Files
pytorch/test/test_sparse.py
Will Feng e4c7f59fbc Shallow-copy indices and values in sparse tensor ctor (#20614)
Summary:
(Reopens https://github.com/pytorch/pytorch/pull/20330 and fixes test error.)

After the Variable/Tensor merge, there is no guarantee that `indices` and `values` passed into the sparse tensor constructor don't contain AutogradMeta. However, we want to maintain the existing invariant that `indices_` and `values_` of a sparse tensor don't contain AutogradMeta, and to achieve this we need do shallow-copy in the sparse tensor constructor.

Note that this is BC-breaking for code that changes the sizes / strides of the indices or values tensor after it's used to create a sparse tensor. In current master, such changes will be reflected in the sparse tensor and break sparse tensor invariants. After this PR, those changes will not be reflected in the sparse tensor, and thus the sparse tensor invariants are always preserved. Specifically, running in-place size/stride-changing ops such as `resize_` / `resize_as_` / `as_strided_` / `set_` / `transpose_` on the original values tensor will not update the sparse tensor's `values_`. For example:
```python
# Calling resize_ on non-requires-grad value tensor
i2 = torch.zeros([1, 1])
v2 = torch.ones([1, 2, 3])
t2 = torch.sparse_coo_tensor(i2, v2, torch.Size([2, 2, 3]))
v2.resize_(4, 5)
t2.coalesce().values().size()
# On current master, this throws "indices and values must have same nnz, but got nnz from indices: 1, nnz from values: 4", because resizing the original value tensor affects `values_` of the sparse tensor.
# After this PR, this prints "torch.Size([1, 2, 3])", which means resizing the original value tensor doesn't affect `values_` of the sparse tensor.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20614

Differential Revision: D15385811

Pulled By: yf225

fbshipit-source-id: e963fcf5e4097f8c881b56145f408565d97cf5c1
2019-05-16 18:35:05 -07:00

2074 lines
85 KiB
Python

import torch
import itertools
import functools
import random
import unittest
from common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, do_test_empty_full, load_tests
from common_cuda import TEST_CUDA
from numbers import Number
from torch.autograd.gradcheck import gradcheck
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
def cpu_only(inner):
@functools.wraps(inner)
def outer(self, *args, **kwargs):
if self.is_cuda:
raise unittest.SkipTest("Test is CPU-only")
inner(self, *args, **kwargs)
return outer
def cuda_only(inner):
@functools.wraps(inner)
def outer(self, *args, **kwargs):
if not self.is_cuda:
raise unittest.SkipTest("Test is GPU-only")
inner(self, *args, **kwargs)
return outer
class TestSparse(TestCase):
def setUp(self):
# These parameters control the various ways we can run the test.
# We will subclass and override this method to implement CUDA
# tests
self.is_cuda = False
self.is_uncoalesced = False
self.device = 'cpu'
self.value_dtype = torch.float64
self.index_tensor = lambda *args: torch.tensor(*args, dtype=torch.int64, device=self.device)
self.value_empty = lambda *args: torch.empty(*args, dtype=self.value_dtype, device=self.device)
self.value_tensor = lambda *args: torch.tensor(*args, dtype=self.value_dtype, device=self.device)
def sparse_empty_factory(*args, **kwargs):
kwargs['dtype'] = kwargs.get('dtype', self.value_dtype)
kwargs['layout'] = kwargs.get('laytout', torch.sparse_coo)
kwargs['device'] = kwargs.get('device', self.device)
return torch.empty(*args, **kwargs)
self.sparse_empty = sparse_empty_factory
def sparse_tensor_factory(*args, **kwargs):
kwargs['dtype'] = kwargs.get('dtype', self.value_dtype)
kwargs['device'] = kwargs.get('device', self.device)
return torch.sparse_coo_tensor(*args, **kwargs)
self.sparse_tensor = sparse_tensor_factory
self.legacy_sparse_tensor = torch.sparse.DoubleTensor
super(TestSparse, self).setUp()
def _gen_sparse(self, sparse_dim, nnz, with_size):
if isinstance(with_size, Number):
with_size = [with_size] * sparse_dim
x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, self.is_uncoalesced, self.device)
if self.is_uncoalesced:
self.assert_uncoalesced(x)
return x, i, v
def assert_uncoalesced(self, x):
"""
Test if a CPU tensor is uncoalesced. This is used to ensure
correctness of the uncoalesced tensor generation algorithm.
"""
assert not x.is_coalesced()
existing_indices = set()
for i in range(x._nnz()):
index = str(x._indices()[:, i])
if index in existing_indices:
return True
else:
existing_indices.add(index)
def randn(self, *args, **kwargs):
"""
Variant of torch.randn that also works in the TEST_CUDA case.
"""
# TODO: Put this in torch.cuda.randn
return self.value_empty(*args, **kwargs).normal_()
def test_print(self):
shape_sparse_dim_nnz = [
((), 0, 2),
((0,), 0, 10),
((2,), 0, 3),
((100, 3), 1, 3),
((100, 20, 3), 2, 0),
((10, 0, 3), 0, 3),
((10, 0, 3), 0, 0),
]
printed = []
for shape, sparse_dim, nnz in shape_sparse_dim_nnz:
indices_shape = torch.Size((sparse_dim, nnz))
values_shape = torch.Size((nnz,) + shape[sparse_dim:])
printed.append("# shape: {}".format(torch.Size(shape)))
printed.append("# nnz: {}".format(nnz))
printed.append("# sparse_dim: {}".format(sparse_dim))
printed.append("# indices shape: {}".format(indices_shape))
printed.append("# values shape: {}".format(values_shape))
indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype,
device=self.device).view(indices_shape)
for d in range(sparse_dim):
indices[d].clamp_(max=(shape[d] - 1)) # make it valid index
if self.is_uncoalesced and indices.numel() > 0:
indices[:, -1] = indices[:, 0] # make it uncoalesced
values_numel = values_shape.numel()
values = torch.arange(values_numel, dtype=self.value_dtype,
device=self.device).view(values_shape).div_(values_numel / 2.)
