop_fusion_depth == node2.outer_loop_fusion_depth
else DISABLE_OUTER_LOOP_FUSION
)
outer_loop_fusion_depth = min(len(vars1), len(vars2))
if (
outer_loop_fusion_depth >= 1
and vars1[:outer_loop_fusion_depth] == vars2[:outer_loop_fusion_depth]
):
if any(
type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2)
):
_compare_node = (
node1 if type(node1) is OuterLoopFusedSchedulerNode else node2
)
if _compare_node.outer_loop_fusion_depth == outer_loop_fusion_depth:
# Same outer loop fusion depth as prev nodes in OuterLoopFusedSchedulerNode
return outer_loop_fusion_depth
else:
return DISABLE_OUTER_LOOP_FUSION
else:
# First 2 nodes to generate OuterLoopFusedSchedulerNode
return outer_loop_fusion_depth
return DISABLE_OUTER_LOOP_FUSION
def can_fuse_vertical_outer_loop(self, node1, node2):
return (
not node1.is_template()
and not node2.is_template()
and node1.get_operation_names() & node2.ancestors
and not (
self._can_fuse_horizontal_impl(node1, node2)
and not node1.is_reduction()
)
and self._get_outer_loop_fusion_depth(node1, node2) >= 1
)
def get_fusion_pair_priority(self, node1, node2):
if self.can_fuse_vertical_outer_loop(node1, node2):
# Outer loop fusion with lower priority
return 1
else:
return 0
def can_fuse_vertical(self, node1, node2):
if node2.is_template():
# TODO(jgong5): support pre-op fusion with template
return False
if node1.is_template():
template_fusion_supported, _ = template_fusion_with_epilogues_supported(
node1, [node2]
)
return not node2.is_reduction() and template_fusion_supported
return (
self._can_fuse_horizontal_impl(node1, node2) and not node1.is_reduction()
) or self.can_fuse_vertical_outer_loop(node1, node2)
def try_loop_split(self, nodes: list[SchedulerNode]):
"""
Apply loop split optimization.
When one of the indexing_exprs contains a division, we eliminate the division by splitting the loop
to avoid non-contiguous loads, subject to the following conditions:
1. No reduction and no mudular index for all nodes.
2. The indexing_exprs of all nodes contain only one (or more, but all the same) division,
where the divisor is an integer and not too small (the divisor > 8), the dividend is
one of the iter_vars, and this var, i.e. the dimension that needs to be split, is
contiguous in all other indexing_exprs.
For example, if the node's var_ranges: {z0: 2, z1: 9216, z2: 960} and indexing_exprs:
{'index0': 8847360*z0 + 960*z1 + z2, 'index1': 32*z0 + (z2//30), 'index2': z2},
we will split z2 -> 30*z2 + z3, then the node's var_ranges will be changed to
{z0: 2, z1: 9216, z2: 32, z3: 30} and indexing_exprs will be changed to
{'index0': 8847360*z0 + 960*z1 + 30*z2 + z3, 'index1': 32*z0 + z2, 'index2': 30*z2 + z3}.
"""
# No reduction and no mudular
if any(
len(node.group[1][1]) != 0
or any(
expr.has(ModularIndexing) for expr in node._body.indexing_exprs.values()
)
for node in nodes
):
return nodes
split_var = None
split_number = None
num_div = 0
div_expr_ = None
match_div = False
matched_node = None
for node in nodes:
assert isinstance(node.node, ir.ComputedBuffer)
_, original_body, _ = node.node.get_default_sizes_body()
for name, expr in original_body.indexing_exprs.items():
if not isinstance(expr, sympy.Expr):
continue
for div_expr in expr.find(FloorDiv):
if (
any(div_expr.has(var) for var in original_body.iter_vars)
and div_expr != div_expr_
):
div_expr_ = div_expr
num_div += 1
if num_div > 1:
return nodes
if (
isinstance(div_expr.args[1], sympy.core.numbers.Integer)
and div_expr.args[0] in original_body.iter_vars
and name is not None
and all(
stride_at_vec_range(expr_, div_expr.args[0]) in (0, 1)
for name_, expr_ in original_body.indexing_exprs.items()
if name_ != name
)
and div_expr.args[1] > 8
):
split_var = div_expr.args[0]
split_number = div_expr.args[1]
