mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 06:11:27 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18497 Reviewed By: kennyhorror Differential Revision: D14614738 fbshipit-source-id: beddd8349827dcc8ccae36f21e5d29627056afcd
234 lines
9.1 KiB
Python
234 lines
9.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, scope
|
|
from caffe2.python.modeling.parameter_sharing import (
|
|
ParameterSharing,
|
|
)
|
|
from caffe2.python.optimizer import AdagradOptimizer, AdamOptimizer
|
|
from caffe2.python.layer_test_util import LayersTestCase
|
|
import six
|
|
|
|
|
|
class ParameterSharingTest(LayersTestCase):
|
|
|
|
def test_layer_parameter_name(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
fc1_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w, 'global_scope/fc/w')
|
|
self.assertEquals(fc1_output(), 'global_scope/fc/output')
|
|
|
|
with scope.NameScope('nested_scope'):
|
|
fc2_output = self.model.FC(
|
|
fc1_output,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/nested_scope/fc/w')
|
|
self.assertEquals(fc2_output(),
|
|
'global_scope/nested_scope/fc/output')
|
|
|
|
fc3_output = self.model.FC(
|
|
fc1_output,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/nested_scope/fc_auto_0/w')
|
|
self.assertEquals(fc3_output(),
|
|
'global_scope/nested_scope/fc_auto_0/output')
|
|
|
|
def test_layer_shared_parameter_name_different_namescopes(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
with ParameterSharing({'scope_1': 'scope_0'}):
|
|
with scope.NameScope('scope_0'):
|
|
fc1_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/scope_0/fc/w')
|
|
self.assertEquals(fc1_output(),
|
|
'global_scope/scope_0/fc/output')
|
|
|
|
with scope.NameScope('scope_1'):
|
|
fc2_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/scope_0/fc/w')
|
|
self.assertEquals(fc2_output(),
|
|
'global_scope/scope_1/fc/output')
|
|
|
|
def test_layer_shared_parameter_name_within_same_namescope(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
with ParameterSharing({'fc_auto_0': 'fc'}):
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/fc/w')
|
|
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/fc/w')
|
|
|
|
def test_layer_shared_parameter_name_within_same_namescope_customized_name(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
with ParameterSharing({'new_fc': 'shared_fc'}):
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
name='shared_fc'
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/shared_fc/w')
|
|
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
name='new_fc'
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/shared_fc/w')
|
|
|
|
def test_layer_shared_parameter_name_different_shapes(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
with ParameterSharing({'fc_auto_0': 'fc'}):
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
self.assertEquals(self.model.layers[-1].w,
|
|
'global_scope/fc/w')
|
|
|
|
with six.assertRaisesRegex(self, ValueError, 'Got inconsistent shapes .*'):
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims + 1
|
|
)
|
|
|
|
def test_layer_duplicated_parameter_init(self):
|
|
output_dims = 2
|
|
with scope.NameScope('global_scope'):
|
|
with ParameterSharing({'new_fc': 'shared_fc'}):
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
name='shared_fc'
|
|
)
|
|
self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
name='new_fc'
|
|
)
|
|
|
|
train_init_net = core.Net('train_init_net')
|
|
train_net = core.Net('train_net')
|
|
for layer in self.model.layers:
|
|
layer.add_operators(train_net, train_init_net)
|
|
op_outputs = []
|
|
for op in train_init_net._net.op:
|
|
op_outputs.extend(op.output)
|
|
|
|
# only fill these parameter blobs once
|
|
self.assertEquals(
|
|
sorted(op_outputs),
|
|
['global_scope/shared_fc/b', 'global_scope/shared_fc/w']
|
|
)
|
|
|
|
def test_layer_shared_parameter_optim_validator(self):
|
|
"""
|
|
This test is to cover the _validate_param_optim function in
|
|
layer_model_helper class.
|
|
"""
|
|
|
|
output_dims = 2
|
|
|
|
adagrad_optim = AdagradOptimizer(
|
|
alpha=0.004,
|
|
epsilon=0.02,
|
|
)
|
|
|
|
self.model.default_optimizer = adagrad_optim
|
|
|
|
# the following covers the branch -- optim is None
|
|
with scope.NameScope('global_scope_0'):
|
|
with ParameterSharing({'scope_1': 'scope_0'}):
|
|
with scope.NameScope('scope_0'):
|
|
fc1_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=self.model.NoOptim,
|
|
)
|
|
|
|
with scope.NameScope('scope_1'), self.assertRaises(Exception):
|
|
fc2_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims
|
|
)
|
|
|
|
# the following covers the branch -- optim is NoOptim
|
|
with scope.NameScope('global_scope_1'):
|
|
with ParameterSharing({'scope_1': 'scope_0'}):
|
|
with scope.NameScope('scope_0'):
|
|
fc1_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=None,
|
|
)
|
|
|
|
with scope.NameScope('scope_1'), self.assertRaises(Exception):
|
|
fc2_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=self.model.NoOptim,
|
|
)
|
|
|
|
# the following covers the branch -- optim is an instance of Optimizer
|
|
adagrad_optim_2 = AdagradOptimizer(
|
|
alpha=0.005,
|
|
epsilon=0.02,
|
|
)
|
|
|
|
adam_optim = AdamOptimizer()
|
|
|
|
self.model.default_optimizer = adagrad_optim_2
|
|
|
|
with scope.NameScope('global_scope_2'):
|
|
with ParameterSharing({'scope_1': 'scope_0', 'scope_2': 'scope_0'}):
|
|
with scope.NameScope('scope_0'):
|
|
fc1_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=None, # it will use adagrad_optim_2
|
|
)
|
|
|
|
with scope.NameScope('scope_1'), self.assertRaises(Exception):
|
|
fc2_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=adagrad_optim,
|
|
)
|
|
|
|
with scope.NameScope('scope_2'), self.assertRaises(Exception):
|
|
fc2_output = self.model.FC(
|
|
self.model.input_feature_schema.float_features,
|
|
output_dims,
|
|
weight_optim=adam_optim,
|
|
)
|