sp_tensor = self.sparse_tensor(indices, values, shape)
dtypes = [torch.int32]
if values.dtype == torch.double:
dtypes.append(torch.float)
else:
dtypes.append(torch.double)
for dtype in dtypes:
printed.append("########## {} ##########".format(dtype))
x = sp_tensor.detach().to(dtype)
printed.append("# sparse tensor")
printed.append(str(x))
if x.dtype.is_floating_point:
printed.append("# after requires_grad_")
printed.append(str(x.requires_grad_()))
printed.append("# after addition")
printed.append(str(x + x))
printed.append("# _indices")
printed.append(str(x._indices()))
printed.append("# _values")
printed.append(str(x._values()))
printed.append('')
self.assertExpected('\n'.join(printed))
def test_basic(self):
def test_shape(sparse_dims, nnz, with_size):
if isinstance(with_size, Number):
with_size = [with_size] * sparse_dims
x, i, v = self._gen_sparse(sparse_dims, nnz, with_size)
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
self.assertEqual(x.ndimension(), len(with_size))
self.assertEqual(self.safeCoalesce(x)._nnz(), nnz)
self.assertEqual(list(x.size()), with_size)
# Test .indices() and .values()
if self.is_uncoalesced:
with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"):
x.indices()
with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"):
x.values()
else:
self.assertEqual(x.indices(), x._indices())
self.assertEqual(x.values(), x._values())
test_shape(3, 10, 100)
test_shape(3, 10, [100, 100, 100])
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
# Make sure that coalesce handles duplicate indices correctly
i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]])
v = self.value_tensor([[idx**2, idx] for idx in range(i.size(1))])
x = self.sparse_tensor(i, v, torch.Size([10, 2]))
self.assertEqual(self.safeCoalesce(x)._nnz(), 9)
# Make sure we can access empty indices / values
x = self.legacy_sparse_tensor()
self.assertEqual(x._indices().numel(), 0)
self.assertEqual(x._values().numel(), 0)
def test_coalecce(self):
for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3):
sparse_size = [] if empty_i else [2, 1]
dense_size = [1, 0, 2] if empty_v else [1, 2]
nnz = 0 if empty_nnz else 5
t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size)
self.safeCoalesce(t) # this tests correctness
def test_ctor_size_checks(self):
indices = self.index_tensor([
[0, 0, 0],
[0, 3, 0],
[0, 0, 0],
[0, 0, 0],
])
values = self.value_tensor([2, 1, 3, 4])
# indices inconsistent with size
self.assertRaises(
RuntimeError,
lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1])))
# values inconsistent with size
values = self.value_tensor([
[2, 1, 2, 1],
[1, 0, 5, 2],
])
self.assertRaises(
RuntimeError,
lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1])))
def test_to_dense(self):
def test_tensor(x, res):
x.to_dense() # Tests triple to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def fn(x):
return x.to_dense()
x.requires_grad_(True)
gradcheck(fn, (x,), check_sparse_nnz=True)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
# we don't have to_dense for half types on CPU because it is implemented
# with a slower add_ operation
for dtype in [torch.float16, torch.float64] if self.device != 'cpu' else [torch.float64]:
v = self.value_tensor([2, 1, 3, 4]).to(dtype=dtype)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
res = self.value_tensor([
[[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 4]],
]).to(dtype=dtype)
test_tensor(x, res)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
v = self.value_empty(4, 0).to(dtype=dtype)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
res = self.value_empty(3, 4, 5, 0).to(dtype=dtype)
test_tensor(x, res)
# half tensors on cpu don't implement to_dense, so need to convert to float
def _to_dense_half_safe(self, tensor):
if(tensor.dtype == torch.half and tensor.device.type == 'cpu'):
return tensor.to(torch.float).to_dense().to(torch.half)
else:
return tensor.to_dense()
def test_to_sparse(self):
shape = [10, 5, 19, 8]
max_nnz = 1
for dim, dim_sz in enumerate(shape, 1):
max_nnz *= dim_sz
rnnz = torch.randint(2, max_nnz, (1,)).item()
for nnz in [0, 1, rnnz]:
for dtype in [torch.float16, torch.float64, torch.int]:
expected, _, _ = self._gen_sparse(dim, nnz, shape)
expected = expected.to(dtype)
d = self._to_dense_half_safe(expected)
result = d.to_sparse(dim)
self.assertEqual(d, self._to_dense_half_safe(result)) # == not implemented for sparse tensors yet
self.assertEqual(expected.size(), result.size())
self.assertEqual(dim, result.sparse_dim())
sp, _, _ = self._gen_sparse(2, 10, [3, 3, 3])
self.assertRaises(RuntimeError, lambda: sp.to_sparse())
def test_scalar(self):
# tensor with value
a = self.sparse_tensor(self.index_tensor([]).unsqueeze(1), 12.3, [])
self.assertEqual(1, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(self.value_tensor(12.3), a.to_dense())
self.assertEqual(a, a.to_dense().to_sparse())
# tensor with multiple values
a = self.sparse_tensor(self.index_tensor([]).unsqueeze(1).expand(0, 2), [12.3, 12.3], [])
self.assertEqual(2, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(self.value_tensor(12.3 * 2), a.to_dense())
self.assertEqual(a, a.to_dense().to_sparse())
# tensor without value
a = self.sparse_empty(())
self.assertEqual(0, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(self.value_tensor(0), a.to_dense())
self.assertEqual(a, a.to_dense().to_sparse())
def test_shared(self):
i = self.index_tensor([[2]])
v = self.value_tensor([5])
x = self.sparse_tensor(i, v, torch.Size([3]))
v[0] = 6
self.assertEqual(self.value_tensor([0, 0, 6]), self.safeToDense(x))
i[0][0] = 0
self.assertEqual(self.value_tensor([6, 0, 0]), self.safeToDense(x))
i = self.index_tensor([[2]])
v = self.value_empty(1, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
i[0][0] = 0
self.assertEqual(self.value_empty(3, 0), self.safeToDense(x))
def test_to_dense_hybrid(self):
def test_tensor(x, res):
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def fn(x):
return x.to_dense()
x.requires_grad_(True)
gradcheck(fn, (x,), check_sparse_nnz=True)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
])
v = self.value_tensor([[2, 3], [1, 2], [3, 4], [4, 5]])
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2]))
res = self.value_tensor([
[[2, 3],
[0, 0],
[0, 0],
[0, 0]],
[[1, 2],
[0, 0],
[0, 0],
[0, 0]],
[[3, 4],
[0, 0],
[0, 0],
[4, 5]],
])
test_tensor(x, res)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
])
v = self.value_empty(4, 2, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0]))
res = self.value_empty(3, 4, 2, 0)
test_tensor(x, res)
def test_contig(self):
def test_tensor(x, exp_i, exp_v):
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.index_tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.value_tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
x = self.sparse_tensor(i, v, torch.Size([100, 100]))
exp_i = self.index_tensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.value_tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.value_tensor([3, 2, 4, 1])
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.value_tensor([2, 1, 3, 4])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.value_empty(4, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.value_empty(4, 0)
test_tensor(x, exp_i, exp_v)
# Duplicate indices
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.value_tensor([3, 2, 4, 1])