match_div = True
matched_node = node
# Only one node contains a division, and the split dimension is contiguous in all other indexing_exprs.
if not match_div:
return nodes
extra_indexing_constraints = None
def loop_split(sizes, body, vars):
index_size, reduce_size = sizes
index_vars, reduce_vars = vars
split_idx = index_vars.index(split_var)
new_index_size = index_size.copy()
new_index_size[split_idx] = index_size[split_idx] // split_number
new_index_size.insert(split_idx + 1, split_number)
(new_index_vars, _), var_ranges = dependencies.index_vars_no_squeeze(
new_index_size, reduce_size, prefix="y"
)
iter_vars = new_index_vars.copy()
divisor_var = iter_vars.pop(split_idx + 1)
iter_vars[split_idx] = split_number * iter_vars[split_idx] + divisor_var
body = ir.LoopBody(
body, [iter_vars, reduce_vars], var_ranges, new_index_vars, reduce_vars
)
nonlocal extra_indexing_constraints
if not extra_indexing_constraints:
extra_indexing_constraints = (
body.var_ranges,
list(body.indexing_exprs.values()),
)
return (
(new_index_size, reduce_size),
body,
(new_index_vars, reduce_vars),
)
# Here decide the final loop order
for node in nodes:
if node == matched_node:
node.recompute_size_and_body(recompute_sizes_body_func=loop_split)
for node in nodes:
if node != matched_node:
node.recompute_size_and_body(
extra_indexing_constraints=extra_indexing_constraints,
recompute_sizes_body_func=loop_split,
)
return nodes
def codegen_outer_loop_node(
self,
node: OuterLoopFusedSchedulerNode,
):
"""
Generate the code for the outer loop fused scheduler node.
1. Codegen with fused outer loop: depends on the analysis of
the outer loop fused scheduler node, with or without the local buffer.
2. If failed, fallback to standard codegen.
"""
kernel_group = self.kernel_group
generated_cpp_vec_kernel_count = metrics.generated_cpp_vec_kernel_count
cpp_kernel_proxy_list: list[self.kernel_proxy_cls] = [] # type: ignore[name-defined]
nodes_list: list[list[SchedulerNode]] = []
assert isinstance(node, OuterLoopFusedSchedulerNode)
def try_outer_loop_fusion_with_local_buf(node: OuterLoopFusedSchedulerNode):
"""
Codegen code with fused outer loop and local Buffer.
"""
assert isinstance(node, OuterLoopFusedSchedulerNode)
cpp_kernel_proxy_list.clear()
nodes_list.clear()
def get_call_ranges(node: BaseSchedulerNode):
assert isinstance(node, (SchedulerNode, FusedSchedulerNode))
nodes: list[SchedulerNode] = node.get_nodes() # type: ignore[assignment]
_, (group, reduction_group) = max(
nodes, key=lambda x: int(x.is_reduction())
).group
call_ranges = tuple(group) + tuple(reduction_group)
return call_ranges
local_buffers: list[ir.Buffer] = []
# Map local buffer name to a list of global buffers
local_to_global_buffers: dict[str, list[ir.Buffer]] = {}
if all(
len(get_call_ranges(_node)) == node.outer_loop_fusion_depth + 1
for _node in node.get_outer_nodes()
):
# Ref to the typical case of local buffer in
# https://github.com/pytorch/pytorch/blob/1115a25c36340554442f28f9570abd42f0aface2/aten/src/ATen/native/cpu/SoftMaxKernel.cpp#L159 # noqa: B950