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.value_tensor([6, 4])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.value_empty(4, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.value_empty(2, 0)
test_tensor(x, exp_i, exp_v)
def test_contig_hybrid(self):
def test_tensor(x, exp_i, exp_v):
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.index_tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.value_tensor([
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
])
x = self.sparse_tensor(i, v, torch.Size([100, 100, 2]))
exp_i = self.index_tensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.value_tensor([
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.value_tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.value_tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.value_empty(4, 3, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.value_empty(4, 3, 0)
test_tensor(x, exp_i, exp_v)
# Duplicate indices
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.value_tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.value_tensor([[6, 4, 5], [4, 3, 4]])
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.value_empty(4, 3, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.value_empty(2, 3, 0)
test_tensor(x, exp_i, exp_v)
def test_clone(self):
def test_shape(sparse_dims, nnz, with_size):
x = self._gen_sparse(sparse_dims, nnz, with_size)[0]
if self.is_uncoalesced:
self.assertFalse(x.is_coalesced())
y = x.clone()
self.assertFalse(y.is_coalesced())
x = x.coalesce()
self.assertTrue(x.is_coalesced())
y = x.clone()
self.assertTrue(y.is_coalesced())
test_shape(4, 20, 5)
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
def test_Sparse_to_Sparse_copy_(self):
# This is for testing torch.copy_(SparseTensor, SparseTensor)
sparse_dims = 3
nnz = 10
sizes = [2, 3, 4, 5] # hybrid sparse
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
# test copy
x2_dense = x2.to_dense()
x1.copy_(x2)
self.assertEqual(x2_dense, x1.to_dense())
# test type conversion (when x1.copy_(x2), x1.dtype should stay the same)
x1 = x1.to(torch.float32)
x2 = x2.to(torch.float16)
x1_dtype = x1.dtype
x1.copy_(x2)
self.assertEqual(x1_dtype, x1.dtype)
x2 = x2.to(torch.float64)
x1_dtype = x1.dtype
x1.copy_(x2)
self.assertEqual(x1_dtype, x1.dtype)
# test no broadcast
self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1)))
# test raise error on copy_() between dense and sparse Tensors
self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5)))
# test autograd
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
x2.requires_grad_(True)
x1.copy_(x2)
y = x1 * 2
x2_clone = x2.clone()
y.backward(x2_clone)
expected_grad = x2_clone * 2
self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense())
self.assertEqual(None, x1.grad)
@unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU")
@skipIfRocm
def test_Sparse_to_Sparse_copy_multi_gpu(self):
# This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices
sparse_dims = 3
nnz = 10
sizes = [2, 3, 4, 5] # hybrid sparse
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
x1 = x1.to('cuda:0')
def test_cross_device(x1, x2):
x1_device = x1.device
x1.copy_(x2)
self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense())
self.assertEqual(x1_device, x1.device)
test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices
test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu
# test autograd
x2 = x2.to('cuda:1')
x2.requires_grad_(True)
x1.copy_(x2)
y = x1 * 2
x2_clone = x2.clone().to('cuda:0')
y.backward(x2_clone)
expected_grad = x2_clone * 2
self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense())
self.assertEqual(None, x1.grad)
@cuda_only
def test_cuda_empty(self):
def test_tensor(x):
y = x.cuda(0)
self.assertEqual(x.sparse_dim(), y.sparse_dim())
self.assertEqual(x.dense_dim(), y.dense_dim())
x = y.cpu()
self.assertEqual(y.sparse_dim(), x.sparse_dim())
self.assertEqual(y.dense_dim(), x.dense_dim())
x = torch.sparse.FloatTensor(2, 3, 4)
test_tensor(x)
x = torch.sparse.HalfTensor(2, 3, 4)
test_tensor(x)
x = torch.cuda.sparse.HalfTensor(2, 3, 4)
test_tensor(x)
x = torch.sparse.FloatTensor(2, 3, 4, 0)
test_tensor(x)
def test_transpose(self):
def test_shape(sparse_dims, nnz, with_size):
x = self._gen_sparse(sparse_dims, nnz, with_size)[0]
y = self.safeToDense(x)
for i, j in itertools.combinations(range(4), 2):
x = x.transpose_(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
x = x.transpose(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
test_shape(4, 6, 3)
test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0])
test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0])
@cpu_only
def test_coalesce_transpose_mm(self):
def test_shape(di, dj, dk, nnz):
x, _, _ = self._gen_sparse(2, nnz, [dj, di])
y = torch.randn(dj, dk)
x_coalesced = x.coalesce()
self.assertTrue(x_coalesced.is_coalesced())
x_coalesced_t = x_coalesced.t()
# Transpose is `colasced`-preserving if the indices tensor is empty.
self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0)
res = torch.mm(x_coalesced_t, y)
expected = torch.mm(self.safeToDense(x_coalesced_t), y)
self.assertEqual(res, expected)
test_shape(10, 20, 30, 20)
test_shape(0, 20, 30, 0)
test_shape(10, 0, 30, 0)
test_shape(10, 20, 0, 0)
test_shape(10, 20, 0, 20)
def test_t_empty(self):
def test_in_place(x):
shape_original = x.shape
x.t_()
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size())
self.assertEqual(0, x._indices().numel())
self.assertEqual(0, x._values().numel())
self.assertEqual(x.sparse_dim(), 2)
self.assertEqual(x.dense_dim(), 0)
def test_not_in_place(x):
shape_original = x.shape
y = x.t()
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size())
self.assertEqual(0, y._indices().numel())
self.assertEqual(0, y._values().numel())
self.assertEqual(x.sparse_dim(), 2)
self.assertEqual(x.dense_dim(), 0)
x = self.sparse_empty(2, 3)
test_in_place(x)
test_not_in_place(x)
x = self.sparse_empty(2, 0)
test_in_place(x)
test_not_in_place(x)
def test_add_zeros(self):
def test_shape(sparse_dims, nnz, sizes):
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device)
r1 = zeros + x
r2 = x + zeros
self.assertEqual(r1, x)
self.assertEqual(r2, x)
test_shape(1, 20, [1])
test_shape(4, 20, [3, 17, 19, 5])
test_shape(2, 20, [3, 17, 19, 5])
test_shape(2, 20, [3, 17, 19, 0])
def test_cat(self):
# shapes: list of tuples (sparse_dims, nnz, sizes)
def test_shapes(shapes, dim, fail_message=None):
inputs = [self._gen_sparse(shape[0], shape[1], shape[2])[0]
for shape in shapes]
if fail_message:
with self.assertRaisesRegex(RuntimeError, fail_message):
torch.cat(inputs, dim)
else:
result = torch.cat(inputs, dim)
dense_result = torch.cat([t.to_dense() for t in inputs], dim)
self.assertEqual(dense_result, result.to_dense())
test_shapes(
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1)
# mismatched sizes
test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0,
"All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]")
# hybrid sparse/dense
test_shapes(
[(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1)
# cat along dense dim
test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2)
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1)
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2)
# mismatched dimensions
test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0,
"All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.")