# where the buffer is with size of last dim and contiguous.
# Only support this typical case at first.
visited_scheduler_nodes: OrderedSet[str] = OrderedSet()
for scheduler_node in node.get_nodes():
# all users inside same OuterLoopFusedSchedulerNode
assert isinstance(scheduler_node, SchedulerNode)
visited_scheduler_nodes.add(scheduler_node.get_name())
if (
scheduler_node.is_reduction()
or len(scheduler_node.get_outputs()) != 1
):
continue
scheduler_buffer = scheduler_node.get_outputs()[0]
if all(
user.node in node.get_nodes() for user in scheduler_buffer.users
):
global_buffer = scheduler_buffer.node
assert isinstance(global_buffer, ir.ComputedBuffer)
global_buffer_layout = global_buffer.get_layout()
size_offset = node.outer_loop_fusion_depth - len(
get_call_ranges(scheduler_node)
)
def is_all_write_read_contiguous():
contiguous_index_expr = 0
stride = 1
for var, range in reversed(
scheduler_node._body.var_ranges.items()
):
contiguous_index_expr += stride * var
stride *= range
write_index_expr = scheduler_node._body.get_write_expr(
scheduler_buffer.get_name()
)
def is_contiguous_index(x):
return x == contiguous_index_expr
return is_contiguous_index(write_index_expr) and all(
isinstance(user.node, SchedulerNode)
and is_contiguous_index(
user.node._body.get_read_expr(
scheduler_buffer.get_name()
),
)
for user in scheduler_buffer.users
)
if not (
global_buffer_layout.is_contiguous()
and is_all_write_read_contiguous()
):
continue
# Local Buffer is a view of global buffer
local_buffer_stride: list[int] = []
stride = global_buffer_layout.stride[-1]
local_buffer_size = get_call_ranges(scheduler_node)[
size_offset:
]
for sz in reversed(local_buffer_size):
local_buffer_stride.insert(0, stride)
stride *= sz
local_buffer_layout = ir.FixedLayout(
global_buffer_layout.device,
global_buffer_layout.dtype,
local_buffer_size,
local_buffer_stride,
)
def try_share_local_buffer(local_buffer_layout, local_buffers):
for local_buf in local_buffers:
if local_buffer_layout == local_buf.layout and all(
all(
user.node.get_name() in visited_scheduler_nodes
for user in V.graph.scheduler.name_to_buf[
global_buffer.name
].users
)
for global_buffer in local_to_global_buffers[
local_buf.name
]
if global_buffer.name is not None
):
return local_buf
return None
local_buf_prefix = "local_buffer_data"
# Share existing local buffer
local_buffer_used = try_share_local_buffer(
local_buffer_layout, local_buffers
)
if not local_buffer_used:
# Create new local buffer
local_buffer_used = ir.Buffer(
name=f"{local_buf_prefix}_{len(local_buffers)}",
layout=local_buffer_layout,
)
local_buffers.append(local_buffer_used)
local_to_global_buffers[local_buffer_used.name] = [] # type: ignore[index]
local_to_global_buffers[local_buffer_used.name].append(
global_buffer,
)
with LocalBufferContext(kernel_group.args) as scope:
if len(local_buffers) > 0:
for local_buffer in local_buffers:
assert local_buffer.name is not None
scope.add_local_buffer(
local_buffer, local_to_global_buffers[local_buffer.name]
)
for _node in node.get_outer_nodes():
assert isinstance(_node, (FusedSchedulerNode, SchedulerNode))
cpp_kernel_proxy = self.kernel_proxy_cls(kernel_group)
cpp_kernel_proxy.codegen_nodes(_node.get_nodes()) # type: ignore[arg-type]
cpp_kernel_proxy_list.append(cpp_kernel_proxy)
nodes_list.append(_node.get_nodes()) # type: ignore[arg-type]
if not node.check_outer_fusion_loop_level_attr(
cpp_kernel_proxy_list, node.outer_loop_fusion_depth
):
for removed_buffer in scope.removed_buffers:
# Restore the removed buffers by this context before
# fallback to codegen without using Local Buffer
V.graph.removed_buffers.remove(removed_buffer)
return False
metrics.cpp_outer_loop_fused_inner_counts.append(
metrics.CppOuterLoopFusedCount(
len(cpp_kernel_proxy_list),
local_buffer_number=len(scope.local_buffers),
)
)
outer_fusion_cpp_kernel_proxy = node.merge_outer_fusion_kernels(
cpp_kernel_proxy_list,
)
kernel_group.finalize_kernel(
outer_fusion_cpp_kernel_proxy,
[*itertools.chain.from_iterable(nodes_list)],
)
return True
if not try_outer_loop_fusion_with_local_buf(node):
# Reset generated_cpp_vec_kernel_count to codegen again
metrics.generated_cpp_vec_kernel_count = generated_cpp_vec_kernel_count
cpp_kernel_proxy_list.clear()
nodes_list.clear()
# Similar as comment in
# https://github.com/pytorch/pytorch/blob/469383755fe416eb1c41fa724762ad3eaecdff07/torch/_inductor/codegen/cpp.py#L3269-L3272
# Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args.
with torch._inductor.config.patch(inplace_buffers=False):
for _node in node.get_outer_nodes():
assert isinstance(_node, (FusedSchedulerNode, SchedulerNode))
_nodes: list[SchedulerNode] = _node.get_nodes() # type: ignore[assignment]
cpp_kernel_proxy = self.kernel_proxy_cls(kernel_group)
cpp_kernel_proxy.codegen_nodes(_nodes)
kernel_group.finalize_kernel(cpp_kernel_proxy, _nodes)
def codegen_node(
self,
node: Union[OuterLoopFusedSchedulerNode, FusedSchedulerNode, SchedulerNode],
):
"""
Turn an set of pre-fused nodes into a C++ kernel.
"""
kernel_group = self.kernel_group
if isinstance(node, OuterLoopFusedSchedulerNode):
self.codegen_outer_loop_node(node)
else:
nodes: list[SchedulerNode] = node.get_nodes() # type: ignore[assignment]
nodes = self.try_loop_split(nodes)
cpp_kernel_proxy = self.kernel_proxy_cls(kernel_group)
cpp_kernel_proxy.codegen_nodes(nodes)
kernel_group.finalize_kernel(cpp_kernel_proxy, nodes)
args_num = self._get_scheduled_num_args()
if args_num > CppScheduling.MAX_FUSED_KERNEL_ARGS_NUM:
self._set_flush_status(True)
def is_cpp_template(self, node: BaseSchedulerNode) -> bool:
return isinstance(node, SchedulerNode) and isinstance(
node.node, ir.CppTemplateBuffer
)
def codegen_template(
self,
template_node: BaseSchedulerNode,
epilogue_nodes: Sequence[BaseSchedulerNode],
prologue_nodes: Sequence[BaseSchedulerNode],
):
"""
Codegen a CPP template, possibly with fused epilogues
"""
assert not prologue_nodes
# remove MultiOutput from epilogue_nodes
epilogue_nodes = [
epilogue_node
for epilogue_node in epilogue_nodes
if isinstance(epilogue_node, (SchedulerNode, FusedSchedulerNode))
]
# The counter cpp_templated_kernel_counter is used for verifying if a
# a templated kernel was successfully compiled in a UT
counters["inductor"]["cpp_templated_kernel_counter"] += 1
counters["inductor"]["cpp_epilogue_fusion_counter"] += len(epilogue_nodes)
assert self.is_cpp_template(template_node), (
"Template node passed to CppScheduler.codegen_template must be a SchedulerNode that wraps a CppTemplateBuffer"
)
template_node = cast(SchedulerNode, template_node)
_, (_, rnumel) = template_node.group
assert rnumel == ()
ctb: ir.CppTemplateBuffer = cast(ir.CppTemplateBuffer, template_node.node)
epilogue_ir_nodes: list[Optional[ir.Operation]] = [
n.node for n in epilogue_nodes
]
assert all(isinstance(n, ir.ComputedBuffer) for n in epilogue_ir_nodes), (
"Epilogue nodes must all be instances of ir.ComputedBuffer"
)
def template_buffer_has_other_users(
template_buffer, outputs_by_name, epilogue_nodes
):
if not epilogue_nodes:
return False