# wrapped dimension
test_shapes(
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2)
# sparse with dense
sp = self._gen_sparse(3, 10, [2, 3, 4])[0]
dn = sp.to_dense()
with self.assertRaisesRegex(RuntimeError,
"Concatenating sparse tensors, but a dense tensor was found at position 1."):
torch.cat((sp, dn))
def test_unsqueeze(self):
def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None):
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
if fail_message:
with self.assertRaisesRegex(IndexError, fail_message):
torch.unsqueeze(x, unsqueeze_dim)
else:
result = torch.unsqueeze(x, unsqueeze_dim)
dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim)
self.assertEqual(dense_result, result.to_dense())
# basic case
test_shape(3, 10, [5, 7, 11], 0)
# hybrid sparse/dense, unsqueeze along sparse dim
test_shape(3, 10, [5, 7, 11, 13, 17], 0)
test_shape(3, 10, [5, 7, 11, 13, 17], 3)
# unsqueeze along dense dimensions
test_shape(3, 10, [5, 7, 11, 13, 17], 4)
test_shape(3, 10, [5, 7, 11, 13, 17], 5)
# wrapped dimensions
test_shape(3, 10, [5, 7, 11, 13, 17], -1)
test_shape(3, 10, [5, 7, 11, 13, 17], -6)
# bounds
test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range")
test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range")
@cpu_only
def test_mm(self):
def test_shape(di, dj, dk, nnz):
x, _, _ = self._gen_sparse(2, nnz, [di, dj])
t = torch.randn(di, dk)
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.addmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, t, beta, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(10, 100, 100, 20)
test_shape(100, 1000, 200, 20)
test_shape(64, 10000, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(10, 0, 100, 0)
test_shape(10, 100, 0, 0)
test_shape(10, 100, 0, 20)
@cpu_only
def test_saddmm(self):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj])[0]
t = self._gen_sparse(2, nnz, [di, dk])[0]
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.saddmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, self.safeToDense(t), beta, self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.saddmm(t, x, y)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.smm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
def test_sparse_addmm(self):
def test_shape(m, n, p, nnz, broadcast):
if broadcast:
D1 = torch.randn((), device=self.device).requires_grad_(True)
else:
D1 = torch.randn(n, p, device=self.device).requires_grad_(True)
D2 = torch.randn(m, p, device=self.device).requires_grad_(True)
S = self._gen_sparse(2, nnz, [n, m])[0]
S_dense = S.to_dense().requires_grad_(True)
S.requires_grad_(True)
self.assertEqual(torch.sparse.addmm(D1, S, D2), torch.addmm(D1, S_dense, D2))
def fn(S, D1, D2):
return torch.sparse.addmm(D1, S, D2)
gradcheck(fn, (S, D1, D2), check_sparse_nnz=True)
test_shape(7, 8, 9, 20, False)
test_shape(7, 8, 9, 20, True)
def test_sparse_mm(self):
def test_shape(d1, d2, d3, nnz, transposed):
if transposed:
D = torch.randn(d3, d2,
device=self.device).t_().requires_grad_(True)
else:
D = torch.randn(d2, d3, device=self.device).requires_grad_(True)
S = self._gen_sparse(2, nnz, [d1, d2])[0]
S_dense = S.to_dense().requires_grad_(True)
S.requires_grad_(True)
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
def fn(S, D):
return torch.sparse.mm(S, D)
gradcheck(fn, (S, D), check_sparse_nnz=True)
test_shape(7, 8, 9, 20, False)
test_shape(7, 8, 9, 20, True)
def test_dsmm(self):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.dsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
test_shape(1000, 100, 0, 20)
@skipIfRocm
def test_hsmm(self):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.hsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
test_shape(1000, 100, 0, 20)
def _test_spadd_shape(self, nnz, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x, _, _ = self._gen_sparse(len(shape_i), nnz, shape)
y = self.randn(*shape)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = self.randn(*s)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
x, i, v = self._gen_sparse(len(shape_i), nnz, shape)
nnz = i.size(1)
# Non contiguous sparse indices tensor
x_ = self.sparse_tensor(i[:, ::2], v[:int(nnz / 2)], x.shape)
res = torch.add(y, r, x_)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
# Non contiguous sparse values tensor
x_ = self.sparse_tensor(i[:, :int(nnz / 2)], v[::2], x.shape)
res = torch.add(y, r, x_)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
# Non contiguous sparse indices and values tensors
x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape)
res = torch.add(y, r, x_)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
def test_spadd(self):
self._test_spadd_shape(10, [5, 6])
self._test_spadd_shape(10, [10, 10, 10])
self._test_spadd_shape(10, [50, 30, 20])
self._test_spadd_shape(10, [5, 5, 5, 5, 5, 5])
self._test_spadd_shape(0, [0, 30, 20])
self._test_spadd_shape(0, [50, 0, 20])
self._test_spadd_shape(0, [50, 30, 0])
def test_spadd_hybrid(self):
self._test_spadd_shape(10, [5, 6], [2, 3])
self._test_spadd_shape(10, [10, 10, 10], [3])
self._test_spadd_shape(10, [50, 30, 20], [2])
self._test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2])
self._test_spadd_shape(0, [0, 30, 20], [2, 0])
self._test_spadd_shape(0, [50, 0, 20], [2, 0])
self._test_spadd_shape(0, [50, 30, 0], [2, 0])
self._test_spadd_shape(10, [50, 30, 20], [2, 0])
def test_norm(self):
def test_shape(sparse_dims, nnz, with_size):
x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size)
y = x.coalesce()
self.assertEqual(x.norm(), y._values().norm())
test_shape(3, 10, 100)
test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0])
@skipIfRocm
def test_sparse_sum(self):
def run_tests(S, td=None):
D = S.coalesce().to_dense().detach().requires_grad_(True)
mask = (D == 0)
if td is None:
S_sum = torch.sparse.sum(S)
D_sum = D.sum()
self.assertEqual(S_sum, D_sum)
def fn(S):
res = torch.sparse.sum(S)
if res.is_sparse:
res = res.to_dense()
return res
gradcheck(fn, (S,), check_sparse_nnz=True)
else:
S_sum = torch.sparse.sum(S, td)
D_sum = D.sum(td)
self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum)
def fn(S):
res = torch.sparse.sum(S, td)
if res.is_sparse:
res = res.to_dense()
return res
gradcheck(fn, (S,), check_sparse_nnz=True)
nnz = 10
sparse_dims = 2