assert template_buffer.get_name() in outputs_by_name
users = outputs_by_name[template_buffer.get_name()].users
return not all(
isinstance(user.node, BaseSchedulerNode)
and user.node.node in epilogue_nodes
for user in users
)
flag_template_buffer_has_other_users = template_buffer_has_other_users(
ctb, template_node.outputs_by_name, epilogue_ir_nodes
)
kernel, render = ctb.make_kernel_render( # type: ignore[misc]
ctb,
flag_template_buffer_has_other_users=flag_template_buffer_has_other_users,
epilogue_nodes=epilogue_ir_nodes,
)
with kernel:
if not is_multi_outputs_template(template_node.node):
template_node.mark_run() # type: ignore[attr-defined]
for node in epilogue_nodes:
node.mark_run() # type: ignore[attr-defined]
src_code = render()
with V.set_kernel_handler(kernel):
node_schedule = [template_node, *epilogue_nodes]
kernel_name = self.define_kernel(src_code, node_schedule, kernel.args)
if is_multi_outputs_template(template_node.node):
# For multi outputs template, allocate buffers for each output after the epilogue
# codegen to which determines if the buffer has been removed.
assert len(template_node.outputs) == 1, (
"Multi outputs template should be with 1 output template buffer of MultiOutputLayout"
)
for user in template_node.outputs[0].users:
assert isinstance(user.node, ExternKernelSchedulerNode), (
"Multi outputs template should be with ExternKernelSchedulerNode"
)
assert isinstance(user.node.node, ir.MultiOutput), (
"Multi outputs template has multi users with MultiOutput"
)
user.node.mark_run()
kernel.call_kernel(kernel_name, ctb)
V.graph.removed_buffers |= kernel.removed_buffers
self.free_buffers_in_scheduler()
def _get_scheduled_num_args(self):
return self.kernel_group.get_num_args()
def ready_to_flush(self):
return self._ready_to_flush
def codegen_sync(self):
pass
def define_kernel(self, src_code, nodes, kernel_args=None):
wrapper = V.graph.wrapper_code
fused_name = (
get_fused_kernel_name(nodes, config.cpp.descriptive_names)
if config.cpp.descriptive_names
else ""
)
kernel_name = "_".join(["cpp", fused_name, wrapper.next_kernel_suffix()])
# below add provenance tracing info for cpu CppKernel types
if config.trace.provenance_tracking_level != 0:
set_kernel_post_grad_provenance_tracing(nodes, kernel_name)
kernel_decl_name = kernel_name if V.graph.cpp_wrapper else "kernel"
src_code = src_code.replace(str(Placeholder.KERNEL_NAME), kernel_decl_name)
src_code = src_code.replace(str(Placeholder.DESCRIPTIVE_NAME), kernel_name)
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
src_code = src_code.replace("#pragma CMT", "//")