with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze
test_dims = []
for i in range(1, 5):
test_dims += itertools.combinations(range(len(with_size)), i)
# https://github.com/pytorch/pytorch/issues/16501
x = torch.tensor([[1., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 1., 1., 0.],
[0., 1., 0., 2.]]).to_sparse()
self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2))
self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense())
# not support SparseTensor.sum()
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
self.assertRaises(RuntimeError, lambda: S.sum())
# dim out of range
self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5))
# dim 0 appears multiple times in the list of dims
self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0]))
# sum an empty tensor
empty_S = torch.sparse_coo_tensor(size=with_size)
self.assertRaises(RuntimeError, lambda: torch.sparse.sum(empty_S, [0]))
self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0,))
empty_S.requires_grad_(True)
empty_S_sum = torch.sparse.sum(empty_S)
empty_S_sum.backward()
self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense())
# test values().sum()
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
run_tests(S.requires_grad_(True))
for test_dim in test_dims:
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
run_tests(S.requires_grad_(True), test_dim)
def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape)
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 - x2
y2 = x1.clone()
y2.sub_(x2)
expected = self.safeToDense(x1) - self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * x2
y2 = x1.clone()
y2.mul_(x2)
expected = self.safeToDense(x1) * self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * 37.5
y2 = x1.clone()
y2.mul_(37.5)
expected = self.safeToDense(x1) * 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 / 37.5
y2 = x1.clone()
y2.div_(37.5)
expected = self.safeToDense(x1) / 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
# TODO: add back inplace support
y1 = x1 ** 2
y2 = x1.clone()
y2 = y2.pow(2)
expected = self.safeToDense(x1) ** 2
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y = x1.clone()
y.zero_()
expected = torch.zeros(x1.size())
self.assertEqual(self.safeToDense(y), expected)
self.assertEqual(x1.is_coalesced(), not self.is_uncoalesced)
y = x1.coalesce()
z = x1.coalesce()
self.assertEqual(x1.is_coalesced(), not self.is_uncoalesced)
self.assertTrue(y.is_coalesced())
self.assertEqual(x1, y)
y._values().add_(1)
if not x1.is_coalesced():
# check that coalesce is out of place if the original tensor is not
# coalesced.
self.assertEqual(z._values() + 1, y._values())
else:
# check that coalesce is in-place if the original tensor is
# coalesced.
self.assertEqual(z._values(), y._values())
def test_basic_ops(self):
self._test_basic_ops_shape(9, 12, [5, 6])
self._test_basic_ops_shape(9, 12, [10, 10, 10])
self._test_basic_ops_shape(9, 12, [50, 30, 20])
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5])
self._test_basic_ops_shape(0, 12, [10, 10, 10])
self._test_basic_ops_shape(9, 0, [10, 10, 10])
self._test_basic_ops_shape(0, 0, [10, 10, 10])
self._test_basic_ops_shape(0, 0, [10, 10, 0])
def test_basic_ops_hybrid(self):
self._test_basic_ops_shape(9, 12, [5, 6], [2, 3])
self._test_basic_ops_shape(9, 12, [10, 10, 10], [3])
self._test_basic_ops_shape(9, 12, [50, 30, 20], [2])
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2])
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2])
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2])
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2])
self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0])
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0])
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0])
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0])
self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0])
def test_add_dense_sparse_mismatch(self):
def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size):
x = torch.zeros(dense_size, dtype=self.value_dtype, device=self.device)
sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=self.device),
torch.randn(dense_dims_shape, dtype=self.value_dtype, device=self.device),
torch.Size(sparse_size))
with self.assertRaisesRegex(
RuntimeError,
"add: expected 'self' and 'other' to have same size"):
x + sparse_y
test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4])
test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0])
def test_add_noncontiguous(self):
indices = self.index_tensor([[1, 2], [0, 2]])
values = self.value_tensor([1.]).expand(2, 3, 4, 5)
x = self.sparse_tensor(indices, values)
assert not x._values().is_contiguous()
y = x + x
expected = self.safeToDense(x) + self.safeToDense(x)
self.assertEqual(self.safeToDense(y), expected)
def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape)
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
def _test_sparse_mask_fixed(self):
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.value_tensor([1, 2, 3, 4])
x = self.sparse_tensor(i, v, torch.Size([5, 4])).coalesce()
dense = self.value_tensor([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
])
exp_v = self.value_tensor([7, 14, 3, 20])
res = dense.sparse_mask(x)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]))
self.assertEqual(res, expected)
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.value_empty(4, 0)
x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce()
dense = self.value_empty(5, 4, 0)
exp_v = self.value_empty(4, 0)
res = dense.sparse_mask(x)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]))
self.assertEqual(res, expected)
def test_sparse_mask(self):
self._test_sparse_mask_fixed()
self._test_sparse_mask_shape(9, 12, [5, 6])
self._test_sparse_mask_shape(9, 12, [10, 10, 10])
self._test_sparse_mask_shape(9, 12, [50, 30, 20])
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5])
self._test_sparse_mask_shape(0, 12, [10, 10, 10])
self._test_sparse_mask_shape(9, 0, [10, 10, 10])
self._test_sparse_mask_shape(0, 0, [10, 10, 10])
self._test_sparse_mask_shape(0, 0, [10, 10, 0])
def _test_sparse_mask_hybrid_fixed(self):
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.value_tensor([[1, 2], [2, 3], [3, 4], [4, 5]])