# Get the lines in the source code representing the function definition,
# excluding the the first line including cpp_prefix.h.
first_char = src_code.rfind('extern "C"')
last_char = src_code.find(")", first_char)
if _IS_WINDOWS:
# get_export_declaration introduced one more ')' in Windows
last_char = src_code.find(")", last_char + 1)
kernel_definition = f"{src_code[first_char : last_char + 1]};\n"
compile_wrapper = IndentedBuffer()
args = self.kernel_group.args if kernel_args is None else kernel_args
_, _, arg_types = args.cpp_argdefs()
if not V.graph.cpp_wrapper:
compile_wrapper.writeline(f"async_compile.cpp_pybinding({arg_types!r}, '''")
compile_wrapper.splice(src_code, strip=True)
if not V.graph.cpp_wrapper:
compile_wrapper.writeline("''')")
wrapper.define_kernel(
kernel_name,
compile_wrapper.getvalue(),
gpu=False,
cpp_definition=kernel_definition,
)
return kernel_name
def flush(self):
src_code = self.kernel_group.codegen_group()
if src_code:
kernel_name = self.define_kernel(
src_code, self.kernel_group.scheduled_nodes
)
self.kernel_group.call_kernel(V.graph.wrapper_code, kernel_name)
self.reset_kernel_group()
self._set_flush_status(False)
class KernelGroup:
def __init__(self):
super().__init__()
self.args = KernelArgs()
self.loops_code = BracesBuffer()
self.ws = WorkSharing(self.loops_code)
self.stack = contextlib.ExitStack()
self.stack.enter_context(self.ws)
self.scheduled_nodes = []
def new_kernel(self, cls, *args):
return cls(self.args, parallel_num_threads(), *args)
def finalize_kernel(self, new_kernel, nodes):
self.scheduled_nodes += nodes
code = self.loops_code
ws = self.ws
new_kernel.codegen_loops(code, ws)
def get_num_args(self):
arg_defs, _call_args, _arg_types = self.args.cpp_argdefs()
args_num = len(arg_defs)
return args_num
def codegen_group(self, name=None) -> str:
self.stack.close()
if not self.scheduled_nodes:
return ""
code = BracesBuffer()
# 1. Include header files
# TODO: support kernel profile on other platforms
enable_kernel_profile = config.cpp.enable_kernel_profile and sys.platform in [
"linux",
"win32",
]
if enable_kernel_profile:
code.writelines(["#include <torch/csrc/inductor/aoti_runtime/utils.h>"])
code.writeline("#include <torch/csrc/inductor/cpp_prefix.h>")
# 2. Function definition
kernel_decl_name = str(Placeholder.KERNEL_NAME) if name is None else name
kernel_name = str(Placeholder.DESCRIPTIVE_NAME) if name is None else name
arg_defs, _, _ = self.args.cpp_argdefs()
arg_defs = ",\n".ljust(25).join(arg_defs)
func_export_decl = get_export_declaration()
inline_attr = (
"C10_ALWAYS_INLINE_ATTRIBUTE" if config.cpp.force_inline_kernel else ""
)
code.writeline(
f'extern "C" {func_export_decl} void {inline_attr} {kernel_decl_name}({arg_defs})'
)
# 3. Function body
with code.indent():
if enable_kernel_profile:
graph_id = V.graph.graph_id
prefix = "graph_" + str(graph_id) + "_" if graph_id is not None else ""
code.writelines(
[
(
"torch::aot_inductor::RAIIAtenRecordFunctionHandle "
f'record_{prefix + kernel_name}_("{prefix + kernel_name}", nullptr);'
)
]
)
for old, new in self.args.aliases():
code.writeline(f"auto {old} = {new};")
code.splice(self.loops_code)
return code.getvalue()
def call_kernel(self, wrapper, kernel_name):
_, call_args, arg_types = self.args.cpp_argdefs()
wrapper.generate_kernel_call(
kernel_name, call_args, triton=False, arg_types=arg_types
)
class WorkSharing:
def __init__(self, code):
self.code = code
self.in_parallel = False
self.num_threads = None
self.stack = contextlib.ExitStack()
def parallel(self, threads):
if self.in_parallel and threads != self.num_threads:
# wrong number of threads
self.close()
if not self.in_parallel:
self.num_threads = threads
self.in_parallel = True
if config.cpp.dynamic_threads:
self.code.writeline("#pragma omp parallel")
else:
self.code.writeline(f"#pragma omp parallel num_threads({threads})")
self.stack.enter_context(self.code.indent())
self.code.writeline(
"int tid = omp_get_thread_num();",
)
def single(self):
if self.in_parallel:
self.code.writeline("#pragma omp single")
return self.in_parallel
def close(self):
self.stack.close()
self.in_parallel = False
def __enter__(self):
self.stack.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stack.__exit__(exc_type, exc_val, exc_tb)
@dataclasses.dataclass
class LoopLevel:
var: Optional[sympy.Expr] = None
size: Optional[sympy.Expr] = None
offset: sympy.Expr = sympy.S.Zero
# Note [tiled_size]
# We may do loop-tiling at this loop level.
# When var is in [offset, tiled_size), we will perform the vectorization kernel.
# When var is in [tiled_size, size), we will perform the scalar or masked vectorization kernel.
# for (var = offset; var < size; var += steps) {
# if (var >= offset && var < tiled_size) vec_loop_body();
# if (var >= tiled_size && var < size) scalar_or_maskvec_loop_body();
# }
tiled_size: sympy.Expr = sympy.S.Zero
steps: sympy.Expr = sympy.S.One
parallel: int = 0
simd_omp: bool = False
simd_vec: bool = False
collapsed: bool = False
is_reduction: bool = False
def __post_init__(self):
# Regarding the C++/OpenMP backend, `cpu_vec_isa.pick_vec_isa()` to check
# vectorization ISA is a time-consuming and one-shot operation. It leads
# to taking a longer time to import `codegen.cpp` package because the
# `LoopLevel` of the package is decorated by `@dataclasses.dataclass` while
# the decorator will invoke `cpu_vec_isa.pick_vec_isa()` to initialize the
# `simd_nelements` of the `LoopLevel`. It might introduce additional compilation
# overhead to the Triton backend. Therefore, we moved the `simd_nelements` to
# `__post_init__`
picked_vec_isa: cpu_vec_isa.VecISA = cpu_vec_isa.pick_vec_isa()
self.simd_nelements: int = picked_vec_isa.nelements() if picked_vec_isa else 0
def tile(self, factor):
sympy_factor = sympy.Integer(factor)
loop = LoopLevel(self.var, self.size)
loop.steps = sympy_factor
loop.simd_vec = True
loop.tiled_size = FloorDiv(loop.size, sympy_factor) * sympy_factor
loop.parallel = self.parallel
loop.collapsed = False
loop.is_reduction = self.is_reduction
return loop
def lines(self):
offset_expr = cexpr_index(self.offset)
size_expr = cexpr_index(self.size)
if config.cpp.no_redundant_loops and offset_expr == size_expr:
return None
simd = (
f"simd simdlen({self.simd_nelements}) "
if self.simd_omp and self.simd_nelements > 1
else ""
)
if self.parallel:
# TODO(jansel): look into chunk size and other schedules
line1 = "#pragma omp for"
if self.parallel > 1:
line1 += f" collapse({self.parallel})"
if self.simd_omp:
line1 = line1.replace(" for ", f" for {simd}")
elif self.simd_vec:
line1 = ""
elif self.simd_omp:
line1 = f"#pragma omp {simd}"
elif not self.is_reduction and cpp_builder.is_gcc():
line1 = "#pragma GCC ivdep"
else:
line1 = ""
offset_str = f"{INDEX_TYPE} {self.var}={offset_expr}"
size_str = f"{self.var}<{size_expr}"
if self.steps.is_number:
steps_str = f"{self.var}+={cexpr_index(self.steps)}"
else:
# If the step size is 0, change it to 1 because a step size of 0
# will cause floating point exception (core dump) during parallelization.
steps_str = (
f"{self.var}+=({cexpr_index(self.steps)} == 0 ? "
f"1 : {cexpr_index(self.steps)})"
)
line2 = f"for({offset_str}; {size_str}; {steps_str})"
if self.collapsed or not line1:
return [line2]
return [line1, line2]
@dataclasses.dataclass
class LoopNest:
"""
A loop-nest-like structure. It is built with the `build` method
as a loop nest and then will perform loop-tiling at some depth.
A typical case is for vectorization, where we typically do loop-tiling
at the innermost loop level. A more complicated case is when we do
2D tiling at both the innermost and outer levels.