# TODO: This is also testing that, if coalesce is a no-op,
# the indices don't get permuted. I don't know if we actually
# want to give this invariant.
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce()
dense = self.value_tensor([
[[1, 3], [2, 2], [3, 3], [4, 2]],
[[5, 7], [6, 7], [7, 9], [8, 9]],
[[9, 2], [10, 4], [11, 1], [12, 3]],
[[13, 5], [14, 1], [15, 1], [16, 6]],
[[17, 7], [18, 2], [19, 7], [20, 1]],
])
res = dense.sparse_mask(x)
exp_v = self.value_tensor([[7, 9], [14, 1], [3, 3], [20, 1]])
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2]))
self.assertEqual(res, expected)
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.value_empty(4, 2, 0)
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce()
dense = self.value_empty(5, 4, 2, 0)
res = dense.sparse_mask(x)
exp_v = self.value_empty(4, 2, 0)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0]))
self.assertEqual(res, expected)
def test_sparse_mask_hybrid(self):
self._test_sparse_mask_hybrid_fixed()
self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3])
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3])
self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2])
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2])
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2])
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2])
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2])
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0])
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0])
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0])
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0])
self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0])
def _test_zeros(self, nnzs, shape, out_shape_i, out_shape_v=None):
out_shape = out_shape_i + (out_shape_v or [])
for nnz in nnzs:
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape)
torch.zeros(*shape, out=out)
self.assertEqual(tuple(out.size()), tuple(shape))
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
self.assertEqual(out._nnz(), 0)
self.assertEqual(out.sparse_dim(), len(shape))
self.assertEqual(out.dense_dim(), 0)
def test_zeros(self):
def test_shape(i_shapes, v_shapes, shape, nnzs):
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim])
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12])
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12])
def _test_zeros_like(self, nnzs, template_shape_i, template_shape_v=None):
template_shape_v = template_shape_v or []
template_shape = template_shape_i + template_shape_v
for nnz in nnzs:
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape)
res = torch.zeros_like(t)
self.assertEqual(tuple(res.size()), tuple(template_shape))
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
self.assertEqual(res._nnz(), 0)
self.assertEqual(res.sparse_dim(), len(template_shape_i))
self.assertEqual(res.dense_dim(), len(template_shape_v))
def test_zeros_like(self):
def test_shape(i_shapes, v_shapes, nnzs):
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim])
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
def _test_narrow(self, input, narrow_args):
expected = input.to_dense().narrow(*narrow_args)
self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense())
def _all_narrow_combs(self, shape):
for dim, dim_sz in enumerate(shape):
for start in range(dim_sz):
for length in range(dim_sz - start):
yield [dim, start, length]
def test_narrow(self):
shape = [3, 3, 4, 2]
input, _, _ = self._gen_sparse(4, 19, shape)
for narrow_args in self._all_narrow_combs(shape):
self._test_narrow(input, narrow_args)
self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0
self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim()
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim
with_dense, _, _ = self._gen_sparse(2, 7, shape)
for narrow_args in self._all_narrow_combs(shape):
self._test_narrow(with_dense, narrow_args)
self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim
def _test_log1p_tensor(self, input, dense_tensor):
expected_output = dense_tensor.log1p()
self.assertEqual(expected_output, input.log1p().to_dense())
self.assertEqual(expected_output, input.coalesce().log1p_().to_dense())
# test in-place op on uncoalesced input
with self.assertRaisesRegex(RuntimeError, "in-place on uncoalesced tensors is not supported yet"):
input.log1p_()
input.requires_grad_()
self.assertTrue(input.requires_grad)
# test autograd
x = input.clone()
y = input.log1p()
with self.assertRaisesRegex(RuntimeError, "log1p of a sparse tensor is made to be non-differentiable"):
y.backward(x)
def test_log1p(self):
input = torch.sparse_coo_tensor(
torch.LongTensor([[0], [1], [2]]).transpose(1, 0).clone().detach(),
torch.FloatTensor([3, 4, 5]),
torch.Size([3]),
device=self.device)
self._test_log1p_tensor(input, torch.as_tensor([3., 4., 5.]))
# test uncoalesced input
input_uncoalesced = torch.sparse_coo_tensor(
torch.LongTensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0).clone().detach(),
torch.FloatTensor([2, 3, 4, 1, 1, 1]),
torch.Size([3]),
device=self.device)
self._test_log1p_tensor(input_uncoalesced, torch.as_tensor([3., 4., 5.]))
input = torch.sparse_coo_tensor(
torch.zeros([2, 0]),
torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
torch.Size([0, 0, 5, 5, 5, 5, 5, 5, 0]),
device=self.device)
self._test_log1p_tensor(input, torch.zeros([0, 0, 5, 5, 5, 5, 5, 5, 0]))
input = torch.sparse_coo_tensor(
torch.zeros([1, 5]),
torch.zeros([5, 6, 0]),
torch.Size([5, 6, 0]),
device=self.device)
self._test_log1p_tensor(input, torch.zeros([5, 6, 0]))
def test_sparse_add_coalesce(self):
i = self.index_tensor([[1, 2, 1]])
v = self.value_tensor([3, 4, 5])
x = self.sparse_tensor(i, v, torch.Size([3]))
y = self.sparse_tensor(i, v, torch.Size([3]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
i = self.index_tensor([[1, 2, 1]])
v = self.value_empty(3, 0)
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
y = self.sparse_tensor(i, v, torch.Size([3, 0]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
@cuda_only
def test_storage_not_null(self):
x = torch.cuda.sparse.FloatTensor(2)
self.assertNotEqual(x.get_device(), -1)
x = torch.cuda.sparse.FloatTensor(2, 0)
self.assertNotEqual(x.get_device(), -1)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_same_gpu(self):
def check_device(x, device_id):
self.assertEqual(x.get_device(), device_id)
self.assertEqual(x._values().get_device(), device_id)
self.assertEqual(x._indices().get_device(), device_id)
i = self.index_tensor([[2]]).cuda(1)
v = self.value_tensor([5]).cuda(1)
x = self.sparse_tensor(i, v, torch.Size([3]), device=1)
check_device(x, 1)
i = self.index_tensor([[2]]).cuda(1)
v = self.value_empty(1, 0).cuda(1)
x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1)
check_device(x, 1)
x = self.sparse_empty(3, device=1)
check_device(x, 1)
x = self.sparse_empty(3, 0, device=1)
check_device(x, 1)
i = self.index_tensor([[2]]).cuda(1)
v = self.value_tensor([5]).cuda(0)
# NB: non-legacy constructor allows this and moves indices
self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3])))
i = self.index_tensor([[2]]).cuda(1)
v = self.value_empty(1, 0).cuda(0)
# NB: non-legacy constructor allows this and moves indices
self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3, 0])))
def _test_new_device(self, size, device):
with torch.cuda.device(device):
x = torch.cuda.sparse.DoubleTensor(*size)
self.assertEqual(x.get_device(), device)
x1 = x.new()
x2 = x.new(2, 3)
self.assertEqual(x1.get_device(), device)
self.assertEqual(x2.get_device(), device)
@cuda_only
def test_new_device_single_gpu(self):
self._test_new_device((), 0)
self._test_new_device((30, 20), 0)
self._test_new_device((30, 20, 10), 0)
self._test_new_device((30, 20, 10, 0), 0)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_new_device_multi_gpu(self):
self._test_new_device((), 1)
self._test_new_device((30, 20), 1)
self._test_new_device((30, 20, 10), 1)
self._test_new_device((30, 20, 10, 0), 1)
def test_new(self):
def test_shape(sparse_dims, nnz, with_size):
x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size)
if not x.is_cuda:
# CUDA sparse tensors currently requires the size to be
# specified if nDimV > 0
self.assertEqual(x.new(indices, values), x)
self.assertEqual(x.new(indices, values, x.size()), x)
test_shape(3, 10, 100)
test_shape(3, 0, [100, 100, 0])
@cpu_only # not really, but we only really want to run this once
def test_factory(self):
for test_empty_tensor in [True, False]:
if test_empty_tensor:
default_size = torch.Size([1, 3, 0])
size = torch.Size([3, 3, 0])
else:
default_size = torch.Size([1, 3])
size = torch.Size([3, 3])
for include_size in [True, False]:
for use_tensor_idx in [True, False]:
for use_tensor_val in [True, False]:
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
for dtype in [torch.float64, torch.float16]:
# have to include size with cuda sparse tensors
include_size = include_size or use_cuda
long_dtype = torch.int64
device = torch.device('cpu') if not use_cuda else \
torch.device(torch.cuda.device_count() - 1)
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
if test_empty_tensor:
values = self.value_empty(1, 0).to(dtype)
else:
if use_tensor_val:
values = torch.tensor([1.], dtype=dtype)
else:
values = 1.
if include_size:
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
device=device, requires_grad=True)
else:
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
device=device, requires_grad=True)
self.assertEqual(indices, sparse_tensor._indices())
self.assertEqual(values, sparse_tensor._values())
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
self.assertEqual(dtype, sparse_tensor.dtype)
if use_cuda:
self.assertEqual(device, sparse_tensor._values().device)
self.assertEqual(True, sparse_tensor.requires_grad)
def test_factory_size_check(self):
indices = self.index_tensor([[1, 2],
[0, 2]])
values = self.value_tensor([.5, .5])
sizes = torch.Size([2, 3])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes)
indices.fill_(-1)
with self.assertRaisesRegex(RuntimeError, "found negative index"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[1, 2],
[0, 2]])
values = self.value_empty(2, 1, 0)
sizes = torch.Size([2, 3, 1, 0])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[1, 2],
[0, 2]])
values = self.value_empty(2, 2, 2)
sizes = torch.Size([0, 0, 2, 2])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[1, 2],
[0, 2]])
values = self.value_tensor([[1, 1, 1], [1, 1, 1]])
sizes = torch.Size([3, 3, 2])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[1, 2],
[0, 2]])
values = self.value_empty(2, 1, 0)
sizes = torch.Size([3, 3, 2, 0])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
def test_factory_default(self):
tensor = self.legacy_sparse_tensor()
expected_indices = self.index_tensor([[]])
expected_size = torch.Size([0])
self.assertEqual(tensor._indices(), expected_indices)
self.assertEqual(tensor.shape, expected_size)
def test_factory_empty_indices(self):
device = 'cuda' if self.is_cuda else 'cpu'
tensor = self.legacy_sparse_tensor()
expected_indices = torch.empty((1, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device)
expected_indices = torch.empty((2, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device)
expected_indices = torch.empty((3, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device)
expected_indices = torch.empty((4, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
def test_factory_nnz(self):
indices = self.index_tensor([[0]]) # (sparse_dim, nnz): (1, 1)
values = self.value_tensor([[1, 1], [1, 1]]) # (nnz, ...): (2, 2)
sizes = torch.Size([2, 2])
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[0]]) # (sparse_dim, nnz): (1, 1)
values = self.value_empty(2, 0) # (nnz, ...): (2, 0)
sizes = torch.Size([2, 0])
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
torch.sparse_coo_tensor(indices, values, sizes)
def test_factory_nnz_zero(self):
def test_shape(i_shape, v_shape, size, expected_size):
device = 'cuda' if self.is_cuda else 'cpu'
if size:
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size), device=device)
else:
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), device=device)
expected_indices = torch.empty(i_shape, device=device)
expected_values = torch.empty(v_shape, device=device)
expected_size = torch.Size(expected_size)
self.assertEqual(t._indices(), expected_indices)
self.assertEqual(t._values(), expected_values)
self.assertEqual(t.size(), expected_size)
test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0])
test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0])
def test_factory_dense_dim(self):
indices = self.index_tensor([[0]])
values = self.value_tensor([[[1, 1, 1], [1, 1, 1]]])
sizes = torch.Size([1, 3, 4])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[0]])
values = self.value_empty(1, 2, 3, 0)
sizes = torch.Size([1, 3, 4, 0])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
@cpu_only
def test_factory_type_inference(self):
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float16))
self.assertEqual(torch.float16, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float32))
self.assertEqual(torch.float32, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float64))
self.assertEqual(torch.float64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
self.assertEqual(torch.int64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0))
self.assertEqual(torch.float16, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0))
self.assertEqual(torch.float32, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0))
self.assertEqual(torch.float64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0))
self.assertEqual(torch.int64, t.dtype)
@cuda_only
def test_factory_device_type_inference(self):
# both indices/values are CUDA
shape = (1, 3)
for indices_device in ['cuda', 'cpu']:
for values_device in ['cuda', 'cpu']:
for sparse_device in ['cuda', 'cpu', None]:
for test_empty_tensor in [True, False]:
if test_empty_tensor:
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
self.value_empty(1, 0).to(values_device),
(1, 3, 0), device=sparse_device)
else:
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
torch.tensor([1.], device=values_device),
(1, 3), device=sparse_device)
should_be_cuda = sparse_device == 'cuda' or (sparse_device is None and values_device == 'cuda')
self.assertEqual(should_be_cuda, t.is_cuda)
@cpu_only
def test_factory_copy(self):
def test_tensor(indices, values, indices_equal, values_equal):
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
if indices_equal:
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
else:
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
if values_equal:
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
else:
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# both correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float64)
test_tensor(indices, values, True, True)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.DoubleTensor(1, 0)
test_tensor(indices, values, True, True)
# only indices correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float32)
test_tensor(indices, values, True, False)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float16)
test_tensor(indices, values, True, False)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.FloatTensor(1, 0)
test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0
# only values correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float64)
test_tensor(indices, values, False, True)
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.DoubleTensor(1, 0)
test_tensor(indices, values, False, True)
# neither correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float32)
test_tensor(indices, values, False, False)
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.FloatTensor(1, 0)
test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0
@cpu_only # just run once, we test both cpu and cuda
def test_constructor_device_legacy(self):
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
v = torch.tensor([3., 4., 5.])