"""
loops: Optional[list[LoopLevel]] = None
kernel: Optional[CppKernel] = None
@staticmethod
def build(kernel: CppKernel):
"""Build a LoopNest with the given `kernel` as the leaf"""
itervars = kernel.itervars
ranges = kernel.ranges
reduction_depth = kernel.reduction_depth
assert reduction_depth is not None
loops: Optional[list[LoopLevel]] = None
for loop_idx, (var, size) in enumerate(zip(itervars, ranges)):
loop = LoopLevel(var, size)
if not loops:
loops = [loop]
else:
loops.append(loop)
if loop_idx >= reduction_depth:
loop.is_reduction = kernel.is_reduction
loop_nest = LoopNest(loops)
return loop_nest
def __bool__(self):
return bool(self.loops)
@cache_on_self
def max_parallel_depth(self):
"""
Maximal allowed depth for parallelism: All reduction or non-reduction levels.
When the range of the first inner loop beyond the maximum parallel depth is much
larger than the range of all outer loops within the maximum parallel depth,
change the starting depth of parallelism to the first inner loop and recalculate
the maximum parallel depth.
"""
if self.loops is None:
return ParallelDepth(parallel_depth=0, start_depth=0)
start_depth = 0
max_depth = 0
is_reduction = self.loops[0].is_reduction
num_steps = sympy.Integer(1)
for loop in self.loops:
if loop.is_reduction != is_reduction:
break
num_steps = num_steps * FloorDiv(loop.size, loop.steps)
max_depth += 1
def get_simd_vec_depth(loops):
# Return the first loop level which is simd_vec
for i, loop in enumerate(loops):
if loop.simd_vec:
return i
return None
simd_vec_depth = get_simd_vec_depth(self.loops)
def has_scalar_kernel(loop_nest: LoopNest):
assert isinstance(loop_nest.kernel, CppKernelProxy)
return any(
not isinstance(kernel, CppVecKernel)
for kernel in loop_nest.kernel.kernels
)
# When the number of steps of the first inner loop is much larger than the number of steps of
# all outer loops, change `start_depth` to the first inner loop and recalculate `max_depth`.
if (
max_depth < len(self.loops)
and isinstance(num_steps, sympy.Integer)
and isinstance(self.loops[max_depth].size, sympy.Integer)
and num_steps * 300
< FloorDiv(self.loops[max_depth].size, self.loops[max_depth].steps)
and not (
# Disable parallel reduction under the vec loop
simd_vec_depth is not None
and max_depth > simd_vec_depth
and self.loops[max_depth].is_reduction
and has_scalar_kernel(self)
)
):
start_depth = max_depth
max_depth = 0
is_reduction = self.loops[start_depth].is_reduction
for i in range(start_depth, len(self.loops)):
if self.loops[i].is_reduction != is_reduction:
break
max_depth += 1
return ParallelDepth(parallel_depth=max_depth, start_depth=start_depth)
def mark_parallel(self, par_depth):
assert par_depth.parallel_depth <= self.max_parallel_depth().parallel_depth, (
"Parallel depth cannot exceed the maximal allowed parallel depth"
)
assert self.loops is not None
assert len(self.loops) >= par_depth.parallel_depth
loop = self.loops[par_depth.start_depth]
loop.parallel = par_depth.parallel_depth
if loop.is_reduction:
metrics.parallel_reduction_count += 1
for i in range(par_depth.start_depth + 1, par_depth.parallel_depth):
self.loops[i].collapsed = True
def tile(self, depth, factor):
"""
Do loop-tiling at the `depth` level with `factor`.
for (x0 = 0; x0 < x0_end; x0++)
->
for (x0 = 0; x0 < x0_end; x0 += factor)
See details in Note [tiled_size].
"""
assert self.loops
self.loops[depth] = self.loops[depth].tile(factor)
return self.loops[depth]
def get_kernel(self) -> CppKernel:
assert self.kernel
return self.kernel
def set_kernel(self, kernel):
self.kernel = kernel
def from_loop_level(self, level: int):
assert self.loops
assert len(self.loops) >= level
loops = None if level == len(self.loops) else self.loops[level:]
return LoopNest(loops, self.kernel)