size = torch.Size([2, 3])
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, size, device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
x = torch.sparse_coo_tensor(i, v, size, device='cpu')
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
if torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, size, device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
x = torch.sparse_coo_tensor(i, v, size, device='cuda')
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
@cpu_only # not really, but we only really want to run this once
def test_dtypes(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes()]
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.is_available():
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
@cpu_only # not really, but we only really want to run this once
def test_empty_full(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes()]
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.device_count() > 0:
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None)
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def test_is_sparse(self):
x = torch.randn(3, 3)
self.assertFalse(x.is_sparse)
x = torch.randn(3, 3, 0)
self.assertFalse(x.is_sparse)
x = self.legacy_sparse_tensor()
self.assertTrue(x.is_sparse)
x = self.sparse_empty(1, 0)
self.assertTrue(x.is_sparse)
def test_resize_as(self):
def do_test(t):
y = t.new().resize_as_(t).zero_()
self.assertEqual(y.shape, t.shape)
# Check that y can be added to t. Currently, this requires that
# sparse_dim and dense_dim match.
self.assertEqual(t, t + y)
do_test(self.legacy_sparse_tensor())
do_test(self.sparse_empty(3, 0))
do_test(self.sparse_empty(3, 3))
def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size):
x_v_numel = torch.zeros(x_v).numel()
y_v_numel = torch.zeros(y_v).numel()
x = torch.sparse_coo_tensor(torch.zeros(x_i),
torch.arange(x_v_numel).resize_(x_v).to(torch.float),
torch.Size(x_size))
x_dense = x.to_dense()
y = torch.sparse_coo_tensor(torch.zeros(y_i),
torch.ones(y_v).to(torch.float),
torch.Size(y_size))
y_dense = y.to_dense()
x.resize_as_(y)
x_dense.resize_as_(y_dense)
self.assertEqual(x.shape, y.shape)
self.assertEqual(x.sparse_dim(), y.sparse_dim())
self.assertEqual(x.dense_dim(), y.dense_dim())
self.assertEqual(x.shape, x_dense.shape)
self.assertEqual(y.shape, y_dense.shape)
# Here we make sure that the original data are preserved after resizing
self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v),
x_dense.view(-1)[0:x_v_numel].view(x_v))
def test_resize(self):
# 1. Expand the size of some dense dimensions [Supported]
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 4], [2, 2, 4])
self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0],
[1, 1], [1, 2, 4], [2, 2, 4])
# 2. Expand the size of some sparse dimensions [Supported]
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3], [4, 2, 3])
# 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported]
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
[2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5])
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
[2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0])
# 4. Add dims to dense dimensions [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3, 4], [2, 2, 3, 4])
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3, 0], [2, 2, 3, 0])
# 5. Remove dims from dense dimensions [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2], [2, 2])
# 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[2, 1], [1, 2, 3], [1, 2, 2, 3])
# 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3], [1, 2, 3])
# 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 2], [2, 2, 2])
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 0], [2, 2, 0])
def test_is_nonzero(self):
self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,)).is_nonzero())
self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, []).is_nonzero()) # scalar sparse tensor
with self.assertRaisesRegex(RuntimeError, "bool value of Tensor with no values is ambiguous"):
torch.sparse_coo_tensor(([0, 1],), self.value_empty(2, 0), (4, 0)).is_nonzero()
def test_allow_tensor_metadata_change(self):
def do_test(t):
with self.assertRaisesRegex(
RuntimeError,
"raw_resize_ is not allowed on Tensor created from .data or .detach()"):
t.transpose_(0, 1)
with self.assertRaisesRegex(
RuntimeError,
"resize_ is not allowed on Tensor created from .data or .detach()"):
t.resize_as_(self.sparse_empty(3, 3))
with self.assertRaisesRegex(
RuntimeError,
"resize_and_clear_ is not allowed on Tensor created from .data or .detach()"):
t.mul_(t)
with self.assertRaisesRegex(
RuntimeError,
"set_coalesced is not allowed on Tensor created from .data or .detach()"):
t._coalesced_(True)
with self.assertRaisesRegex(
RuntimeError,
"set_indices_and_values_unsafe is not allowed on Tensor created from .data or .detach()"):
a = self.sparse_tensor(torch.tensor([[0, 1, 1], [2, 0, 2]]), torch.tensor([3., 4., 5.])).data
a.add_(a)
with self.assertRaisesRegex(
RuntimeError,
"resize_and_clear_ is not allowed on Tensor created from .data or .detach()"):
a.zero_()
with self.assertRaisesRegex(
RuntimeError,
"resize_ is not allowed on Tensor created from .data or .detach()"):
a.copy_(self.sparse_empty(3, 3))
do_test(self.sparse_empty(3, 0).data)
do_test(self.sparse_empty(3, 0).detach())
def test_change_tensor_metadata(self):
i = self.index_tensor([[0], [1]])
v = self.value_tensor([[3, 4, 5]])
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.resize_(2, 3)
v.resize_(4, 5)
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]])
v = self.value_tensor([[3, 4, 5]])
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.resize_as_(self.index_tensor([0, 1]))
v.resize_as_(self.value_tensor([3, 4, 5]))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]])
v = self.value_tensor([[3, 4, 5]])
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.as_strided_((2, 1), (1, 1))
v.as_strided_((1, 3), (1, 1))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]])
v = self.value_tensor([[3, 4, 5]])
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.set_(self.index_tensor([0, 1]))
v.set_(self.value_tensor([3, 4, 5]))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]])
v = self.value_tensor([[3, 4, 5]])
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.transpose_(0, 1)
v.transpose_(0, 1)
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
class TestUncoalescedSparse(TestSparse):
def setUp(self):
super(TestUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaSparse(TestSparse):
def setUp(self):
super(TestCudaSparse, self).setUp()
self.is_cuda = True
self.device = 'cuda'
self.legacy_sparse_tensor = torch.cuda.sparse.DoubleTensor
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaUncoalescedSparse(TestCudaSparse):
def setUp(self):
super(TestCudaUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
class TestSparseOneOff(TestCase):
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_cuda_from_cpu(self):
with self.assertRaisesRegex(
RuntimeError,
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4),
[3, 4, 4])
with self.assertRaisesRegex(
RuntimeError,
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4, 0),
[3, 4, 4, 0])
with self.assertRaisesRegex(
RuntimeError,
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
torch.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(),
torch.randn(0, 4, 4, 0),
[0, 4, 4, 0])
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_cuda_sparse_cpu_dense_add(self):
x = torch.zeros(3, 4, 4)
sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4).cuda(),
[3, 4, 4])
with self.assertRaisesRegex(RuntimeError, "add: expected 'other' to be a CPU tensor\\, but got a CUDA tensor"):
x + sparse_y
x = torch.zeros(3, 4, 4, 0)
sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4, 0).cuda(),
[3, 4, 4, 0])
with self.assertRaisesRegex(RuntimeError, "add: expected 'other' to be a CPU tensor\\, but got a CUDA tensor"):
x + sparse_y
x = torch.zeros(0, 4, 4, 0)
sparse_y = torch.cuda.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(),
torch.randn(0, 4, 4, 0).cuda(),
[0, 4, 4, 0])
with self.assertRaisesRegex(RuntimeError, "add: expected 'other' to be a CPU tensor\\, but got a CUDA tensor"):
x + sparse_y
if __name__ == '__main__':
run_tests()